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In our paper “Non-commutative desingularization of determinantal varieties I”, we con-
structed and studied non-commutative resolutions of determinantal varieties defined by
maximal minors. At the end of the introduction, we asserted that the results could be
generalized to determinantal varieties defined by non-maximal minors, at least in char-
acteristic zero. In this paper, we prove the existence of non-commutative resolutions in
the general case in a manner which is still characteristic free, and carry out the explicit
description by generators and relations in characteristic zero. As an application of our
results, we prove that there is a fully faithful embedding between the bounded derived
categories of the two canonical (commutative) resolutions of a determinantal variety,

confirming a well-known conjecture of Bondal and Orlov in this special case.

1 Introduction

Let K be a field and let F, G be two K-vector spaces of ranks m and n, respec-

tively. We take unadorned tensor products over K and denote by (—)" the K-dual.
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2 R.-0. Buchweitz et al.

Put H =Homg(G, F), viewed as the affine variety of K-rational points of Spec S,
where S=Symg(H") is isomorphic to a polynomial ring in mn indeterminates. The
generic S-linear map ¢: G ® S— F ® S corresponds to multiplication by the generic
(m x n)-matrix comprising those indeterminates.

Fix a non-negative integer |l <min(m, n), and let Spec R be the locus in Spec S
where /\l+1g0=0. Then R is the quotient of S by the ideal of (I + 1)-minors of the
generic (m x n)-matrix. It is a classical result that R is Cohen—Macaulay of codimen-
sion (n—1)(m —l), with singular locus defined by the [-minors of the generic matrix; in
particular, R is smooth in codimension 2.

In this paper, we consider some natural R-modules. For a partition

o= (ay, ..., o) and a vector space V, write
NV=A"VR - - \"V.

Let o denote the conjugate partition of o, and A*¢": A F¥ ® S—> A” G¥ ® S the nat-
ural map induced by ¢. Define

(/\a/wv)@@R

T, =image | A“FY® R—— > A\“G'®R

Let By, be the set of all partitions with at most urows and at most v columns and set

T= @ T, and E =Endg(T).

a€B;m-1

Our first main result generalizes the case [ =m — 1 [5, Theorem A], and shows
that general determinantal varieties admit a non-commutative desingularization in the

following sense.

Theorem A. For m<n, the endomorphism ring E =Endg(T) is maximal Cohen-—
Macaulay as an R-module, and has moreover finite global dimension. In particular, T, is

a maximal Cohen-Macaulay R-module for each « € B 1,,_;. O

If m=n, then R is Gorenstein; in this case, E is an example of a non-
commutative crepant resolution as defined in [22].

The R-module T, is in general far from indecomposable. Assume for a moment
that K has characteristic zero and denote by L*V the irreducible GL(V)-module with
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Fig. 1. The Young quiver.

highest weight « (a.k.a. Schur module [24]). It then follows from the Pieri rule that /\"‘/ V=
LV @ W, where W is a direct sum of certain L#V with 8 <« for the natural order on
partitions. Hence, if we put

N, = image (L"(FV) ® R-LWeR,

LYG")® R) :

then in characteristic zero T, is a direct sum of Ny for g <« with N, appearing with

multiplicity 1. In particular, we obtain that N, is maximal Cohen-Macaulay. This is false

in small characteristic; see Remark 3.7 where we make the connection with the work of

Weyman [24, Section 6].
If we set N=&p

E =Endg(T). Clearly, Theorem A remains valid in characteristic zero if we replace E

N, and A=Endg(N), then A is Morita equivalent to

AEB; m1

by A. Furthermore, we have the following description by generators and relations of the

non-commutative desingularization A. Write « 8 if 8 is obtained by adding a box to «.

Theorem B (Theorem 6.9). Assume that K has characteristic zero and m — 1> 1. As a
K-algebra, A is isomorphic to the bound path algebra of the truncated Young quiver

(Figure 1) having vertices « € B; ,—; and arrows o« —> f indexed by bases for

FY ifa /7B and
G ifB /a,

GT0Z ‘82 AInc uo Ariqi AisiBAIUN asndelfS e /BIo'sfeulnolpioixo uiwi//:dny woly papeojumoq


http://imrn.oxfordjournals.org/
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with vector spaces of relations between two vertices «, y € By ,—; given by
Sym,F" if y /7 «, two boxes in a column,

/\sz if y /7 «a, two boxes in a row,
Sym,F¥V @ N\°FY=F'YQF" ify 7 /a, two disconnected boxes,

F'®G ifa#£yanda 78,y /B, for some g with gy <m —1,
(FY ® G)®H)-D ifa=y,

Sym,G ifa / 7y, two boxes in a column,

NG ifa 7y, two boxes in a row,

Sym,G @ /\2G =6GQG ifa /7y, two disconnected boxes,

where t(«) is the number of ways to add a box to @« without making any row longer
than m —[. O

Note that the representations defining the listed relations, for example,
Sym,FY C F¥Y ® FV, are not induced by the obvious diagonal inclusions; there are some
non-trivial scalars appearing. See Section 7.

Now let K be general again. We have taken care to state Theorems A and B in
algebraic language but as in [5] the proofs proceed by invoking algebraic geometry, that
is, by constructing a suitable tilting bundle on the Springer resolution of Spec R.

