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Abstract We study the growth of the Betti sequence of the canonical module of a
Cohen–Macaulay local ring. It is an open question whether this sequence grows expo-
nentially whenever the ring is not Gorenstein. We answer the question of exponential
growth affirmatively for a large class of rings, and prove that the growth is in general
not extremal. As an application of growth, we give criteria for a Cohen–Macaulay
ring possessing a canonical module to be Gorenstein.

0 Introduction

A canonical module ωR for a Cohen–Macaulay local ring R is a maximal Cohen–
Macaulay module having finite injective dimension and such that the natural homo-
morphism R −→ HomR(ωR, ωR) is an isomorphism. If such a module exists, then it is
unique up to isomorphism. The ring R is Gorenstein if and only if R itself is a canonical
module, that is, if and only if ωR is free. Although the cohomological behavior of the
canonical module, both in algebra and in geometry, is quite well understood, little is
known about its homological aspects. In this note we study the growth of the Betti
numbers—the ranks of the free modules occurring in a minimal free resolution—of
ωR over R. Specifically, we seek to answer the following question, a version of which
we first heard from C. Huneke.

Question If R is not Gorenstein, must the Betti numbers of the canonical module grow
exponentially?
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By exponential growth of a sequence {bi} we mean that there exist real numbers
1 < α < β such that αi < bi < β i for all i� 0. Our main result of Sect. 1 answers this
question affirmatively for a large class of local rings.

It is well-known that the growth of the Betti sequence of the residue field k of a
local ring R characterizes its regularity: R is regular if and only if the Betti sequence of
k is finite. This is the foundational Auslander–Buchsbaum–Serre Theorem. Gulliksen
([11], [12]) extends this theorem with a characterization of local complete intersec-
tions: R is a complete intersection if and only if the Betti sequence of k grows polynomi-
ally. By polynomial growth of a sequence {bi} we mean that there is an integer d and
a positive constant c such that bi ≤ cid for all i� 0. One motivation for the question
above is whether there are analogous statements regarding the growth of the Betti
sequence of the canonical module ωR of a local Cohen–Macaulay ring. The Auslander–
Buchsbaum formula implies that R is Gorenstein if and only if ωR has a finite Betti
sequence. However, we do not know whether there exists a class of Cohen–Macaulay
rings for which the Betti sequence of the canonical module grows polynomially. In
other words, we do not know if there exists a class of Cohen–Macaulay rings which
are near to being Gorenstein in the same sense that complete intersections are near
to being regular.

Since the canonical module is maximal Cohen–Macaulay over a Cohen–Macaulay
ring R, we may, and often do, reduce both R and ωR modulo a maximal regular
sequence and assume that R has dimension zero. Then ωR is isomorphic to the injec-
tive hull of the residue field. In particular, the Betti numbers of ωR are equal to the
Bass numbers of R, that is, the multiplicities of ωR in each term of the minimal injective
resolution of R. In this case we may rephrase the question above as follows:

Question* If the minimal injective resolution of an Artinian local ring R as a module
over itself grows sub-exponentially, is R necessarily self-injective?

By abuse of language, throughout this note we will simply say that a finitely gener-
ated module has exponential growth (or polynomial growth) to mean that its sequence
of Betti numbers has exponential growth (or polynomial growth).

We now briefly describe the contents below. In the first section, we identify a broad
class of rings for which the canonical module grows exponentially. In some cases,
exponential growth follows from more general results about the growth of all free
resolutions over the rings considered. In fact, in these cases we can be more precise:
the Betti numbers of the canonical module are eventually strictly increasing. This
condition is of particular interest, and we return to it in Sect. 2. We also consider
modules having linear resolutions with exponential growth, and give a comparison
result (Lemma 1.4) for their Betti numbers. As an application, we prove exponential
growth of the canonical module for rings defined by certain monomial ideals.

In Sect. 2 we demonstrate an upper bound for the growth of Betti numbers in the
presence of certain vanishing Exts or Tors (Lemma 2.1). This allows us to give criteria
for a Cohen-Macaulay ring to be Gorenstein, which are in the spirit of the work by
Ulrich [23] and Hanes and Huneke [13].

In the final section, we give a family of examples showing that the canonical module
need not have extremal growth among all R-modules. Based on this, we introduce a
notion for a Cohen–Macaulay ring to be ‘close to Gorenstein’ and compare our notion
with other ones in the literature.

