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Abstract. In this paper we consider Grassmannians in arbitrary
characteristic. Generalizing Kapranov’s well-known characteristic-
zero results we construct dual exceptional collections on them (which
are however not strong) as well as a tilting bundle. We show that
this tilting bundle has a quasi-hereditary endomorphism ring and
we identify the standard, costandard, projective and simple mod-
ules of the latter.

1. Introduction

Throughout K is a field of arbitrary characteristic. Let X be a
smooth algebraic variety over K and let D be its bounded derived
category of coherent sheaves. An object T ∈ D is called a tilting object
if it classically generates D (i.e. the smallest thick subcategory of D
containing T is D itself) and HomOX (T , T [i]) = 0 for i 6= 0.

If T is a tilting object in D and A = EndOX (T ) then the functor
RHomOX (T ,−) defines an equivalence D ∼= Db(modA◦). If in addition
T is a vector bundle then we call T a tilting bundle.

A sequence of objects E1, E2, . . . , Ed which classically generates D is
called an exceptional sequence if RHomOX (Ej, Ei) = 0 for j > i and
RHomOX (Ei, Ei) = K. An exceptional sequence is strongly exceptional
if in addition ExtkOX (Ei, Ej) = 0 for all i, j and k > 0. Obviously if
(Ei)i is strongly exceptional then T =

⊕
iEi is a tilting object in D.
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Two exceptional sequences E1, E2, . . . , Ed and Fd, Fd−1, . . . , F1 are
said to be dual if

RHomOX (Ei, Fj) = δi,j ·K .

We now specialize to the the case where X is the Grassmannian G =
Grass(l, F ) ∼= Grass(l,m) of l-dimensional subspaces of anm-dimensional
K-vector space F . On G we have a tautological exact sequence of vec-
tor bundles

(1.1) 0 −→ R −→ F ∨ ⊗K OG −→ Q −→ 0 .

When K is a field of characteristic zero, Kapranov [Kap88] constructs a
pair of dual strongly exceptional sequences on G which we now describe.
For a partition α let Lα be the associated Schur functor, let α′ be its
transpose partition and let |α| =

∑
i αi be its degree.

Theorem 1.1 (Kapranov [Kap88]). Assume that K has characteristic
zero. Let Bu,v be the set of partitions with at most u rows and at most v
columns equipped with a total ordering ≺ such that if |α| < |β| then
α ≺ β. Let Bu,v be the same as Bu,v but equipped with the opposite
ordering. Then there are strongly exceptional sequences on G given by

(LαQ)α∈Bl,m−l and (Lα
′R)α∈Bl,m−l .

In particular the vector bundle

K =
⊕

α∈Bl,m−l

LαQ

is a tilting bundle on G. Moreover the exceptional sequences (LαQ)α∈Bl,m−l
and (Lα

′R[|α|])α∈Bl,m−l are dual.

For K a field of positive characteristic p, Kaneda [Kan08] shows that
K remains tilting as long as p > m − 1. However K fails to be tilting
in very small characteristics.

Example 1.2. Assume that K has characteristic 2 and put G =
Grass(2, 4). Then the short exact sequence

(1.2) 0 −→
∧2Q −→ Q⊗Q −→ Sym2Q −→ 0

is non-split. This follows for example from Theorem 5.4 below and the
fact that the sequence of GL(2)-representations

0 −→
∧2V −→ V ⊗ V −→ Sym2 V −→ 0

is not split, where V = K2 is the standard representation. In particular
Ext1

OG
(Sym2Q,

∧2Q) 6= 0, so that Sym2Q and
∧2Q are not common

direct summands of a tilting bundle on G in characteristic two.
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In this note we give a tilting bundle on G which exists in arbitrary
characteristic. For a partition α = [α1, . . . , αp] put∧αQ =

∧α1Q⊗G · · · ⊗G
∧αpQ .

Our first main theorem is the following.

Theorem 1.3. Define a vector bundle on G by

(1.3) T =
⊕

α∈Bl,m−l

∧α′Q .

Then T is a tilting bundle on G.

In characteristic zero we recover Kapranov’s tilting bundle, up to
multiplicities, by working out the tensor products in (1.3) using Pieri’s
formula.

The proof of Theorem 1.3 depends on the following vanishing result
which we will also use in [BLVdB13].

Proposition 1.4. For α ∈ Bl,m−l and β an arbitrary partition we have
for i > 0

(1.4) ExtiOG
(
∧α′Q, LβQ) = 0 .

Furthermore if |β| < |α| then we have as well HomOG(
∧α′Q, LβQ) = 0.

In our next result we show that Kapranov’s characteristic-zero result
can be partially salvaged in arbitrary characteristic.

Theorem 1.5 (see Theorem 7.4 below). There exists a total ordering
≺ on Bl,m−l such that

(LαQ)α∈Bl,m−l and (Lα
′R[|α|])α∈Bl,m−l

are dual exceptional collections on G, where Bl,m−l is Bl,m−l equipped
with the opposite ordering.

We use this result to obtain another proof of Kaneda’s result that K
remains tilting in characteristics p > m− 1 (Corollary 7.6).

The proof of Theorem 1.5 goes through the construction of a nice
semi-orthogonal decomposition [BK89] on Db(coh(G)) which we sum-
marize in the following theorem.

Theorem 1.6 (see Theorem 5.6 below). There is a semi-orthogonal
decomposition

Db(coh(G)) =
〈
D0, . . . ,Dl(m−l)

〉
where for d = 0, . . . , l(m− l), Dd is the derived category of the general-
ized Schur algebra associated to the representations whose composition
factors have highest weight α ∈ Bl,m−l such that |α| = d.
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The connection between Theorem 1.3 and 1.5 depends on the the-
ory of quasi-hereditary algebras [DR92]. In this regard we have the
following additional result.

Theorem 1.7. Let T be as in Theorem 1.3 and put A = EndOG(T ).
Then A is quasi-hereditary. Furthermore the bundles (LαQ)α∈Bl,m−l
correspond to the standard right A-modules and (LαR[|α|])α∈Bl,m−l cor-

respond to the costandard right A-modules.

This theorem is a special case of Theorem 8.1 below in which we also
characterize the simple and projective right A-modules.

The authors wish to thank Vincent Franjou, Catharina Stroppel and
Antoine Touzé for help with references.