Write G =Grass(, F) = Grass(l,m) for the Grassmannian variety of
l-dimensional subspaces of F, and let n: G—> Spec K be the structure morphism
to the base scheme Spec K. On G, we have a tautological exact sequence of vector
bundles

0—R—aF' —Q—0 (1.1)

whose fiber above a point (V C F) € G is the short exact sequence 0 — (F/V)¥ —

FY — VY — 0. In [6], we proved that the Og-module

To= P A“Q
A€B;m-1
is a tilting bundle on G. From this, we derive our main geometric result as follows. Set
Y =G Xspec k H, with the canonical projections p: ) — G and q: Y — H. Define the

incidence variety

Z={(V,0) € G xgpecx Hlimaged CV} S Y
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Spec R —— H = Homg (G, F) —— Spec K

Fig. 2. The schemes and maps of interest.

and denote by j the natural inclusion Z — ). The composition ¢’ =qj: Z — H is then
a birational isomorphism from Z onto its image q'(Z£) =Spec R, while p=pj: Z2— G
is a vector bundle (with zero section 6 = 0). Figure 2 summarizes the schemes and maps

we have defined. We call Z the Springer resolution of Spec R.

Theorem C. The Oz-module

T = p/* @ /\a’Q

O(EBl.m,l
is a classical tilting bundle on Z, that is,

(i) T classically generates the derived category D’(coh Z), in that the smallest
thick subcategory of D?(coh Z) containing 7 is D?(coh Z) and
(i) Hompbon z)(T, T1il) =0 for i #0.

Furthermore, we have

(i) T, = Rq[k/\“/Q for each « € B 1,1, so that T =Rgq,7 and
(iv) EZEndo. (7). O

The proofs of Theorems A and C are substantially simpler than the correspond-
ing ones in [5], even in the case treated there of maximal minors.

As H =Homg (G, F) is canonically isomorphic to Homg(FY, G¥), we obtain a
second Springer resolution g;: Z; — Spec R by replacing (F, G) with (GY, FY). Put

Z=2Z xy Z;. As an application of Theorem C, we prove the following.

Theorem D. If m <n, then the Fourier-Mukai transform with kernel O; induces
a fully faithful embedding FM: D?(coh Z)<s D’(coh Z;). If m=n, then FM is an
equivalence. |
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A general conjecture by Bondal and Orlov [4] asserts that a flip between algebraic
varieties induces a fully faithful embedding between their derived categories. It is not
hard to see that the birational map Z, --» Z is a flip, so we obtain a confirmation of the
Bondal-Orlov conjecture in this special case.

The first half of the paper is characteristic-free. We include a short section
recalling the results we need from [6], as well as some background on characteristic-
free versions of the Cauchy formula and Littlewood-Richardson rule. These are used to
prove Theorem C, and as a consequence Theorem A, in Section 3. Section 4 contains the
proof of Theorem D.

In the second half, we specialize to characteristic zero. Section 5 contains the
calculation of the Ext groups between the simple A-modules, which will be used in
Section 6 to construct an isomorphism between A and the path algebra of the truncated
Young quiver Y; ,,,—; in Theorem B. The relations on the path algebra of Y; ,,_; are induced
by relations between certain maps occurring in Pieri’s formula which were introduced by
Olver [18]; in Section 7, we show how to compute these relations and thereby the scalars
appearing in Theorem B. The first non-trivial example (m, n,1) = (4, 4, 2) is worked out
in Section 8.

We include an Appendix giving an alternative description of the non-
commutative desingularization as a “quiverized Clifford algebra” as in our earlier
paper [5].

Since the original version of this article was posted on the arXiv, similar results
have been obtained by other authors [2, 7, 8, 25].

2 Preliminaries

We recall two results from [6]. Recall that we write L* for the Schur functors; our conven-
tions are that L®V = Sym,V and LV = A\'V. (This convention differs from that in [24].
Our indexing is such that L* has highest weight «.) The functors L* are defined for all
dominant weights, that is, weakly decreasing sequences of integers. A partition is a

dominant weight with non-negative entries.

Theorem 2.1 ([6, Theorem 1.2]). The Og-module

To= P N2

a€B; ;g
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is a classical tilting bundle on G, that is,

(i) 7o classically generates the derived category D?(coh G), in that D?(coh G) is
the smallest thick subcategory of itself containing 75 and
(ii) Hompson ¢)(To, Tolil) =0 for i #0. a

Proposition 2.2 ([6, Proposition 1.3]). Let « € B;,,—; and let § be any partition. Then for
all i > O one has
H'G, (\“ Q)" ®0, L’ Q) =0. O

We also state for easy reference the following characteristic-free versions of the
Cauchy formula and the Littlewood-Richardson rule. See [24, Theorems 2.3.2 and 2.3.4].

Theorem 2.3 (Boffi [3], Doubilet-Rota-Stein [9]). Let V and W be K-vector spaces and
let « and B be dominant weights.

(i) Thereis anatural filtration on Sym,(V ® W) whose associated graded object
is a direct sum with summands tensor products L”V ® LY W of Schur
functors.

