MAT 631 — HOMEWORK 6

DUE ON TUESDAY 9 OCTOBER

- **1.** Let $\mathbb{Q}(\sqrt{3})$ be the smallest subfield of \mathbb{C} containing \mathbb{Q} and $\sqrt{3}$ (i.e. the intersection of all fields containing those things). Prove that $\mathbb{Q}(\sqrt{3}) = \{a + b\sqrt{3} \mid a, b \in \mathbb{Q}\}$.
- 2. Define homomorphism of fields, and prove that every homomorphism of fields is injective.
- **3.** Prove that the following are equivalent for an $n \times n$ matrix A over a field F:
 - (i) A is nonsingular, that is, has an inverse A^{-1} .
 - (ii) Left-multiplication by A is injective.
 - (iii) The columns of A are linearly independent.
 - (iv) The columns of A form a basis for F^n .
 - (v) For each i = 1, ..., n, there exists a column vector b_i such that $Ab_i = e_i$ (standard basis vector).

(Hint: (i) \implies (ii) \implies (iii) \implies (iv) \implies (v) \implies (i).) Apply this to determine the order of the group $\operatorname{GL}_n(\mathbb{F}_p)$ for all n, p.

4. Let B_1 and B_2 be bases for a finite-dimensional vector space V. Prove that there exist bases $C_0 = B_1, C_1, C_2, \ldots, C_{n-1}, C_n = B_2$ for V such that for each $i = 1, \ldots, n-1$, we have $|C_i \cap C_{i+1}| = \dim V - 1$.