Throughout this note, we consider only Noetherian rings, which we usually assume
to be Cohen–Macaulay (CM) with a canonical module ωR, and we consider only
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finitely generated modules. When only one ring is in play, we often drop the sub-
script and write ω for its canonical module. Our standard reference for facts about
canonical modules is [9, Chap. 3]. We denote the length of a module M by λ(M), its
minimal number of generators by µ(M), and its ith Betti number by bi(M). When M
is a maximal Cohen–Macaulay (MCM) module, we write M∨ for the canonical dual
HomR(M, ω).

We are grateful to Craig Huneke, Sean Sather-Wagstaff, and Luchezar Avramov
for useful discussions about this material.

1 Exponential growth

We first prove that there are several situations in which extant literature applies to
show that the canonical module grows exponentially. This is due to the fact that
in these situations ‘most’ modules of infinite projective dimension have exponential
growth. In fact, in each case, if the Betti sequence grows exponentially, then it is also
eventually strictly increasing. (The usefulness of this condition on the Betti sequence
will become clear in the next section.) We list these cases, along with references.

(1) R is a Golod ring [20], cf. [21];
(2) R has codimension ≤3 [4], [22];
(3) R is one link from a complete intersection [4], [22];
(4) R is radical cube zero [19].

We combine the consequences of assumptions (1)–(4) on the canonical module in
the following.

Proposition 1.1 Let R be a CM ring possessing a canonical module ω and satisfying
one of the conditions (1)–(4). If R is not Gorenstein, then the canonical module grows
exponentially. Moreover, if this is the case then the Betti sequence {bi(ω)} is eventually
strictly increasing.

A common way for an R-module M to have polynomial growth is to have finite
complete intersection dimension. Before going through the proof of Proposition 1.1,
we observe that this is impossible for the canonical module, as pointed out to us by
S. Sather-Wagstaff. We first recall the definition of complete intersection dimension
from [7]: a surjection Q −→ R of local rings is called a (codimension c) deformation
of R if its kernel is generated by a regular sequence (of length c) contained in the
maximal ideal of Q. A diagram of local ring homomorphisms R −→ R′ ←− Q is said
to be a (codimension c) quasi-deformation of R if R −→ R′ is flat and R′ ←− Q is
a (codimension c) deformation. Finally, an R-module M has finite complete intersec-
tion dimension if there exists a quasi-deformation R −→ R′ ←− Q of R such that
M⊗R R′ has finite projective dimension over Q. If this is the case then M necessarily
has polynomial growth over R [7, Theorem 5.6].

By [7, Theorem. 1.4], modules of finite complete intersection dimension necessarily
have finite G-dimension. Recall that an R-module M has G-dimension zero if M is
reflexive and Exti

R(M, R) = Exti
R(M∗, R) = 0 for all positive i, where ( )∗ denotes

the ring dual HomR( , R). The G-dimension of an arbitrary module M is then the
minimal length of a resolution of M by modules of G-dimension zero. The proof of
the following is contained in [10, 6.3.2], but we provide one here since it is short.
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Proposition 1.2 The canonical module of a CM local ring R has finite complete inter-
section dimension if and only if it has finite G-dimension if and only if R is Gorenstein.

Proof It suffices to prove that the G-dimension of ω being finite implies that R is
Gorenstein. For this we may assume that dim R = 0. The Auslander–Bridger for-
mula [1] then implies that ω has G-dimension zero. In particular, ω is reflexive and
Exti

R(ω∗, R) = 0 for i > 0, so dualizing a free resolution of ω∗ exhibits ω as a submod-
ule of a free module. Since ω is injective, this embedding splits, and ω is free, that is,
R is Gorenstein. 	


A stronger notion than finite complete intersection dimension is that of finite vir-
tual projective dimension [2]. It suffices for our needs simply to note that a module
having finite virtual projective dimension necessarily has finite complete intersection
dimension. Now we are ready to prove Proposition 1.1.

Proof of Proposition 1.1 (1). Assume that R is a Golod ring. Then as shown in [20],
if R is not a complete intersection then the Betti sequence of every module of infinite
projective dimension grows exponentially, and moreover is eventually strictly increas-
ing. Since complete intersections are Gorenstein, we have the desired conclusion.

(2) and (3). It is shown in [4] and [22] that a finitely generated module over a ring
satisfying (2) or (3) either has finite virtual projective dimension or grows exponen-
tially and the Betti sequence is eventually strictly increasing. By Proposition 1.2, if R
is not Gorenstein then the canonical module does not have finite virtual projective
dimension.