(ii) There is a natural filtration on /\t(V ® W) whose associated graded object
is a direct sum with summands tensor products L'V ® (L W)V of Schur
functors.

(iii) There is a natural filtration on LV ® L#V whose associated graded object
is a direct sum of Schur functors L” V. The y that appear, and their multi-

plicities, can be computed using the usual Littlewood-Richardson rule.
If char K =0, then the filtrations above degenerate to direct sums. Note that in charac-
teristic zero (LY W)Y = LY W. O
3 A Tilting Bundle on the Resolution
To prove Theorem C, keep all the notation introduced there. One easily verifies that
Z =Spec (Symg (G ® Q));

indeed, a closed point of the right-hand side consists of a pair (V C F, 6), where (V C
F) e G and 6 is an element of the fiber of (G ® Q)" over the point (V C F). That fiber is

(G ® VY)Y =Homg (G, V) C Homg (G, F),

so the pair (V, 0) is precisely a point of Z.
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We have 7o =

a vector bundle on Z.

A% O, a tilting bundle on G by Theorem 2.1. Set T = p*To,

AEB m-1

Proposition 3.1. The Oz-module 7 = p*7y is a tilting bundle on Z. O

Proof. Since 7 classically generates D?(coh G) and p' is an affine morphism, it is easy
to see that 7 classically generates D?(coh Z), so it remains to prove Ext-vanishing. We
have

Extl, (T.7T)=H'G, Sym:(G ® Q) ®o, &ndo, (To))
and hence we need to prove that
Symg(G ® Q) ®o, Homo, (A Q. A Q) (3.1)

has vanishing higher cohomology for «, 8 € B; ;.
Using Theorem 2.3, we find that (3.1) has a filtration whose associated graded

object is a direct sum of vector bundles of the form
(A" &0, L'Q, (3.2)

where o € By ,; and § is some partition containing 8. It now suffices to invoke Proposi-
tion 2.2. |

To prove the rest of Theorem C, we shall show that Endgr(Rq,7) =Rqg.éndo. (T),
and that the latter is MCM and has finite global dimension. Put

E=éndop_(T),
and let wz be the dualizing sheaf of Z.

Lemma 3.2. Assume m < n. Then Extlbz (£,wz)=0foralli>0. O

Proof. We have £ = p*&, with & = Homo, (To, To). Substituting this and using the fact
that & is self-dual, we find

Ext), (£, 0z) =Extl, (p*&o. wz)
= ]“:thbG (go, p;a)g)

= Hi(Ga &o ®0g p;wZ)
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Hence, to continue we must be able to compute p,wz. Since Z = Spec (Symg(G ® Q)), the
standard expression, see, for example, [11, Exercise II1.8.4], for the dualizing sheaf of a

symmetric algebra gives
Pz =5 ®0, \"(G ® Q) ®0, Symg(G ® Q).

Furthermore, the sheaf 2¢ of differential forms on G is known to be given by Qg =
QY ®p, R, where R is the tautological sub-bundle of n*FY as in (1.1). Hence,
we = AN"(Q¥ ®0, R) and so

Piwz = A\"(Q" ®0. R) ®0. A"(G ® Q) ®0, Sym:(G ® Q).
Rewriting all the exterior powers in terms of Q, we find
AMQ @ R) & AT(G ® Q) =A™ & (AN 'R & (NG & (N Q"
=N ™ N"FH TN @ (A" @ (N "
=NO" ™ (A\"F)" @ (\"6).
So finally
o ®0s Doz =(A\"F) & (N"6) ® & ®o0, (N Q"™ ®0, Symg (G ® Q).

Discarding the copies of the vector spaces A™F and /\"G, we find a direct sum of vector

bundles of the form
N'Q" @0, N'Q®o. (N Q™™ @0, Symg(G ® Q),
which (since m < n) are the subject of Proposition 2.2. |
Next we verify Theorem C for
E=Endp,(T)=I(Z,§) and T=TI(Z,7).
Recall the following consequence of tilting (see, e.g., [12]).

Proposition 3.3. Assume that 7 is a tilting bundle on a smooth variety X. Then
RHomo, (7, —) defines an equivalence of derived categories DP(coh X) = DP(modE)
where E =Endo, (7). If X is projective over an affine variety, then E is finite over its

center and has finite global dimension. O

Proposition 3.4. Assume m < n. Then
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(i) EZEndg(T);
(ii) E and T are MCM R-modules; and

a
(iii) E has finite global dimension. O

Proof. That E has finite global dimension follows from Propositions 3.1 and 3.3. Since

Ext‘bz (T,7T)=0fori> 0 by Proposition 3.1, the higher direct images of £ vanish, that is,

To prove that E is MCM, we must show that Extﬁ?(ﬁ', wgr) =0 for i > 0, where wg is the
dualizing module for R. Replacing E by Rq.£ and using duality for the proper morphism
q’ [24, Theorem 1.2.22], we see that this is equivalent to showing Ext‘bz (€,q"wgr) =0 for
i > 0. But ¢"wg = wz is the dualizing sheaf for Z, so Lemma 3.2 implies that E is MCM.
As Oz is a direct summand of 7, we see that T is a summand of E, whence
T is Cohen-Macaulay as well. Furthermore, we have an obvious homomorphism
i: Endop, (7)) — Endg(T) between reflexive R-modules, which is an isomorphism on the
locus where q@': Z — Spec R is an isomorphism. The complement of this locus is given
by the matrices which have rank <1, a subvariety of Spec R of codimension > 2. Hence, i

is an isomorphism. |

Propositions 3.1 and 3.4 imply Theorems A and C provided we can show T = T.