2. Some preliminaries on representation theory

Throughout we use [Jan03] as a convenient reference for facts about
algebraic groups. If H ⊂ G is an inclusion of algebraic groups over the
ground field K, then the restriction functor from rational G-modules to
rational H-modules has a right adjoint denoted by indGH ([Jan03, I.3.3]).
Its right derived functors are denoted by Ri indGH . For an inclusion of
groups K ⊂ H ⊂ G and M a rational K-representation there is a
spectral sequence [Jan03, I.4.5(c)]

(2.1) Epq
2 : Rp indGH R

q indHKM =⇒ Rp+q indGKM .

If G/H is a scheme and V is a finite-dimensional H-representation
then LG/H(V ) is by definition the G-equivariant vector bundle on G/H
given by the sections of (G× V )/H. The functor LG/H(−) defines an
equivalence between the finite-dimensional H-representations and the
G-equivariant vector bundles on G/H. The inverse of this functor is
given by taking the fiber in [H] ∈ G/H.

If G/H is a scheme then Rn indGH may be computed as [Jan03, Prop.
I.5.12]

(2.2) Rn indGHM = Hn(G/H,LG/H(M)) .

We now assume that G is a split reductive group with a given split
maximal torus and Borel T ⊂ B ⊂ G. We let X(T ) be the charac-
ter group of T and we identify the elements of X(T ) with the one-
dimensional representations of T . The set of roots (the weights of
LieG) is denoted by R. We have R = R−

∐
R+ where the negative

roots R− represent the roots of LieB. For α ∈ R we denote the corre-
sponding coroot in Y (T ) = Hom(X(T ),Z) [Jan03, II.1.3] by α∨. The
natural pairing betweenX(T ) and Y (T ) is denoted by 〈−,−〉. A weight
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λ ∈ X(T ) is dominant if 〈λ, α∨〉 > 0 for all positive roots α. The set
of dominant weights is denoted by X(T )+. The set X(T ) is naturally
partially ordered by putting λ 6 µ if µ− λ is a sum of positive roots.

The following is the celebrated Kempf vanishing result ([Kem76], see
also [Jan03, II.4.5]).

Theorem 2.1. If λ ∈ X(T )+ then Ri indGB λ = H i(G/B,LG/B(λ))
vanishes for all strictly positive i. �

We now restrict to G = GL(m). In this case we let T be the
diagonal matrices in G and B the lower triangular matrices. The
weights of T can be identified with m-tuples of integers [α1, . . . , αm]
via diag(z1, . . . , zm) 7→ zα1

1 · · · zαmm . Thus X(T ) ∼= Y (T ) ∼= Zm. Un-
der this identification roots and coroots coincide and are given by
(0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0). The pairing between X(T ) and Y (T )
is the standard Euclidean scalar product and henceX(T )+ = {[α1, . . . , αm] |
αi > αj for i 6 j}. A dominant weight with only non-negative entries
will be called a partition. Mentally we represent a partition by its
Young diagram, with the length of the rows corresponding to the en-
tries. The sum

∑
i αi is the degree of the weight α and is denoted by

|α|. We say that a representation has degree d if all its weights have
degree d. We say that a representation is polynomial is all its weights
contain only non-negative entries.

If α = [α1, . . . , αm] is a partition then we denote by Lα, Kα the
corresponding Schur and Weyl functors. More precisely for a vector
space (or a vector bundle) V define for a partition α∧αV =

⊗
i

∧αiV Symα V =
⊗
i

Symαi V DαV =
⊗
i

DαiV

where in particular DuV = (V ⊗u)Su is the uth divided power represen-
tation.

Then we put with d = |α|:

LαV = im
(∧α′V −a−→ V ⊗d −s−→ Symα V

)
(2.3)

KαV = im
(
DαV −s−→ V ⊗d −a−→

∧α′V
)

(2.4)

where a and s are respectively the anti-symmetrization map and the
symmetrization map. Their precise form is derived from a labeling
of the Young diagram associated to α. The resulting representations
KαV , LαV are independent of this labeling.

In the sequel we freely pass between the functor point of view and
the representation theory point of view using the following lemma. If

λ ∈ X(T )+ then H0(λ)
def
= indGB λ is a so-called induced representation
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with highest weight λ. Dually one defines the corresponding Weyl
representation as V (λ) = H0(−w0λ)∨ where w0 is the longest element
of the Weyl group [Jan03, §2.13].

Lemma 2.2. Let V be the standard representation of GL(m) and let
α be a partition. Then

LαV = H0(α)(2.5)

KαV = V (α)(2.6)

Proof. The identity (2.5) is [Wey03, (4.1.10)]1. To prove (2.6) we note
that by [Jan03, II.2.13(2)] we have V (α) = τ H0(α), where τM is M∨

as a vector space and g ∈ G acts on ϕ ∈M∨ via g ·ϕ = ϕ◦gt where (−)t

denotes transposition. Clearly M 7→ τM is a contravariant monoidal
functor and furthermore one verifies

τ Symu V = DuV
τ
∧uV =

∧uV .

Applying τ (−) to the right-hand side of (2.3) yields the right-hand side
of (2.4), finishing the proof. �

According to [Jan03, Prop. II.2.4] LαV has a simple socle which we
denote by Σα. According to [Jan03, §II.2.6] KαV has a simple top,
which is also equal to Σα.

3. Proof of Theorem 1.3 and Proposition 1.4

We stick to the notation already introduced in the introduction. We
will identify G = Grass(l, F ) with Grass(m− l, F ∨) via the correspon-
dence (V ⊂ F ) 7→ ((F/V )∨ ⊂ F ∨).

For convenience we choose a basis (fi)i=1,...,m for F and a correspond-
ing dual basis (f ∗i )i for F ∨. We view G as the homogeneous space G/P
with G = GL(F ∨) = GL(m) and P ⊂ G the parabolic subgroup stabi-
lizing the point (W ⊂ F ∨) ∈ G where W =

∑m
i=l+1Kf

∗
i . As above let

T and B be respectively the diagonal matrices and the lower triangular
matrices in G.

Let H = G1 × G2 = GL(l) × GL(m − l) ⊂ GL(m) be the Levi-
subgroup of P containing T . We put Bi = B ∩ Gi and Ti = T ∩
Gi. We denote the standard representations of G1 and G2 by V and
W respectively. Thus for x = [P ] ∈ G/P we have V = Qx and
W = Rx; equivalently Q = LG(V ) and R = LG(W ). (Throughout we
silently view Gi-representations as P -representations to apply LG(−).)