(4). We deduce the following statement from a theorem of Lescot [19]: Let (R, m, k)

be a local ring with m3 = 0. Set e = dimk(m/m2) and s = dimk(m2). Then a finite non-
free R-module M has exponential growth, with strictly increasing Betti sequence, unless
soc(R) = m2, s = e− 1 ≥ 2, and, assuming m2M = 0, one has eb0(M) = λ(M). In this
case the sequence {bi(M)} is stationary.

We must show that the canonical module ω does not fall into the special case al-
lowed by Lescot’s theorem. Assume that soc(R) = m2 and s = e − 1 ≥ 2. From the
short exact sequence 0−→m2−→m−→m/m2−→0 one sees that λ(m)= s+e = 2e−1.
Also 0 −→ m −→ R −→ k −→ 0 shows that λ(R) = 2e − 1 + 1 = 2e. Now by [9,
3.2.12(e)(i)], we have λ(ω) = 2e, and by [9, 3.2.12(e)(iii)] we have µ(ω) = e−1. Let X
be the first syzygy of ω in a minimal R-free resolution, so in particular m2X = 0, and as-
sume that eb0(X) = λ(X). Then from the short exact sequence 0 −→ X −→ Re−1 −→
ω −→ 0, we have that λ(X) = 2e(e − 1) − 2e = 2e2 − 4e. Putting the two equations
together we get b0(X) = 2e−4. On the other hand, the previous short exact sequence
induces an exact sequence 0 −→ X −→ mRe−1 −→ mω −→ 0, and tensoring this with
k we obtain an exact sequence X/mX −→ mRe−1/m2Re−1 −→ mω/m2ω −→ 0. From
this we see that λ(X/mX) ≥ λ(mRe−1/m2Re−1) − λ(mω/m2ω). Since λ(X/mX) =
b0(X), λ(mRe−1/m2Re−1) = (e − 1)µ(m) = e(e − 1), and λ(mω/m2ω) = λ(mω) −
λ(m2ω) = λ(ω)− λ(ω/mω)− 1 = 2e− (e− 1)− 1 = e, the above inequality becomes
b0(X) ≥ e(e − 1) − e = e2 − 2e. Thus 2e − 4 ≥ e2 − 2e, and this implies e = 2, a
contradiction. 	

Remark 1.3 The class of rings to which Proposition 1.1 applies is less limited than it
first appears, thanks to two elementary yet crucial observations.

(1) Let R −→ S be a flat local map of local Cohen–Macaulay rings such that the
closed fibre S/mS is Gorenstein. Then ωR ⊗R S is isomorphic to the canonical
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module ωS of S, and bi(ωS) = bi(ωR) for all i. In fact, relaxing the flatness
condition still gives a useful implication: by [6], if ϕ : Q −→ R is a local ring
homomorphism of finite flat dimension, then we have bi(ωQ) ≤ bi(ωR) for all
i� 0. Thus ωR grows exponentially if ωQ does.
Let us say that a class of rings is closed under flat extensions if whenever R −→ S
is a flat map of local rings then R is in the class if and only if S is in the class. Let
us say that a class of rings is closed under homomorphisms of finite flat dimension
if whenever Q −→ R is a local ring homomorphism of finite flat dimension, and
Q is in the class, then R is also in the class.

(2) If x is a nonzerodivisor in R, then ωR/(x)
∼= ωR/xωR, and bi(ωR/(x)) = bi(ωR) for

all i.
Let us say that a class of rings is closed under deformations if whenever x is a
nonzerodivisor in R, the class contains R if and only if it contains R/xR.

We next identify a class of monomial algebras whose canonical modules grow
exponentially. Our main technical tool is a local analogue of [17, 2.7].

We say that a finitely generated module M over a local ring (R, m) has a linear
resolution if there exists a minimal R-free resolution F• of M such that for all i the
induced maps Fi/mFi −→ mFi−1/m

2Fi−1 are injective.

Lemma 1.4 Let π : Q −→ R be a surjection of local rings (Q, n, k) and (R, m, k) such
that ker π ⊆ n2. Let M be a Q-module and N an R-module. Suppose that M has a
linear resolution over Q and that ϕ : M −→ N is a homomorphism of Q-modules
such that the induced map ϕ : M/nM −→ N/mN is injective. Then the induced maps
Torπi (ϕ, k) : TorQ

i (M, k) −→ TorR
i (N, k) are injective for each i.