We do this next. Recall that for a partition «, we denote

N, =image (L“(FV) ®R Lok

LYG")® R) :
Set N, = p"L*Q.
Proposition 3.5. With notation as above, we have

N, =I(Z,N,). O

Proof. With ¢: G® S— F ® S, the generic map defined over S, let ¥ = j*q*¢ be the

map induced over Z. Then the fiber of /¥ over a point (V, §) factors as
FVY—V' —GY,
where the first map is the dual of the given inclusion V < F. Thus, " factors as

p/*n*FV SN p/*Q N p/*n*G\/.
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The first map is obviously surjective. The second map is injective since it is a map
between vector bundles which is generically injective. Schur functors preserve epimor-
phisms and monomorphisms of vector bundles [10, Section 8.1], so we get an epi-mono
factorization

Lw(w\/): Lcl(p/*n*F\/) N Lutp/*Q_) La(p/*ﬂ*Gv).

To prove the claim, it is clearly sufficient to show that the first map remains an epimor-
phism after applying g, that is, that the epimorphism

m*L*(FY) ®o, Symg (G ® Q) — L*Q ®0, Symg(G ® Q)
remains an epimorphism upon applying I'(G, —). In fact, it suffices to show that
7*(L*(F") ®o, Symg(G ® F¥)) — L“Q ®0, Symg(G ® Q)

remains an epimorphism upon applying I' (G, —). By Theorem 2.3, source and target are
filtered by Schur functors, so it is enough to show that for any partition § the canonical

map

7*L*(FY) — L°Q

remains an epimorphism upon applying "' (G, —). But taking global sections of this map
gives

LY(FY)— I'G, L’ Q),

which is even an isomorphism by the definition of Schur modules. Hence, we

are done. [ |
Set T, =I'(Z,T,), where T, = P*(A\YQ) as in Theorem 2.1, and recall
. - N"emer
T, =image [ A\"(F)YQR—— A" (G")® R] .

Filtering everything by Schur functors and applying Proposition 3.5, we see that these
coincide.

Corollary 3.6. We have T, =T, for each « € B;,, ;. In particular, T=T is a maximal

Cohen—Macaulay R-module. O

Assembling the pieces, we obtain Theorem C and, as a consequence, Theorem A.
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Remark 3.7. It follows from Proposition 3.5 that N, = M(«, 0) in the notation of [24,
Section 6]. In particular, the very general result [24, Corollary (6.5.17)] gives an alter-
native way to see that N, is Cohen-Macaulay in characteristic zero. Furthermore, [24,
Example (6.5.18)] shows that N, is not Cohen—-Macaulay in characteristic 2. O

Example 3.8. Assume that m — [ =1 with m <n. Then we have G=P™"!. Set P=P""1,
so that @ = 2;/(—1), and let « =1° for some g, 0 <a<m — 1. We find

To=P"(N\*$2%¢ (@)
— p/*(/\TYL717aQP ®OP w]}:l(_a))

=p (N 2p(m — a).

Thus, in the notation of [5] we have T, = M, , =cok A" “X. O

4 Proof of Theorem D

We now need to refer to the two resolutions of Spec R in a uniform way, so we introduce
appropriate symmetrical notation for this section only. We start by putting G; = F and
G, =G so that

H=S8Symg(G; ® G2).

We also put n; =rankxG; and G; = Grass(n; — I, G;). Thus, n; =m, n, = n, and we have
canonically G; =G.

For symmetry, we also put Z; = Z. In general, we will decorate the notations in
the diagram (2) by a “1” or a “2” depending on whether they refer to Z; or 2.

We now explain how we prove Theorem D. In Proposition 3.1, we have con-
structed tilting bundles 77, 72 on Z;, Z,. For our purposes, it turns out to be technically
more convenient to use the tilting bundle 7" on Z; rather than 7;. With E/, E; the endo-
morphism rings of 7;” and 7, respectively, it turns out that if n; <n,, then E| ZeEze
for a suitable idempotent e € E,. Thus, we immediately obtain a fully faithful embed-
ding D?(coh Z;) < D%(coh Z;). We then show that this embedding coincides with the
indicated Fourier-Mukai transform.

Now we proceed with the actual proof. On G;, we have the tautological exact

sequence

0— R —n/G;—> Q; — 0.
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We also define

A

Z:Zl XHZZ-

There are projection maps ry: Z —> Z,, rp: 2 —> Z,. These fit together in the following

commutative diagram.

A

Z
Z
NN e
1

Z

2
%

Spec R G2

G

Let Hy C Spec R be the (open) locus of tensors of rank exactly [, so that the maps g; and
r;, fori =1, 2, are all isomorphisms above Hy. Let 2,:'0 be the inverse image of Hy in Z.
Let « be a partition and set 7, ; = pg*(/\“/ Q;) for i =1, 2. Further set B; = B} ,,,_y,

T = @ Tei and E;=Endo. (T7).