It follows that
∧α′Q = LG(

∧α′V ) and LαQ = LG(LαV ).

1Note that our Lα is Lα′ in [Wey03].
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For use in the proof below we fix an additional parabolic P ◦ in G
given by the stabilizer of the flag (

∑
i>pKf

∗
i )p=1,...,l. We let G◦ =

GL(m − l + 1) ⊂ P ◦ ⊂ G = GL(m) be the lower right (m − l + 1 ×
m − l + 1)-block in GL(m). We put T ◦ = T ∩ G◦ and B◦ = B ∩ G◦,
i.e. B◦ is the set of lower triangular matrices in G◦ and T ◦ is the set of
diagonal matrices.

Proof of Proposition 1.4. It follows from the usual spectral sequence ar-

gument that ExtiOG
(
∧α′Q, LβQ) is the ith cohomology ofHomOG(

∧α′Q, LβQ) ∼=
(
∧α′Q)∨ ⊗G L

βQ, so we must show

H i(G,
∧u1Q∨ ⊗G · · · ⊗G

∧um−lQ∨ ⊗G L
βQ) = 0

for all i > 0 and u1 > · · · > um−l > 0, and also for i = 0 if
∑
ui < |β|.

Using the identity

(
∧uQ)

∨
=
∧l−uQ⊗

(∧lQ
)∨

and the characteristic free version of the Littlewood-Richardson rule
(see [Bof88] or [Wey03, (2.3.4)]) we reduce immediately to the case
u1 = · · · = um−l = l. The tautological exact sequence (1.1) allows us
to write (∧lQ

)∨
=
∧mF ⊗K

∧m−lR .

Thus we need to prove that

LγQ⊗G
∧m−lR⊗G · · · ⊗G

∧m−lR

(with m− l factors of
∧m−lR) has vanishing higher cohomology. Using

(2.2) we see that we must prove that for i > 0 we have

(3.1) Ri indGP

(
LγV ⊗

∧m−lW ⊗ · · · ⊗
∧m−lW

)
= 0 ,

where as above V , W are the standard representations of G1, G2. Since
V has rank l, we may assume that γ has at most l entries. Put γ =
[γ1, . . . , γl,m− l, . . . ,m− l] ∈ X(T ). We have

LγV ⊗
∧m−lW ⊗ · · · ⊗

∧m−lW = indPB γ .

It is clear that γ is dominant when viewed as a weight for T considered
as a maximal torus in H = G1×G2 with respect to the Borel subgroup
B1×B2. So Kempf vanishing implies that Ri indPB γ = Ri indG1×G2

B1×B2
γ =

0 for all i > 0.
Thus the spectral sequence (2.1) degenerates and we obtain

(3.2) Ri indGP

(
LγV ⊗

∧m−lW ⊗ · · · ⊗
∧m−lW

)
= Ri indGB γ .
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Thus if γ is dominant (i.e. γl > m− l) then the desired vanishing (3.1)
follows by invoking Kempf vanishing again.

Assume then that γ is not dominant, i.e. 0 6 γl < m − l. We
claim that Ri indP

◦

B γ = 0 for all i. Then by the spectral sequence (2.1)
applied to B ⊂ P ◦ ⊂ G we obtain that Ri indGB γ = 0 for all i.

To prove the claim we note that P ◦/B ∼= G◦/B◦ and hence by (2.2)
Ri indP

◦

B γ = Ri indG
◦

B◦(γ | T ◦). In other words we have reduced our-
selves to the case l = 1 (replacing m by m− l + 1).

So now we assume l = 1. Thus G = P(F ) ∼= Pm−1, which we write as
P for short. The partition γ consists of a single entry γ1 and we have
γ = [γ1,m− 1, . . . ,m− 1]. Under the assumption γ1 < m− 1 we have
to prove Ri indGB γ = 0 for all i. Applying (3.2) in reverse this means
we have to prove that

Q⊗γ1 ⊗P
(∧m−1R

)⊗m−1

has vanishing cohomology on P.
We now observe Q ∼= OP(1) and since

R ∼= ker(OmP −→ OP(1))

we also have ∧m−1R ∼= OP(−1)

so that

Q⊗γ1 ⊗P
∧m−1R⊗m−1 ∼= OP(−m+ 1 + γ1) .

It is standard that this line bundle has vanishing cohomology when
0 6 γ1 < m− 1, so we are done.

For the last statement of the Proposition, observe that in the above
argument if |β| < |α| then we are always in the case where γ is not
dominant, and thus the vanishing holds also when i = 0. �

Proof of Theorem 1.3. The main thing to prove is that ExtiOG
(T , T ) =

0 for i 6= 0. Applying the characteristic-free Littlewood-Richardson
rule [Bof88], we see that it suffices to prove that T ∨ ⊗G L

γQ has van-
ishing higher cohomology whenever γ is a partition with at most l rows.
This is the content of Proposition 1.4.

Kapranov’s resolution of the diagonal argument together with the
characteristic-free version of Cauchy’s formula [Wey03, (2.3.2)] still
implies that the vector bundle K in Theorem 1.1 classically generates
Db(coh(G)). See, for example, [LSW89]. Thus it suffices to show that
LαQ for α ∈ Bl,m−l is in the thick subcategory C generated by T . As-
sume this is not the case and let α be minimal for the lexicographic
ordering on partitions such that LαQ is not in C.
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Consider U =
∧α′1Q⊗G · · · ⊗G

∧α′lQ. Then Pieri’s formula, which is
a special case of the Littlewood-Richardson rule, yields a filtration of
U with successive quotients LβQ such that β 6 α and such that LαQ
appears with multiplicity one. Furthermore U has a good filtration
[Jan03, §II.4.16], one in which the LβQ appearing as quotients are in
decreasing order for the lexicographic ordering on partitions, that is,
the largest β appear on top [Jan03, II.4.16, Remark (4)]. Hence U
maps surjectively to LαQ and the kernel is an extension of various
LβQ with β strictly smaller than α in the lexicographic ordering. By
the hypotheses all such LβQ are in C. Since U is in C as well we obtain
that LαQ is in C, which is a contradiction. �

Remark 3.1. By [Don93, Lemma (3.4)] we can obtain the following
more economical tilting bundle for G

T ◦ =
⊕

α∈Bl,m−l

LG(Mα) ,

where Mα is the tilting GL(l)-representation with highest weight α.
Note however that the character of Mα strongly depends on the char-
acteristic. Hence so does the nature of T ◦.