Proof By assumption we have a short exact sequence 0 −→ K −→ F0 −→ M −→ 0
with F0 a free Q-module and the induced map K/nK −→ nF0/n

2F0 injective. Let
f1, . . . , fn be a basis for F0. From the injection M/nM −→ N/mN we choose a free
R-module G0, and a basis g1, . . . , gm of G0, with m ≥ n, such that the diagram

0 �� K �� F0 ��

ϕ0

��

M ��

ϕ

��

0

0 �� L �� G0 �� N �� 0

commutes, where ϕ0 is the map defined by regarding G0 as a Q-module and extend-
ing linearly the assignments ϕ0(fi) = gi, i = 1, . . . , n. Then by construction we have
ϕ0 : F0/nF0 −→ G0/mG0 injective.

If we can show that the induced map K/nK −→ L/mL is injective then we may
continue inductively, defining maps ϕi : Fi −→ Gi from a linear minimal Q-free
resolution of M to a minimal R-free resolution of N such that the induced maps
ϕi : Fi/nFi −→ Gi/mGi are injective for all i, and hence prove our claim.

Let x be in K and assume that ϕ0(x) ∈ mL ⊆ m2G0. Writing x = a1f1 + · · · + anfn
for some ai ∈ R, we have ϕ0(x) = π(a1)g1+· · ·+πn(an)gn. Hence π(ai) ∈ m2 for each
i. It follows from ker π ⊆ n2 that ai ∈ n2 for each i. Thus x ∈ n2F0. Now the injection
K/nK −→ nF0/n

2F0 shows that x ∈ nK, as desired. 	

Theorem 1.5 Let π : (S, n) −→ (R, m) be a surjection of local rings with R CM and
possessing a canonical module, and suppose that ker π ⊆ n2. Assume that for some min-
imal generator x of ωR, annS x contains an ideal I such that S/I has a linear resolution
and exponential growth. Then ωR grows exponentially.
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Proof Apply Lemma 1.4 to the map ϕ : S/I −→ ωR defined by ϕ(1̄) = x. 	

Our application of Theorem 1.5 is stated in our usual local context, though a graded

analogue is easily obtained from it.

Corollary 1.6 Let (Q, n) be a regular local ring containing a field and x1, . . . , xd a regu-
lar system of parameters for n. Let I ⊆ Q be an n-primary ideal generated by monomials
in the xi. If I contains xixj and xixl for j �= l, then the canonical module of R = Q/I
grows exponentially.

Proof We may complete both Q and R, and assume that Q is a power series ring in
the variables x1, . . . , xd over a field k. As I is a monomial ideal, any socle element
α of R has a unique representation α = xi1 . . . xil as a monomial in Q. Viewing α as
a vector-space basis vector for R over k, the dual element α∗ ∈ Homk(R, k) = ωR
is a minimal generator of ωR. Since xixj, xixl ∈ I, either xi annihilates α∗ or both xj
and xl do. We apply the theorem with S = Q/(xixj, xixl)Q, over which S/xiS, S/xjS,
and S/xlS all have linear minimal resolutions whose Betti numbers have exponential
growth. 	

Remark 1.7 Like Proposition 1.1, the usefulness of Corollary 1.6 is greatly enhanced
by Remark 1.3. In particular, exponential growth of the canonical module holds for
any ring R for which there exists a sequence of local rings R = R0, S1, R1, . . . , Sn, Rn
such that Rn is as in the statement of Corollary 1.6, and for each i = 1, . . . , n both Ri
and Ri−1 are quotients of Si by Si-regular sequences. We give one application of this
observation below.

Example 1.8 Let k be a field and define a pair of Artinian local rings R = k[a, b]/
(a4, a3b, b2), R′ = k[b, c]/(b2, bc, c2). Set further S = k[[t3, t5, t7]], a one-dimensional
complete domain. Then S has a presentation

S ∼= k[[a, b, c]]/(ac− b2, bc− a4, c2 − a3b) ,

so that R ∼= S/(t7), R′ ∼= S/(t3). Corollary 1.6 applies to R′, so it follows that the
canonical modules of both S and R have exponential growth as well.

To summarize the results thus far, we introduce two classes of CM rings.

Definition 1.9 Let C be the smallest class of CM rings with canonical module which
contains those satisfying one of (1)–(4) in Proposition 1.1, and which is closed under
deformations and flat extensions with Gorenstein closed fibre.