OlEBi

By Theorem C, 7; is a tilting bundle on Z; and hence D?(coh Z;) = D’(modE;).

Here is an asymmetrical piece of notation. Assume that n; <mn,. Then B; C B,. Set

E’:@ﬁng@ﬁz:?} and E;=Endo, (7;). (4.1)

aE€B; aE€By
As T, is a direct summand of 7;, we have E, =eE;e for a suitable idempotent ec Ej.
Hence, there is a fully faithful embedding

é: Db(modEé) <> DP(modE,) (4.2)

given by é(M) = (Ez)e ®g, M.
Put E} = Endo, (7). Note that it follows easily from Grothendieck duality that
7, is also a tilting bundle on Z;.

Finally, set
Tot,i = q;ﬂ;,i, T;, = q{*7;

and T, = q;,7,. By Theorem C, we have E; = Endgr(T;), E; = Endgr(T}’), and E; = Endgr(T}).

Lemma 4.1. One has Z = Spec (Symg, ¢, (Q1 X Q2)). U
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Proof. This is a straightforward computation.

21 xg 2o =21 Xg,xz (G1 x H) xg (G2 x H) Xg,xz 22
=21 Xg,x# (G1 X Gy x H) Xg,xu5 22
= (21 x G2) xg,. gy (22 x Gy)

=Spec (Symg ,¢,(Q1 X 75G2) @sym,

G xGy

(161 K3 Gy) SYMg, », (77 G1 X Q2))

= Spec (Symg, ¢, (Q1 X Qz)). .

Proposition 4.2. Assume m; < . Then T, = T}’. In particular, E}, = E}, and there is a fully
faithful embedding D?(modE}) < D?(modE;) (using (4.2)). If n; = np, then the embedding

is an equivalence. O

Proof. Since Z = Spec (Symg, <G, (21 X Q)), we have a canonical map
w: (py)*" Q2 — (p)* QY.
which is an isomorphism on Zo. Apply /\“’(—) for a partition « to obtain a map
A w13 Ta —> 1 (Ten)” 4.3)
and push down with (q;71). = (g;72). to get a homomorphism of R-modules
Ty To2 — T, (4.4)

which is an isomorphism on Hj. Letting « run over partitions in B;, we find a homo-
morphism 7: T, — T, which is also an isomorphism on Hjy. Since the exceptional loci
for the g} in Z; have codimension at least 2, the modules T; and T, are reflexive by [23,
Lemma 4.2.1]. (In fact, we know already that T; is Cohen-Macaulay.) Hence, t: T, — T}’
is an isomorphism.

In particular, v induces an isomorphism 7: E{ — Ej. |

The birational map Z, — Z; is easily seen to be a flip, and, if n; =ny, even a
flop. Our final result thus verifies, in this special case, a general conjecture of Bondal
and Orlov [4].
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Theorem 4.3. Assume n; < 1. Then there is a fully faithful embedding
F: D’(coh Z,) —> DP(coh Z3)

given by
L
F(M) =T, ®g RHomo,, (T,", M),

where E} = Endg(7;") acts on 7, via the isomorphism E} = Endo,, (7,) of Proposition 4.2.

If ny = np, then F is an equivalence. O

Proof. Since 7, and 7; are tilting on Z; and Z;, respectively, we have equivalences
RHomo, (7;", —-): DP(coh Z,) — DP(modE))

and

T2 G%Ez —: D’(modE,) — D’(coh Zy).

Putting these together with the isomorphism E] = E/, and the fully faithful embedding

é: Db(modEé) —> D’(modE,), we find the composition

F: D°(coh Z,) — D’(modE}) — D’(modEj,) < D’(modE,) —> D’(coh Z5),

of the form asserted. [ |

Theorem 4.4. Assume that n; <n,. Then the Fourier-Mukai transform FM=Rr;Lr{

with kernel (11, 72),0 3 defines a fully faithful embedding
FM: D?(coh Z;) < DP(coh Z,),

which is an equivalence if n; = n,. There is a natural isomorphism between FM and the
L

functor F =7, ®g, RHomo (7{Y, —) introduced in Proposition 4.3. In particular, FM is

fully faithful. O

Proof. For a partition « € By, the map /\“/u: r5Ta2 —> 17 (T41)" constructed in (4.3) gives

by adjointness a homomorphism on 2,
0 To,2 —> Rr2,1{ (Ta1)”.

We claim that o is an isomorphism. In particular, we must show Rirz*ri“(ﬁ,l)vzo

for i > 0. To this latter end, it is sufficient to show that for all ye G, and all i >0

GT0Z ‘82 AInc uo Ariqi] AisiBAIUN asnJelAS e /BIo'sfeulnolpioixo uiwi//:dny woly papeojumoq


http://imrn.oxfordjournals.org/

16 R.-O. Buchweitz et al.

we have

H'(G1. \* QY ®0,, Symg, (Q1 ® (Q2))) =0.

This follows again from the Cauchy formula together with Proposition 2.2.