For use below we need the following complement to Proposition 1.4.

Proposition 3.2. For every partition α and every polynomial G1-
representation U of degree < |α| we have

(3.3) RHomOG(
∧α′Q,LG(U)) = 0 .

Proof. It suffices to prove the claimed vanishing for U simple of degree
less than |α|, so for U = Σβ with β a partition such that |β| < |α|. We
do this by induction on β. Since Σβ is the socle of LβQ we have by
[Jan03, Prop. 6.15] a short exact sequence

0 −→ Σβ −→ LβV −→ S −→ 0

where S is obtained through extensions involving only Σγ with γ < β.

By induction we may assume RHomOG(
∧α′Q,LG(S)) = 0. Then (3.3)

for U = Σβ follows from the final statement of Proposition 1.4. �

4. Reminder on semi-orthogonal decompositions

We recapitulate some facts concerning semi-orthogonal decomposi-
tions that we need later. No originality is intended.

If S is a triangulated category and S is a set of objects then we de-
note by 〈S〉 the smallest triangulated subcategory of S that contains S
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and is closed under isomorphisms. If S = 〈S〉 then we say that S gen-
erates S as a triangulated category. (This is stronger than “classically”
generating S as in the Introduction.)

Definition 4.1. A semi-orthogonal decomposition of a triangulated
category S is a sequence of full subcategories A1, . . . ,An ⊂ S gen-
erating S as a triangulated category and such that HomS(Aj,Ai) =
0 for j > i. We denote such a semi-orthogonal decomposition by
〈A1, . . . ,An〉. Sometimes we write S = 〈A1, . . . ,An〉.

If X is an object in a triangulated category then a filtration F of
length n on X is a sequence of maps

0 = FnX −→ Fn−1X −→ · · · −→ F0X = X .

We write (grF X)i = cone(Fi−1X −→ FiX). The following well-known
lemma shows that Definition 4.1 is equivalent to the seemingly stronger
one in [Kuz09, Def. 2.3].

Lemma 4.2. Let 〈A1, . . . ,An〉 be a semi-orthogonal decomposition of
S. Then every object X in S has a filtration F of length n such that
(grF X)i ∈ Ai+1.

Proof. By induction it is sufficient to prove this for n = 2. In that case
the result is [Bon89, Lemma 3.1]. �

In order to work conveniently with semi-orthogonal decompositions
one needs a property called “admissibility” [BK89]. If A is a saturated
full triangulated subcategory of a triangulated category S then A is
(left, right) admissible if the inclusion functor A −→ S has a (left,
right) adjoint, or equivalently if there exist semi-orthogonal decompo-
sitions 〈A,A′〉 resp. 〈A′′,A〉. If A is both left and right admissible then
it is said to be admissible.

A saturated triangulated category is a K-linear triangulated category
A such that for all A, B ∈ A we have

∑
i dim Homi

A(A,B) < ∞ and
such that every co- or contravariant cohomological functor H i : A −→
mod(K) satisfying

∑
i dimH i(A) < ∞ is representable. The derived

category of coherent sheaves on a smooth proper algebraic variety is
a particular example of a saturated triangulated category [BVdB03,
BK89].

If A is a full triangulated subcategory of a K-linear triangulated
category S then A is admissible [BK89, Prop 2.6]. Furthermore if S
is a saturated triangulated category then every left/right admissible
subcategory is automatically admissible (and hence saturated). This
follows by combining [BK89, Prop. 2.6] and [BK89, Prop. 2.8]. From
this we deduce that if we have a semi-orthogonal decomposition S =
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〈A1, . . . ,An〉 of a saturated S then all the “slices” 〈Ai, . . . ,Aj〉 are
admissible and saturated.

In particular if we put S6i = 〈A1, . . . ,Ai〉 then this yields a filtra-
tion S61 ⊂ · · · ⊂ S6n = S by admissible subcategories. Let Bi be the
right orthogonal of S6i−1 in S6i. Then we have semi-orthogonal de-
compositions S6i = 〈Bi,S6i−1〉. Iterating we obtain a semi-orthogonal
decomposition

S = 〈Bn,Bn−1, . . . ,B1〉
such that

〈A1, . . . ,Ai〉 = 〈Bi, . . . ,B1〉 .
This is called the semi-orthogonal decomposition (right) dual to S =
〈A1, . . . ,An〉. Note that [Kuz09, (4)]

Bi = S6i ∩ S⊥6i−1

= 〈Ai+1, . . . ,An〉⊥ ∩ 〈A1, . . . ,Ai−1〉⊥

= 〈A1, . . . ,Ai−1,Ai+1, . . . ,An〉⊥ .

In particular for i 6= j

(4.1) Hom(Ai,Bj) = 0 .

The following is also well-known [Kuz09].

Lemma 4.3. Let γi be the composition of the canonical maps

γi : Ai −→ S6i −→ S6i
/
S6i−1 = Bi .

Then γi is an equivalence of categories. Furthermore we have for A ∈
Ai, B ∈ Bi

HomS(A,B) = HomBi(γi(A), B) = HomS(γi(A), B) .

Proof. We have semi-orthogonal decompositions

S6i = 〈S6i−1,Ai〉 = 〈Bi,S6i−1〉 .

The fact that γi is an equivalence follows from [BK89, Lemma 1.9].
Let  : Ai −→ S6i and ı : Bi −→ S6i be the inclusion functors and

let ı∗ be the left adjoint to ı. Then γi = ı∗ ◦ . We have

HomS(A,B) = HomS6i(A, ıB)

= HomS6i(ı
∗A,B)

= HomBi(γi(A), B) .

The equality HomBi(γi(A), B) = HomS(γi(A), B) is just that Bi is a
full subcategory of S. �
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5. Semi-orthogonal decompositions for Grassmannians

In this section we write D for the bounded derived category of co-
herent sheaves on G. This is in particular a saturated category (see
§4). We will construct a semi-orthogonal decomposition of D.