Let˜C be the smallest class of CM rings with canonical module containing C and rings
satisfying the hypothesis of Corollary 1.6, and which is closed under deformations and
homomorphisms of finite flat dimension.

Theorem 1.10 For each R ∈ C, either R is Gorenstein or the Betti sequence of the
canonical module grows exponentially and is eventually strictly increasing. For each
R ∈˜C, either R is Gorenstein or the canonical module grows exponentially.

2 Bounds on Betti numbers; criteria for the Gorenstein property

This section supplies a variation on a theme of Ulrich [23] and Hanes–Huneke [13]
which gives conditions for a ring to be Gorenstein in terms of certain vanishing Exts
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involving modules with many generators relative to their multiplicity. The advantage
of our results relative to those of Ulrich and Huneke–Hanes is that we need not
assume the modules involved have positive rank, and this greatly enhances the appli-
cability of the results. The downside is that we sometimes need to assume more Exts
or Tors vanish.

We first need a means of bounding Betti numbers. The following is a strengthen-
ing of [14, 1.4(1)]. Note that it generalizes the well-known fact that if N is a MCM
R-module and TorR

i (k, N) = 0 for some i > 0 then N is free.

Lemma 2.1 Let R be a CM local ring, M a CM R-module of dimension d, and N a
MCM R-module. Let n be an integer and assume that either

(1) TorR
i (M, N) = 0 for all i with 1 ≤ n− d ≤ i ≤ n, or

(2) Exti
R(M, N∨) = 0 for all i with 1 ≤ n ≤ i ≤ n+ d.

Then for any sequence x = x1, . . . , xd regular on both M and R,

bn(N) ≤ λ(mM/xM)

µ(M)
bn−1(N) .

Moreover, equality holds if and only if both m(M/xM⊗R N) = 0 and m(mM/xM) = 0.

Proof We first prove case (1). Replacing N by a syzygy if necessary, we may assume
that n = d + 1, and we proceed by induction on d. When d = 0 our hypotheses are
therefore that M has finite length and TorR

1 (M, N) = 0. Applying−⊗R N to the short

exact sequence 0 −→ mM −→M
π−→M/mM −→ 0, we obtain an exact sequence

0 −→ TorR
1 (M/mM, N) −→ mM ⊗R N −→M ⊗R N

π⊗N−−−→M/mM ⊗R N −→ 0.

Since M/mM is isomorphic to a sum of µ(M) copies of the residue field of R, the
monomorphism on the left gives µ(M)b1(N) ≤ λ(mM ⊗R N). Equality holds if and
only if π ⊗R N is an isomorphism, and this is equivalent to M ⊗R N being a vector
space over k, in other words, m(M ⊗R N) = 0.

Next take a short exact sequence 0 −→ N1 −→ Rb0(N) ε−→ N −→ 0. Applying
mM ⊗R − gives the exact sequence

0 −→ TorR
1 (mM, N) −→ mM ⊗R N1 −→ (mM)b0(N) mM⊗ε−−−−→ mM ⊗N −→ 0.

The surjection mM⊗ ε yields λ(mM⊗R N) ≤ λ(mM)b0(N). Equality holds if and only
if ker(mM ⊗ ε) = 0

Combining these two inequalities yields µ(M)b1(N) ≤ λ(mM)b0(N), so that

b1(N) ≤ λ(mM)

µ(M)
b0(N) ,

and equality holds if and only if both m(M ⊗R N) = 0 and ker(mM ⊗ ε) = 0. This
latter condition is equivalent to both m(M ⊗R N) = 0 and m2M = 0.

Now suppose that d > 0, and let bars denote images modulo xd, with x =
x1, . . . , xd−1. The long exact sequence of Tor arising from the short exact sequence

0 −→ M
xd−−→ M −→ M −→ 0 yields TorR

i (M, N) = 0 for 2 ≤ i ≤ d + 1, and a
standard isomorphism gives TorR

i (M, N) = 0 for 2 ≤ i ≤ d+ 1. By induction, since M
is a CM R-module of dimension d− 1, we have

bR
d+1(N) ≤ λ(mM/xM)

µ(M)
bR

d (N) .
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Since bR
n (N) = bR

n (N) for all n, µ(M) = µ(M), and mM/xM ∼= mM/xM we get the
same inequality without the bars. Finally, by induction we achieve equality if and
only if both m(M/xM ⊗R N) = 0 and m(mM/xM) = 0, and this is equivalent to both
m(M/xM ⊗R N) = 0 and m(mM/xM) = 0.