Now we can see that o: Ty 2 —> 12,77 (T41)" is an isomorphism. The source is
reflexive, the target is torsion-free, and over 22'0 the map o coincides with (g))*t,, where
Tyt Tyo — TOX1 as in (4.4). Since each 7, is an isomorphism, so is o.

In particular, we obtain an isomorphism 6 : 7, — Rry,Lr{7;” by summing over
o € B;.

To define the desired natural transformation n: 7 — FM, we must construct a

morphism

L
n(M): T, ®, RHomo, (T,", M) —> Rrp, 1 M
for every M in D?(coh Z;). The desired map is the composition of
L
T, ®e, RHomo,, (7,", M)
l&@ -4 Rry, Lrf

L
Rro, LT Qg RHomo, (Rra.Lr{ L, Rra, Lri M)

and the evaluation map from the derived tensor product to Rry,Lrj M. To show that 7 is
an isomorphism, it suffices, since 7" generates, to prove that »(7,") is an isomorphism.

In this case, we have
U L V VN ~~ ! L ! o~ 7~ k V
T, ®g, RHomo, (T,", 1) =T, ®p, E; =T, =Rra.ri Ty,
an isomorphism by construction. |

Remark 4.5. Though we did not use it, in fact we have E|=E,;. Indeed, for

o= (ay,...,q) € B;, define

d=m—-l—og ..., —1—a).

Then
AY QY = (A b ®0g, /\(a!),Qi.

Thus,
(Tad)” = PN Q)" ®0,, Tari
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and hence
7;v o~ Ijl*(/\l Q)—(ni—l) ®Ozi 7:

It follows that Endo, (7;Y) = Endo,, (7). =

5 Presentations of the Simples

Throughout this section, we assume that the characteristic of our ground field is zero.
We give an algorithm, based on Bott's theorem and the Littlewood-Richardson rule,
for determining the Ext-groups between the simple modules over the non-commutative
desingularization. We work out explicitly the representations appearing in the Ext-
groups of low degree, for later use in the proof of Theorem B. The method is a direct
generalization of that used in [5] for the case of maximal minors, and was indepen-
dently established in a more general form by Weyman and Zhao [25]. It was known to
the authors how to extend our methods to arbitrary minors, but after seeing [25] we real-
ized we could simplify the part of the argument involving Bott's theorem. In particular,
Lemma 5.4 is contained in [25, Corollary 3.6]. We provide a proof for the convenience of
the reader.

Since we work in characteristic zero, we consider the tilting bundle N =
B, Ne =D, P'L*Q (cf. Proposition 3.5) on the desingularization Z and its endo-
morphism ring A=Endp_,(N). Then A is Morita equivalent to E =Endgr(T) of
Theorem A.

For« € By -1, let P, =Home, (N, N,) be the projective left A-module correspond-
ing to «, and let S, be its associated simple module. As in [5], we have the following

identification of S,.

Lemma 5.1. Let u: G —> Z be the zero section of the vector bundle p': Z — G. Then the
object in D?(coh Z) corresponding to the simple module S, is u, LY R|«|l. ]

Proof. By [15], the bundles {L%Rl|«|l}4cs,, , form a dual exceptional collection to the

full strong exceptional collection {L%Q}4cp,,, ,, that is,

; N e K ift=0and a =p8 and
Ext, (L*Q, LP RIIBI) =

0 otherwise.

This Ext group is by adjunction isomorphic to Ext}, (p*L*Q, u, LPR[|B). Since p*L*Q

corresponds to the projective P, over A4, this gives the desired statement. |
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To compute the extensions between the simple objects, we use the following
proposition [5, Proposition 10.6]. The proof given in [5] is over P, but is equally valid

over G.
Lemma 5.2. Let !/, V be objects in D’(coh G). Then

Extfy, (W, wV) = P ExG (N (Q® G) @0, U, V). B

N

Theorem 5.3. Let «, 8 € By ;. For the simple left A-modules S, and Sg, we have

Ethq(Slg, S,) = @ Ht—l/\H\a\—\ﬁl(G’ > 0V ® LYR ® Lﬁ/R\/) ® LA/G\/’
Y
where the sum is over all A € B; ,. O

Observe that the A appearing in the formula have the same bound on the number

of rows as « and 8, but the constraint on their widths depends on G.

Proof. This is a direct calculation using Lemma 5.2 and the Cauchy decomposition from
Proposition 2.3:

Ext(Sp. S,) = Extt,_(wLPRIBI, w L Rllel)
=Extg (W, LF R, uLYR)

=P Exto TN (Q® G) ®0, LPR. LY R)
_ @ Htferlalflﬂ\(G’ /\S(Q ® G)Y ®0 (L’S,R)v ® La/'R,)
S