We start by observing that the proof of Theorem 1.3 actually shows

Lemma 5.1. D is generated as a triangulated category by (
∧α′Q)α∈Bl,m−l

(instead of just classically generated, see §4). �

A set S of weights is saturated if whenever α ∈ S and β < α we
have β ∈ S. (Here and below “<” is the standard ordering on weights;
see §2.) The set Bl,m−l is an example of a saturated set. For d > 0
let Cd be the category of finite-dimensional G1 = GL(l)-representations
whose composition factors have highest weights α satisfying |α| = d
and α ∈ Bl,m−l. Thus Cd is a truncated category in the sense of [Jan03,
Ch. A] associated to a saturated set of dominant weights. In particular
Cd is the category of modules over a certain finite-dimensional algebra,
called a generalized Schur algebra [Jan03, §A.16].

We collect some elementary facts about the derived category of Cd.

Lemma 5.2. Let Rep(G1) be the category of rational G1-representations
and for each d let Db

Cd(Rep(G1)) be the bounded derived category of
complexes of representations having cohomology in Cd. The canonical
functor

Db(Cd) −→ Db
Cd(Rep(G1))

is an equivalence of categories.

Proof. This follows from the fact that the Yoneda Ext’s in Cd are the
same as those in the ambient category Rep(G1) (see [Jan03, Prop.
A.10]). �

In the sequel we will simply confuse Db(Cd) and Db
Cd(Rep(G1)).

Lemma 5.3. The triangulated category Db(Cd) is generated by the rep-

resentations
∧α′V for α ∈ Bl,m−l, |α| = d, where as usual V is the

standard representation of G1.

Proof. This is of course well-known but for the convenience of the
reader we give the proof. Let A be the full subcategory of Db(Cd)
generated by (

∧α′V )α∈Bl,m−l,|α|=d It is sufficient to prove that A con-
tains the simples Σα for α ∈ Bl,m−l, |α| = d.

By reasoning similar to the proof of Theorem 1.3 we see that A
contains KαV for α ∈ Bl,m−l with |α| = d. By [Jan03, II.2.13] KαV
has simple top Σα and by the dual version of [Jan03, II.6.13] the other
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Jordan-Hölder quotients of KαV are of the form Σγ with |γ| = |α| = d
and γ < α. Thus Σγ ∈ Cd. By induction we may assume that such
Σγ ∈ A. Hence it follows that Σα ∈ A. �

We define a functor

Φd : Db(Cd) −→ D

by Φd(U) = LG(U) for U ∈ Db(Cd), where we view U as a complex of
P -representations in the obvious way.

Theorem 5.4. The functor Φd is fully faithful.

Proof. By Lemma 5.3 it is sufficient to prove that for α, β ∈ Bl,m−l
with |α| = |β| = d the canonical map

(5.1) RHomG1(
∧α′V,

∧β′V ) −→ RHomOG(
∧α′Q,

∧β′Q)

is an isomorphism (where we have used that LG(V ) = Q). Now
∧α′V

and
∧β′V are tilting representations [Don93, Lemma (3.4)] and so on

the left-hand side of (5.1) there are no higher Ext’s. Likewise on the
right-hand side there are no higher Ext’s because of Proposition 1.4.

So we only have to show that the map

HomG1(
∧α′V,

∧β′V ) −→ HomOG(
∧α′Q,

∧β′Q)

is an isomorphism. By the vanishing of higher Ext’s and the characteristic-
independence of the Euler characteristic it is sufficient to prove this in
characteristic zero.

Thus we assume that K has characteristic zero. Then we may de-

compose
∧α′V ,

∧β′V as sums of simple modules LγV , LδV . Thus it
is sufficient to prove that

HomGL(l)(L
αV, LβV ) −→ HomOG(LαQ, LβQ)

is an isomorphism. Or in other words, since in characteristic zero the
LαV are simple,

HomOG(LαQ, LβQ) = δα,β ·K .

This follows from the Littlewood-Richardson rule, combined with Bott’s
theorem (see e.g. [Kap88, §3.2, §3.3]). �

Now letDd be the essential image ofDb(Cd) under Φd. From Lemma 5.3
we obtain:

Corollary 5.5. Dd is generated by
∧α′Q for α ∈ Bl,m−l, |α| = d. �

We have:
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Theorem 5.6. The triangulated category D has a semi-orthogonal de-
composition

(5.2) D =
〈
D0, . . . ,Dl(m−l)

〉
.

Furthermore Dd is generated by LαQ for α ∈ Bl,m−l with |α| = d.

Proof. By Lemma 5.1, D is generated by
∧α′Q for α ∈ Bl,m−l. It

follows from Corollary 5.5 that D is generated by (Dd)d and that Dd is

generated by those
∧α′Q with |α| = d.

To complete the proof that (5.2) is a semi-orthogonal decomposi-
tion we need that Hom(Dd,De) = 0 for d > e, or equivalently that

RHomD(
∧α′Q,

∧β′Q) = 0 for |α| = d, |β| = e. This follows from
Proposition 3.2. �

Remark 5.7. Let repe(G1) be the category of finite-dimensional G1-
representations of degree e. Then Dd is generated by LG(U) for U ∈
repd(G1). Indeed, by Corollary 5.5 it suffices to show that LG(U) lies
indeed in Dd for U ∈ repe(G1) with e 6 d. To prove this we have to
show that Hom(Df ,LG(U)) = 0 for f > d. Given that Df is generated

by
∧α′Q for |α| = f this follows again from Proposition 3.2.

The theorems we have stated have dual versions where Q is replaced
by R and Bl,m−l by Bm−l,l. We prove these by passing to the dual
Grassmannian Grass(m− l, F ∨).

Lemma 5.8. The vector bundle

(5.3) T ′ =
⊕

α∈Bm−l,l

∧α′R

is a tilting bundle on G.

Proof. Using the duality RHomOG(−,OG) on D it is sufficient to show

that T ′∨ is a tilting bundle. Now T ′∨ is equal to
⊕

α∈Bm−l,l

∧α′(R∨)
and we see that the latter is a tilting bundle by passing to the dual
Grassmannian (which replaces R∨ by Q) and invoking Theorem 1.3.