For case (2), when d = 0 Matlis duality yields TorR
1 (M, N) = 0, and we get the

inequality by case (1). For d > 0, we reduce modulo the nonzerodivisor xd. Using
the fact that HomR(N, ω) ∼= HomR(N, ω) ⊗ R, and the long exact sequence of Ext

derived from the short exact sequence 0 −→ M
xd−−→ M −→ M −→ 0, we see that

the hypothesis passes to R, and the inequality follows by induction, with the same
condition for equality. 	


Using Lemma 2.1 we obtain our criteria for the Gorenstein property analogous to
those of Ulrich and Hanes–Huneke.

Theorem 2.2 Let (R, m) be a CM local ring with canonical module ω, and M be a CM
R-module of dimension d such that for some sequence x of length d regular on both M
and R,

(1) λ(mM/xM) < µ(M), and
(2) Exti

R(M, R) = 0 for 1 ≤ i ≤ d+ µ(ω),

then R is Gorenstein. The same statement, except allowing equality in (1), holds if either
m((M/xM)⊗R ω) �= 0 or m(mM/xM) �= 0.

Proof Lemma 2.1 and the hypotheses imply that bn(ω) < bn−1(ω) for 1 ≤ n ≤ µ(ω).
This forces bµ(ω)(ω) = 0, so that ω has finite projective dimension. By the Auslander–
Buchsbaum formula, ω is free and R is Gorenstein.

The last statement follows immediately from the last statement of Lemma 2.1. 	

Though M need not have constant rank in Theorem 2.2, the result can be improved

dramatically by assuming that the canonical module has constant rank. Recall that this
is equivalent to requiring that R be generically Gorenstein, that is, that all localizations
of R at minimal primes are Gorenstein. In this case the rank of ω is 1.

Proposition 2.3 Let R be a generically Gorenstein CM local ring with canonical module
ω. If R is not Gorenstein, then b1(ω) ≥ b0(ω).

Proof Let X be the first syzygy of ω in a minimal R-free resolution. Since ω has rank
one, rank X = µ(ω)− 1. If µ(X) = b1(ω) ≤ b0(ω)− 1 = rank X, then X is free, so that
ω has finite projective dimension. By the Auslander-Buchsbaum formula, then, ω is
free and R is Gorenstein. 	

Theorem 2.4 Let R be a generically Gorenstein CM local ring with canonical module
ω, and M be a CM R-module of dimension d such that for some sequence x of length d
regular on both M and R,

(1) λ(mM/xM) < µ(M), and
(2) Exti

R(M, R) = 0 for 1 ≤ i ≤ d+ 1,

then R is Gorenstein. The same statement, except allowing equality in (1), holds if either
m((M/xM)⊗R ω) �= 0 or m(mM/xM) �= 0.

Proof By Lemma 2.1, and the hypotheses (1) and (2) we obtain b1(ω) < b0(ω). By
Proposition 2.3, R must be Gorenstein. 	
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Lemma 2.1 also places restrictions on the module theory of the rings in the class C

of Definition 1.9.

Theorem 2.5 Suppose that R ∈ C, and that M is a CM R-module of dimension d such
that for some sequence x of length d regular on both M and R,

(1) λ(mM/xM) ≤ µ(M) and
(2) Exti

R(M, R) = 0 for all i� 0,

then R is Gorenstein.

Proof By Lemma 2.1 and the hypotheses (1) and (2) we obtain bi+1(ω) ≤ bi(ω) for
all i� 0. By Theorem 1.10, R must be Gorenstein. 	


We could improve our Theorem 2.2 to λ(mM/xM) ≤ µ(M) in hypothesis (1) and to
only assuming Exti

R(M, R) = 0 for 1 ≤ i ≤ d+ 1 in (2) if we knew that b1(ω) > b0(ω)

held whenever R is not Gorenstein. This prompts a very specialized version of our
main question:

Question 2.6 Does b1(ω) ≤ b0(ω) imply that R is Gorenstein?

An affirmative answer in one case follows from the Hilbert–Burch Theorem.

Proposition 2.7 Let R be a CM local ring of codimension two which is not Gorenstein.
Then b1(ω) > b0(ω).