— @ @ Ht—S+|O(|—|ﬂ\(G’ LAQ\/ ®OG La/R ® Lﬁ’R\/) ® L)L/G\/’

s |Al=s

which is equal to the desired sum since rank Q@ =1 and rank G =n. [ |

For any given t, computing the cohomology indicated in the theorem is algo-
rithmic, though a complete combinatorial description of exactly which representa-
tions appear remains open. We can evaluate the sum for small values of ¢ using the
Littlewood-Richardson rule and Bott's theorem [24]. Recall the algorithm of Bott: a
bundle of the form L*Q" ® L¥R", for dominant weights A and y, has at most one non-
vanishing cohomology group, and the index k for which H*(G, L*Q¥ ® LYR") # 0 is com-
puted by flattening the weight (y, §) using the twisted action of the symmetric group
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Sm. (Technically, we must flatten (A*, y*), where A* = —woA and wq is the long word in
Sn. However, it is easy to see that the result is the same, since passing to the dual
Grassmannian replaces (A*, y*) with (y, A).) This means that the adjacent transpositions
o;=(i,i+1)acton aweight e = (a1, ...,0pm) byo;-a=(a1, ..., 0501+ 1,0 —1,...,0p). If
there exists a permutation t such that r - (y, A) is dominant (i.e., weakly decreasing), then

the only non-vanishing cohomology is
Hl(r)((Gr, L)»Q\/ ® LyR\/) — L‘[-(y,}\.)F’

where I(7) is the length of t's expansion in adjacent transpositions. If there exists no
such 7, or equivalently 7 - (y, A) = (y, A) for some non-trivial € S,,, then all cohomology
of L*Q" ® LYR" vanishes.

We can describe the algorithm equivalently by defining the action of S, via o; -
a=oj(a@+p)—p, where p=(m—1,m—2,...,1,0). If « + p contains a repetition, there
is no cohomology.

Note that in this procedure y and A are not assumed to have non-negative entries.
We write @ =« + «_ for the decomposition of a weight « into positive and negative
parts, and |¢| = |y | 4 |o—| for the signed area of «.

We need a combinatorial lemma. (A similar argument in [25] allowed us to
simplify our original argument significantly.) The LYR" appearing in the Littlewood-

Richardson decomposition of L*RQLFRY, fora,pe B m—1, will have y; > —I for all i.

Lemma 5.4. Lety =(y1,...,¥Ym-1) and A = (Aq, ..., A;) be dominant weights. Assume that
vi > —l for all i. If HXG, L*Q' ® LYR")#0 for some k, then —y_ €A’ and k> —|y_|. In
particular, if H=PM+I"(G, L*QY ® LYRY) # 0 for some t, then t — |A| > |y,|. O

Proof. We have to show that the negative part of y is contained in the first columns
of 1. If y has no negative entries, we are of course done. Set s=—y,,; <l and
assume s> 0. Then A can have at most [ —s zero entries, for otherwise (y,1) + p=
n+m-—-1,...,yma1+l+1,1—s,2+1—1,...,%) would have a repetition of [ —s
and all cohomology would vanish. The result of partially flattening y,,—; is there-

fore (y1,..., ¥moi-1,A1—1,...,As — 1,0, As_1,..., ;) and As — 1 > 0. Since y,,_;_1 > —S, we

may repeat the argument with the weight (341, ..., Ym—-1,21 —1,..., A5 — 1) to see that
(A0 —1,...,As — 1) can have at most s — y,,_;_; zero entries. Iterate. The last sentence is
clear from |y | = |y.| + |y_|. [ |

Recall that we use the notation « ' 8 to indicate that 8 is obtained from « by

adding a single box.
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5.1 Computation of Ext!for t=0, 1, 2

We apply Bott's algorithm first with t=0 to compute Homs(Sg, S,) as a sanity check.

Theorem 5.3 asks us to compute

P e MG L e 'R © LG

MEB; 1
for all y such that LYR" appears in L*R ® L RY. By the lemma, if this cohomol-
ogy is non-zero, then we must have —|1| > |y,|, which since A is non-negative forces
A=(0,...,0) and y, = (0,...,0). The lemma furthermore implies —y_ C 1/, so y is also

the zero partition. This occurs only when o = 8, and we obtain

K ifa=pand
Hom 4(Sg, So) =
0 otherwise,

as expected.

For t=1, 1 —|A| > |y,| implies either A=(0,...,0) or A=(1,...,0). In the first
case, we find y_ =0 and y, can be either (0,...,0) or (1, ..., 0). The first choice for y leads
to H'(G, Og) =0, and the second to H°(G, RY) = F. In the second case, we have y, =0 and
y_=(0,...,0)o0r (0,...,—1) since —y_ C A'. Here the first choice gives no cohomology and
the second contributes H!(G, Q¥ ® R) =K.

A direct summand of the form L®:%~ORY appearing in L* R ® L#R" implies that
o' € B’ and g’ differs from o’ in exactly one entry, where g; =«; + 1, so « /' 8. Similarly,
the appearance of L©%~DRY indicates that 8 is the result of removing a box from «.
Thus,

F ifa 78,
Ext}y(Ss, So) =1 G" if B /", and

0 otherwise.

The case t =2 requires considering several cases corresponding to |A| =0, 1, 2.
If A is the zero partition, then y_ =0 and y, is one of (0,...,0), (1,...,0), (2,...,0)
or (1,1,0,...,0). These are all already dominant, so contribute only H°, so we obtain
HO(G, Sym,R") = Sym,F and H(G, A*RY) = A°F. These y correspond to obtaining g’
by adding to ', respectively, two boxes not in the same column and two boxes not in the
same row.