�

For d > 0 let C ′d be the category of finite-dimensional G2 = GL(m−
l)-representations whose composition factors have highest weights α
satisfying |α| = d and α ∈ Bm−l,l. We have the following analogue of
Theorem 5.4, where

Φ′d : Db(C ′d) −→ D
is defined again by U 7→ LG(U)

Theorem 5.9. The functor Φ′d is fully faithful.
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Proof. This follows by dualizing the proof of Theorem 5.4. �

Below we let D′d be the essential image of Db(C ′d) under Φ′d. We
obtain the following analogue of Corollary 5.5.

Lemma 5.10. D′d is generated by
∧α′R for α ∈ Bm−l,l, |α| = d. �

Theorem 5.11. The triangulated category D has a semi-orthogonal
decomposition 〈

D′l(m−l), . . . ,D′0
〉
.

Furthermore D′d is generated by KαR for α ∈ Bm−l,l with |α| = d.

Proof. This follows by dualizing the proof of Theorem 5.6. �

Remark 5.12. As in Remark 5.7, D′d is generated by LG(U) for U ∈
repd(G2).

The following result finishes this section.

Theorem 5.13. The semi-orthogonal decompositions

D =
〈
D0, . . . ,Dl(m−l)

〉
and D =

〈
D′l(m−l), . . . ,D′0

〉
are dual to each other. Furthermore the induced equivalence γd : Dd −→
D′d defined in Lemma 4.3 sends LαQ to Kα′R[d] for α ∈ Bl,m−l with
|α| = d.

Proof. To prove that the semi-orthogonal decompositions are dual, ac-
cording to §4 we have to show that

D6d = D′6d ,
where we set D6d = 〈D0, . . . ,Dd〉 and D′6d = 〈D′d, . . . ,D′0〉. We prove
the inclusion D6d ⊂ D′6d. The opposite inclusion is similar.

From Theorem 5.6 we obtain that D6d is generated by LαQ for |α| 6
d. Thus we have to show that for such α we have LαQ ∈ D′6d.

According to [Wey03, Ch 2, Ex. 21] we have a resolution for LαQ
given by the Schur complex

Lα(R −→ F ∨ ⊗OG)

and furthermore by [Wey03, Thm. (2.4.10)(b)] Lα(R −→ F ∨ ⊗ OG)
has a filtration such that

(5.4) grLα(R −→ F ∨ ⊗OG)t =
⊕

|ν|=t,ν⊂α

Kν′R⊗ Lα/ν(F ∨) .

By Remark 5.12 all Kν′R are in D′6d. Hence so is LαQ.
Assume now |α| = d. In that case (5.4) shows that

LαQ = Kα′R[|α|] modD′6d−1 .
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If in addition α ∈ Bl.m−l then Lemma 5.10 implies Kα′R[|α|] ∈ D′d,
from which we conclude that γd(L

αQ) = Kα′R[|α|]. �

6. Some more comments on representation theory

If we combine Theorems 5.4, 5.9, and 5.13 we obtain an equivalence

of categories δd
def
= (Φ′−1

d ◦ γd ◦ Φd)[−d] between Db(Cd) and Db(C ′d).
The existence of such an equivalence is well-known (see e.g. [Don93,
Cor (3.9)] for a similar result) but the standard construction uses the
representation theory of the symmetric group.

Below we list some properties of the equivalence, which we will use
in §8. For α a partition let Mα be the indecomposable tilting G1-
representation with highest weight α. Similarly for β ∈ Bm−l,l let Σ′β

be the simple G2-representation with highest weight β and let P ′β be
the projective cover of Σ′β in C ′d.

Since Mα has highest weight α and since Bl,m−l is a saturated set
of partitions, all the weights of Mα are in Bl,m−l, whence Mα ∈ Cd by
[Jan03, Lemma E.3].

Proposition 6.1. We have for α ∈ Bl,m−l with |α| = d

δd(L
αV ) = Kα′W(6.1)

δd(M
α) = P ′α

′
.(6.2)

Proof. Statement (6.1) follows from Theorem 5.13. To prove (6.2) we
first note that by suitably filtering Mα and invoking (6.1) we obtain
that δd(M

α) ∈ C ′d. Furthermore since δd is an equivalence for i > 0 we
have

(6.3)

ExtiG2
(δd(M

α), Kβ′W ) = ExtiG2
(δd(M

α), δd(L
βV )) = ExtiG1

(Mα, LβV ) = 0 .

We now claim that we have for i > 0

(6.4) ExtiG2
(δd(M

α),Σβ′) = 0 .

We prove this by induction. As before we have a short exact sequence

0 −→ U −→ Kβ′W −→ Σβ′ −→ 0

where U is obtained through extensions involving only Σγ with γ <
β′. By induction we may assume ExtiG2

(δd(M
α), U) = 0. Then (6.4)

follows from (6.3). We conclude that δd(M
α) is projective. Since Mα

is indecomposable, the same is true for δd(M
α). Hence δd(M

α) is equal
to some P ′γ. To prove that δd(M

α) = P ′α
′

it is sufficient to construct
a surjective map

δd(M
α) −→ Kα′W
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since Kα′W has simple top Σ′α
′
.

By [Jan03, §E.4] we have a short exact sequence

0 −→ H −→Mα −→ LαV −→ 0

where H is an extension of LγW with γ < α. After applying δd this
becomes a distinguished triangle

δd(H) −→ δd(M
α) −→ Kα′W −→

with δd(H), δd(M
α) ∈ C ′d. Taking cohomology we see that δd(M

α) −→
Kα′W is indeed surjective. �

7. Exceptional sequences on Grassmannians

Proposition 7.1. Assume α, β ∈ Bl,m−l with |α| = |β|. If

(7.1) RHomOG(LαQ, LβQ) 6= 0

then α > β. Furthermore we also have

RHomOG(LαQ, LαQ) = K .

Proof. We have LαQ = Φd(L
αV ), LβQ = Φd(L

βV ). So to prove the
first claim, by Theorem 5.9 we must show that

RHomG1(L
αV, LβV ) 6= 0

implies α > β. Since LαV , LβV are induced representations it suffices
to invoke [Jan03, Prop. II.6.20].

By [Jan03, Prop. II.2.8] we have HomG1(L
αV, LαV ) = K. Hence to

prove the second claim we have to show

ExtiG1
(LαV, LαV ) = 0

for i > 0. This follows from [Jan03, Prop. II.6.20]. �

Proposition 7.2. Assume α, β ∈ Bm−l,l, |α| = |β|. Then

(7.2) RHomOG(LαR, LβR) 6= 0

implies α > β. Furthermore we also have

RHomOG(LαR, LαR) = K .