Proof We may assume that R is complete. Thus R = Q/I where Q is a complete
regular local ring and I is an ideal of height two. By the Hilbert–Burch theorem a
minimal resolution of R over Q has the form

0 −→ Qn ϕ−→ Qn+1 −→ Q −→ R −→ 0,

where the ideal I is generated by the n × n minors of a matrix ϕ representing the
map Qn −→ Qn+1 with respect to fixed bases of Qn and Qn+1. The canonical module
ωR ∼= Ext2

Q(R, Q) is presented by the transpose ϕT of the matrix ϕ. We claim that

ϕT gives in fact a minimal presentation of ωR. Since R is not Gorenstein we see that
n > 1, and in this case no row or column of ϕ has entries contained in I. Therefore
ϕT is a minimal presentation matrix, and has n rows and n + 1 columns. That is,
b1(ω) = n+ 1 > n = b0(ω). 	


Next we give some examples which indicate the sharpness of the results of this
section.

Example 2.8 Let k be a field and R = k[x, y, z]/(x2, xy, y2, z2). Then R is a codi-
mension-three Artinian local ring and is not Gorenstein. One may check that the
canonical module ω of R has Betti numbers b0(ω) = 2 and bi(ω) = 3 · 2i−1 for all
i ≥ 1. Set M = (z). Then µ(M) = 1, λ(mM) = 2, and it is not hard to show that
Exti

R(M, R) = TorR
i (M, ω) = 0 for all i > 0.

This is an example in which equality in Lemma 2.1 is achieved. The example
also shows that neither the strict inequality in Theorem 2.2, nor the inequality in
Theorem 2.5 can be improved to λ(mM/xM) ≤ µ(M)+ 1.

The next two examples show that the two conditions for equality in Lemma 2.1 are
independent of one another.
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Example 2.9 Let R = k[x, y]/(x3, y3), M = R/(x) and N = R/(y). Then R is Artinian
and TorR

i (M, N) = 0 for all i > 0. We have m(M⊗R N) = 0 yet m2M �= 0 and m2N �= 0.

Example 2.10 From [14, Example 2.10], R = k[x1, x2, x3, x4]/I where I is a specific
ideal generated by seven homogeneous quadratics, and R has Hilbert series 1+4t+3t2.
Then for M defined as the cokernel of the 2× 2 matrix with rows (x3, x1) and (x4, x2),
TorR

i (M, ω) = 0 for all i > 0. One has m2M = 0 yet m(M ⊗R ω) �= 0.

Hanes and Huneke prove a criterion for the Gorenstein property which is like
our Theorem 2.4, except that they assume M has positive rank and then allow
λ(mM/xM) ≤ µ(M) in hypothesis (1). The next example shows that one cannot
in general improve their theorem to assume only that λ(mM/xM) ≤ µ(M)+ 2. We do
not know if the assumption can be weakened to λ(mM/xM) ≤ µ(M)+ 1.

Example 2.11 Let R be the quotient of the polynomial ring in nine variables
k[xij, x, y, z], by the ideal I generated by the 2× 2 minors of the 3× 2 generic matrix
(xij), and by xz−y2. Then R is a CM domain of dimension six whose canonical module
has Betti numbers b0(ω) = 2, bi(ω) = 3 · 2i−1 for all i ≥ 1. Set M = (x, y). Then one
can check that Exti

R(M, R) = 0 for all i > 0. The minimum λ(mM/xM) after reduction
by a system of parameters x is 4. Thus λ(mM/xM) = µ(M)+ 2.

We end this section with an application of Theorem 2.2 to a commutative version
of a conjecture of Tachikawa (cf. [14], [5]) as follows.

Corollary 2.12 Let R be an Artinian local ring, and suppose that 2 dim soc(R) > λ(R).
If Exti

R(ω, R) = 0 for 1 ≤ i ≤ d+ µ(ω), then R is Gorenstein.

Proof Our hypothesis is equivalent to 2µ(ω) > λ(R), and reformulating gives the
inequality λ(mω) < µ(ω). Now apply Theorem 2.2. 	


3 Non-extremality

Encouraged by the positive results of the first section, one might go so far as to expect
that the canonical module is extremal, that is, that the minimal free resolution of ω has
maximal growth among R-modules. To make this notion precise, recall that the cur-
vature curvR(M) of a finitely generated R-module M is the exponential rate of growth
of the Betti sequence {bi(M)}, defined as the reciprocal of the radius of convergence
of the Poincaré series PR

M(t):

curvR(M) = lim sup
n−→∞

n
√

bn(M) .

