MAT 631 — HOMEWORK 3

DUE ON TUESDAY 17 SEPTEMBER 2013

- 1. (a) Assume that a group H acts on a set X. Define $x \sim y$ if there is some $h \in H$ such that $h \cdot x = y$. Prove that "~" is an equivalence relation (page 3 of D&F: symmetric, reflexive, transitive). The equivalence class containing x is called its *orbit*.
 - (b) Let G be a finite group, let H be a subgroup of G, and consider the action of H on G by left multiplication. In other words, an element h ∈ H acts on an element x ∈ G by h ⋅ x = hx. Let x ∈ G and let Hx = {hx | h ∈ H} be its orbit. Prove that |Hx| = |H|, so that every orbit has the same size. (Set up a one-one correspondence between the elements of H and those of Hx.)
 - (c) Conclude Lagrange's Theorem: If G is a finite group and H is a subgroup, then |H| divides |G|.
- **2.** Let *G* be a group and *X* a subset of *G*. For an element $a \in G$, we write aXa^{-1} for the set of all elements of the form axa^{-1} , $x \in X$. The *normalizer* of *X* in *G* is

$$N_G(X) = \{a \in G \mid aXa^{-1} = X\}.$$

- (a) Prove that $N_G(X)$ is a subgroup of *G*.
- (b) Compute $N_{D_8}(\{1, \tau\})$.
- (c) Compute $N_{S_3}(\{1, (1\ 2\ 3), (1\ 3\ 2)\})$.
- **3.** Let G be a group and let H and K be subgroups of G.
 - (a) Prove that $H \cap K$ is a subgroup of G.
 - (b) Give an example to show that $H \cup K$ need not be a subgroup of *G*.
 - (c) Prove that the intersection of an arbitrary nonempty collection of subgroups of G is again a subgroup. (Do not assume that the collection is countable.)
 - (d) Let $x \in G$, and prove that $\langle x \rangle = \bigcap K$, where the intersection is over all subgroups K containing x.
- **4.** Compute the lattice of subgroups of C_{75} .
- **5.** Let $\varphi: G \longrightarrow H$ be a homomorphism. Prove that ker φ is a subgroup of *G*. Prove that φ is one-to-one if and only if ker φ is the trivial subgroup.