Proof. This is proved in exactly the same way as Proposition 7.1. �

Proposition 7.3. For α, β ∈ Bm−l,l, |α| = |β| we have

RHomOG(KαR, LβR) = δα,β ·K .
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Proof. Put d = |α| = |β|. We have KαR = Φ′d(K
αW ), LβR =

Φ′d(L
βW ). So by Theorem 5.9 we must show

RHomG2(K
αW,LβW ) = δα,β ·K .

As KαW is a Weyl representation and LβW is an induced representa-
tion, it suffices to invoke [Jan03, II.4.13]. �

Now we make Bl,m−l into a totally ordered set by equipping it with
an arbitrary total ordering ≺ such that if |α| < |β| then α ≺ β and
if |α| = |β| and α > β in the standard partial order on partitions,
then α ≺ β. We write Bl,m−l for Bl,m−l, equipped with the opposite
ordering.

The following is the main result of this section.

Theorem 7.4. The collections (LαQ)α∈Bl,m−l and (Lβ
′R[|β|])β∈Bl,m−l

form dual exceptional collections in D. In other words for α, β ∈ Bl,m−l
we have

(7.3) RHomOG(LαQ, Lβ′R[|β|]) = δα,β ·K .

Proof. The fact that (LαQ)α∈Bl,m−l is an exceptional sequence follows

from Theorem 5.6 and Proposition 7.1. Similarly the fact that (Lβ
′R[|β|])β∈Bl,m−l

is an exceptional collection follows from Theorem 5.11 and Proposi-
tion 7.2. So it remains to prove the duality property (7.3). By The-
orem 5.13 combined with (4.1) we may assume that |α| = |β|. We
compute

ExtiOG
(LαQ, Lβ′R[|β|]) = ExtiOG

(γi(L
αQ), Lβ

′R[|β|])
= ExtiOG

(Kα′R[|α|], Lβ′R[|β|])
= δα,β ·K ,

using, respectively, Lemma 4.3, Theorem 5.13 and Lemma 4.3, and
Proposition 7.3. �

To conclude this section we use the “linkage principle” [Jan03, Cor.
II.6.17] to recover the result of Kaneda, mentioned in the Introduction,
that Kapranov’s tilting bundle K remains tilting in large characteristic.

Lemma 7.5. Assume that K has characteristic p with p > m − 1.

Let α ∈ Bl,m−l. Then
∧α′Q is a direct sum of LβQ with |β| = |α|

and furthermore there are no homomorphisms between the summands

of
∧α′Q.

Proof. Set d = |α|. Using Theorem 5.4 it is enough to prove the fol-
lowing claim: Cd is a semi-simple category with simple objects given
by LβV for β ∈ Bl,m−l with |β| = d. Indeed if this claim holds then
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Hom’s among them) and it suffices to apply the fully faithful functor

Φ(−)d to obtain the corresponding result for
∧α′Q.

The claim follows directly from the linkage principle [Jan03, Cor.
II.6.17] which we state in the case of interest to us. If γ, δ are dominant
weights for G1 and Ext1

OG
(Σγ,Σδ) 6= 0 then γ, δ are in the same orbit

for the affine Weyl group.
A fundamental domain2 C for the affine Weyl group ([Jan03, II.6.1(6)])

is given by the set of x = [x1, . . . , xl] satisfying

0 6 xi − i− xj + j 6 p

for j > i. The first inequality is automatically satisfied for a dominant
weight. For the second inequality we note that if γ = [γ1, . . . , γl] ∈
Bl,m−l then

γi − γj 6 m− l
and

−i+ j 6 l − 1 .

Thus
γi − i− γj + j 6 m− l + l − 1 = m− 1 6 p .

In other words Bl,m−l ⊆ C and thus no two elements of Bl,m−l are in
the same orbit for the affine Weyl group. The claim follows. �

The fact that
⊕

α∈Bl,m−l

∧α′Q is a tilting object, together with The-

orem 5.6 and the previous lemma, yields immediately the following.

Corollary 7.6 (Kaneda [Kan08]). The Kapranov strong exceptional
collection (LαQ)α∈Bl,m−l remains strong exceptional as long as p > m−
1. In particular K =

⊕
α∈Bl,m−l L

αQ remains tilting for such p.

8. Relation with quasi-hereditary algebras

We quickly remind the reader of the module-theoretic description of
quasi-hereditary algebras à la Dlab-Ringel [DR92]. Let A be a finite-
dimensional K-algebra and let (S(λ))λ∈Λ be a complete set of the sim-
ples, with projective covers P (λ) and injective hulls Q(λ). Given some
total ordering ≺ on Λ, we define the standard module ∆(λ) to be the
largest quotient of P (λ) having composition factors of the form S(µ)
with µ � λ. Similarly the costandard module ∇(λ) is the largest sub-
module of Q(λ) having composition factors S(µ) with µ � λ. As-
sume that EndA(∆(λ)) is a division ring for each λ. Then A (with

2A fundamental domain is a complete irredundant set of orbit representa-
tives [Bou02, IV.3.3].
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the fixed order ≺) is called quasi-hereditary if AA can be filtered by
standard modules; equivalently, the sets

{
X
∣∣ Ext1

A(X,∇(λ)) = 0
}

and{
X
∣∣ Ext1

A(∇(λ), X) = 0
}

are equal and coincide with the set of mod-
ules filtered by the standard modules.

As in the introduction put

T =
⊕

α∈Bl,m−l

∧α′Q

and A = EndOG(T ). Denote by A◦ the opposite algebra. For α ∈ Bl,m−l
consider the following complexes of right A-modules.

∆(α) = RHomOG(T , LαQ)(8.1)

∇(α) = RHomOG(T , Lα′R[|α|])(8.2)

P (α) = RHomOG(T ,L(Mα))(8.3)

S(α) = RHomOG(T ,L(Σ′α
′
)[|α|])(8.4)

Theorem 8.1. The complexes ∆(α), ∇(α), P (α), S(α) are concen-
trated in degree zero and furthermore the S(α) are the simple right
A-modules with the P (α) their projective covers. Moreover if we order
Bl,m−l using ≺ as above then A is quasi-hereditary and the standard
and costandard modules having S(α) respectively as top and socle are
∆(α) and ∇(α).