It is known [3, Prop. 4.2.4] that the residue field k has extremal growth, so that
curvR(M) ≤ curvR(k) for all M. One might thus ask: For a CM local ring (R, m, k) with
canonical module ω �∼= R, is curvR(ω) = curvR(k)?

Here we show by example that this question is overly optimistic. We obtain
Artinian local rings (R, m, k) so that curvR(ω) < curvR(k), and even so that the quo-
tient curvR(ω)/ curvR(k) can be made as small as desired. The examples are obtained
as local tensors of Artinian local rings R1 and R2. Recall the definition from [16].
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Definition 3.1 Let (R1, m1) and (R2, m2) be local rings essentially of finite type over
the same field k, with k also being the common residue field of R1 and R2. The local
tensor R of R1 and R2 is the localization of R1 ⊗k R2 at the maximal ideal m :=
m1 ⊗k R2 + R1 ⊗k m2.

We need three basic facts about local tensors, which are collected below. See [16]
for proofs.

Proposition 3.2 Let (R1, m1) and (R2, m2) be as in Definition 3.1, and let (R, m) be the
local tensor.

(1) If R1 and R2 are CM with canonical modules ω1, ω2, respectively, then R is CM
with canonical module ω := (ω1 ⊗k ω2)m.

(2) For modules M1 and M2 over R1 and R2, put M = (M1 ⊗k M2)m. Then we have
an equality of Poincaré series

PR
M(t) = PR1

M1
(t)PR2

M2
(t) .

(3) For M = (M1 ⊗k M2)m as above, we have

curvR(M) = max{curvR1(M1), curvR2(M2)} .
The ingredients of our examples are as follows. We take a pair of Artinian local

rings A, B with B Gorenstein and curvB(k) large, and with A non-Gorenstein and both
curvA(k) and curvA(ωA) small.

Example 3.3 Let k be a field and set A = k[a, b]/(a2, ab, b2). Then the curvature of
every nonfree A-module is equal to 2. Indeed, any syzygy in a minimal A-free resolu-
tion is killed by the maximal ideal of A, so it suffices to observe that curvA(k) = 2.

Next fix e ≥ 3 and put

B = k[x1, . . . , xe]/(x2
i − x2

i+1, xjxl | i = 1, . . . , e− 1; j �= l) .

We claim that B is a Gorenstein ring with curvB(k) = 2
e−
√

e2−4
. That B has one-

dimensional socle is not hard to see, cf. [9, 3.2.11]. By Result 5 of [18] we see that B is
Koszul, with Hilbert series HR(t) = 1+ et+ t2. The Poincaré series of k over B is thus

PB
k (t) = 1

1− et + t2
,

for which one computes the radius of convergence 1
2 (e−√e2 − 4).

Let now (R, m) be the local tensor of A and B. Then the canonical module of R is

ωR = ωA ⊗k ωB = ωA ⊗k B

and we have

curvR(ωR) = 2 <
2

e−√e2 − 4
= curvR(k) .

Note that since 2
e−
√

e2−4
−→ ∞ as e −→ ∞, the disparity in curvatures may be

made as large as desired by choosing B with e� 0.
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Remark 3.4 One may introduce the quotient g(R) = curvR(ω)/ curvR(k) as a measure
of a local ring’s deviation from the Gorenstein property. One sees immediately that
0 ≤ g(R) ≤ 1 for all non-regular R, and that R is Gorenstein if and only if g(R) = 0.
The ring A above illustrates that quite often g(R) = 1. However, it follows from
Example 3.3 that g(R) can also be made arbitrarily close to 0 for nonGorenstein R.

We end by showing that the above notion of ‘close’ to Gorenstein is different from
others in the literature.

In [8] Barucci and Fröberg describe a notion for a one-dimensional ring to be
‘almost’ Gorenstein, and give R = k[X, Y, Z]/(XY, XZ, YZ) as an example of an
almost Gorenstein ring in their sense. However, it is not hard to show that curvR ω =
curvR k, in other words, g(R) = 1 (R is in fact a Golod ring). Thus R is furthest from
being Gorenstein in our sense.

In [15] Huneke and Vraciu also define a notion of a ring R being ‘almost’
Gorenstein. They show that any Artinian Gorenstein ring modulo its socle is al-
most Gorenstein in their sense, for example, R = k[x, y]/(x2, xy, y2). But this is again
a Golod ring, and therefore g(R) = 1, so again their notion of almost Gorenstein is
incomparable to ours.
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