Proof. Since Θ = (LαQ)α∈Bl,m−l is exceptional by Theorem 7.4, it fol-
lows in particular that the collection Θ is standardizable in the sense of
[DR92, §3]. By the proof of [DR92, Theorem 2] there exists a projec-
tive generator P in the exact category F(Θ), which consists of repeated
extensions of objects in Θ, such that A′ = End(P ) is quasi-hereditary
and such that the objects in Θ correspond to the standard objects in
Mod(A′) using the functor Hom(P ′,−).

On the other hand Proposition 1.4 implies that T is a projective gen-
erator for F(Θ) as well. This easily yields that A and A′ are Morita
equivalent and that the objects HomOG(T , LαQ) are the standard ob-
jects. By Proposition 1.4 we may replace Hom by RHom.

The costandard modules ∇(β) in Db
f (A

◦) (the bounded derived cat-
egory with finite cohomology) are characterized by

(8.5) RHomA◦(∆(α),∇(β)) = δα,β ·K .

From (7.3) we then deduce that they are indeed given by the formula
(8.2).
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By [Jan03, Lemma E.5]
∧α′V is a direct sum of various Mβ, and Mα

occurs as a direct summand with multiplicity one in
∧α′V . It follows

that the P (α) are indeed the indecomposable projectives.
To show that the S(α) are the corresponding simple A-modules we

have to prove

RHomA◦(P (α), S(β)) = δα,β ·K .

We compute

RHomA◦(P (α), S(β)) = RHomOG(L(Mα),L(Σ′β
′
)[|β|]) .

It follows from Theorem 5.11 combined with (4.1) that if |α| 6= |β| then
there is nothing to prove. So assume |α| = |β| = d. Then we have

RHomOG(L(Mα),L(Σ′β
′
)[|β|]) = RHomOG(γd(Φd(M

α)),Φ′d(Σ
′β′)[|β|])

= RHomG2(δd(M
α),Σ′β

′
)

= RHomG2(P
′α′ ,Σ′β

′
)

= δα,β ·K ,

where the first equality is Lemma 4.3 and the third is Proposition 6.1;
in the second, δd is as introduced in §6. It remains to prove that S(α)
is the top of ∆(α) and the socle of ∇(α). Since for quasi-hereditary
algebras the top of ∆(α) coincides with the socle of ∇(α) it is sufficient
to prove only the first of these statements.

Since there is a surjective map Mα −→ LαV whose kernel is an
extension of LβV with β < α [Jan03, §E.4] we obtain using Proposi-
tion 1.4 a surjective map P (α) −→ ∆(α). This finishes the proof. �

Example 8.2. We compute the quiver and relations of the quasi-
hereditary algebra A in the first non-trivial example, (m, l) = (4, 2).
We live inside the 2× 2 box B2,2, so the vertices of the quiver, equiva-
lently the summands of the tilting bundle T , are labeled

O, Q,
∧2Q, Q⊗Q,

∧2Q⊗Q,
(∧2Q

)⊗2
.

The quiver has the following form.∧2Q

a

��

O sλ
// Q

αλ
""

∧2Q⊗Q tλ
//
(∧2Q

)⊗2

Q⊗Q

p

OO

βλ

99
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The labels stand for natural maps between these bundles, some of which
depend on a global section λ ∈ F ∨:
• p : Q⊗Q −→

∧2Q the natural surjection and a :
∧2Q −→ Q⊗Q

the anti-symmetrization;
• sλ : O −→ Q with 1 7→ λ;
• αλ : Q −→ Q⊗Q with x 7→ λ⊗ x ;
• βλ : Q⊗Q −→

∧2Q⊗Q with x⊗ y 7→ λ ∧ y ⊗ x ; and

• tλ :
∧2Q⊗Q −→

(∧2Q
)⊗2

with x ∧ y ⊗ z 7→ x ∧ y ⊗ λ ∧ z.

These maps generate all the arrows in the quiver. For example, the
obvious complementary map α′λ : Q −→ Q⊗Q defined by α′λ(x) = x⊗λ
can be obtained as αλ(1−ap). The relations are most compactly written

in terms of the pseudo-idempotent e
def
= ap satisfying e2 = 2e, and the

“swap” 1− e which sends x⊗ y to y ⊗ x. We have

• pa = 2 Id∧2Q ;

• (1− e)αλsµ = αµsλ ;
• βλ(1− e)αµ = βλαµ − βµαλ ;
• tλβµ(1− e) = tµβλ .

We observe that in this picture, each vertical “slice” is equivalent
to the derived category of a generalized Schur algebra. For example,
in the middle we recognize the quiver for the Schur algebra S(2, 2) in
characteristic 2 [Erd93, 3.1.1, 5.4].

In characteristic different from 2, the idempotent 1
2
e gives Q⊗Q ∼=∧2Q⊕Sym2Q, and the algebra becomes Morita-equivalent to the path

algebra of the equivariant quiver∧2Q
F∨

%%

D2F∨

$$

O F∨
//

D2F∨
//

∧2 F∨ ..

Q

F∨
""

F∨
<<

F∨⊗F∨
//
∧2Q⊗Q F∨

//
(∧2Q

)⊗2

Sym2Q
F∨

99

∧2 F∨

::

with relations

• O −→
∧2Q given by D2F

∨;
• O −→ Sym2Q given by

∧2F ∨;
• Q −→

∧2Q⊗Q given by F ∨ ⊗ F ∨;
•
∧2Q −→

(∧2Q
)⊗2

given by D2F
∨; and

• Sym2Q −→
(∧2Q

)⊗2
given by

∧2F ∨.
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Most of these are straightforward to verify. The relations across the
central diamond, however, are not the obvious commutativity ones [Hil98].
To compute those relations, give names to the maps:∧2Q

bλ

%%

Q

cλ
""

aλ
<<

∧2Q⊗Q

Sym2Q
dλ

88

with

• aλ(x) = λ ∧ x;
• bλ(x ∧ y) = x ∧ y ⊗ λ;
• cλ(x) = λx; and
• dλ(xy) = λ ∧ x⊗ y + λ ∧ y ⊗ x.

Then we find, for λ, µ ∈ F ∨,

dµcλ = 2bλaµ − bµaλ .

It follows that the defining relations are

dλcµ + dµcλ = bλaµ + bµaλ

dµcλ − dλcµ = 3(bλaµ − bµaλ) .
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