In case A=(1,0,...,0) then |y,| <1 and —|y_| < 1. The case y = (0, ..., 0) gives

no cohomology. If y =(0,...,0,—1), then one swap gives the zero partition so we find
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a contribution to H! but none to H2. If y = (1,0, ...,0, —1), then we obtain H (G, Q" ®
L1.0--0=DRVy — F These y correspond to the 8’ obtained by adding one box to «’ and
removing one box. Finally, if A=(1,0,...,0) and y =(1,0,...,0), then we again have no
cohomology, unless y has just one entry, in which case m —I =1 and we get H°(G, Q" ®
RY)=LA10--0F — A®F This arises from o’ 7 f'.

Assume 1 =(1,1,0,...,0). Then y, =0 and the possibilities for y_ are (0, ..., 0),
0,...,0,-1), and (0,...,0,—2). The first and second cases lead to no cohomology,
while the third possibility takes two swaps to give the zero partition, so H(G, A°Q®
L©-0=2RVy = K. This y appears when «' is obtained by adding two boxes to 8/, not in
the same row.

Lastly suppose A =(2,0,...,0). Then again y, =0 and now the possibilities for
y_are (0,...,0),(0,...,0,-1),and (O, ...,0,—1, —1). The first case gives no cohomology
unless m — [ =1 =1, in which case (0, 2) flattens in one swap to (1, 1) and we get a contri-
bution to H! but none to H°. The second case flattens in one step to (0,...,0,1,0,...,0),
which gives no cohomology if m—I1>1 and H!G,Sym,Q® LO+ %" DRY)=F if
m — [ =1. This occurs when o’ / 8'. The third case flattens to the zero partition in two

0.-L-DRV) = K. This occurs when «’ is obtained by

swaps, so gives H?(G, Sym,Q ® L
adding two boxes to g/, not in the same column.
Analyzing the ways in which the L”R" appearing above can appear in L* R ®

LPRY, we arrive at the final results. If m —1 > 1, then Exti(sﬂ, Sy) is given by

Sym,F if o / 7 B, two boxes in a column,

/\ZF if « / 7 B, two boxes in a row,

Sym,F & /\zF =Z=FQF ifa /7 B, two disconnected boxes,

F®GY ifa#ganda 75,8 76, for some § € By p_1, 5.1)
(F @ GV)®t@-1 if o =B,

Sym,G" if B / " «a, two boxes in a column,

A2GY if 8 7/ a, two boxes in a row,

Sym,G¥ & \*GY=GY ® GY if B 7/ «, two disconnected boxes.

Here t(«) is the number of ways to add a box to « without passing out of the sides of the
box Bj ;. This is the case corresponding to y = (1,0, ...,0, —1) and o = 8.
In the case of maximal minors, where m —1l =1, some of the cases above

do not occur and also we have some additional contributions to Ext?. In that case
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we find

Sym,F ifa 7 7 B, two boxes in a column,
Sym,GY if B 7/ «, two boxes in a column,
N’ F®GY ifa /8,

FR N’GY ifg /.

Ext?(Ss, Sy) =

Remark 5.5. The computation of Ext*(Ss, S,) when m —1=1 appears already in [5,
Example 10.3], and the cubic relations between adjacent vertices in the last two lines
above are reflected in the commutativity relations on the quiverized Clifford algebra in
[5, Remark 7.6]. See Proposition A.10 for an explanation of their disappearance when
m—1>1. O

6 The Young Quiver with Pieri Relations

We continue to assume that K is a field of characteristic zero.

Now we give an explicit description of the non-commutative desingularization
as a path algebra of a certain quiver with relations. The vertices of the quiver are iden-
tified with partitions « € By, or alternatively with the corresponding vector bundles
N, =P*L*Q on Z, or again with the corresponding MCM R-modules N,. The arrows
from o to g will, in accordance with Example 5.1, correspond to (a basis of) F¥ if« /8,
and to (a basis of) G if 8 7 «. To define an explicit action of the arrows on the modules
or bundles, however, requires a bookkeeping device.

Fix a K-vector space V of dimension d. For irreducible (rational) representations
LYV and LPV of GL(V), we know that the tensor product L*V ® L#V has a canonical
decomposition into irreducibles B, (L” V)% with multiplicities czﬁ, but in general the
decomposition projectors are defined only up to some choices of bases for the vector
spaces Homgr,v)(L*V ® LAV, L” V). To avoid making these choices, we introduce the fol-

lowing notation.
Definition 6.1. Let «,..., o, and B4, ..., Bs be dominant weights for GL(V), and set

ngl...ﬁs :HOIDGL(V)(LMV® L Q L™V, L51V® e ® LﬁsV). O

oyt

The spaces ]Lgiﬁﬁﬁgi satisfy various easily verified properties. Denote by o*

the dominant weight corresponding to the dual representation (L*V)" =Homgyw)
(LV, K).
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Proposition 6.2. Let oy,...,q, B1,..., Bs be dominant weights and let o € S,. We have

canonical (basis-independent) isomorphisms

o BB BB
(1) ]Laimar = La,lf(l)---otg(r)l
(i) LEh = frfer.
(i) LEE =, L/ @ LY o
(iv) (LoE)Y =Ly O

The cases of (iv) we will use most often are the identifications
L)Y =L}* and (L}.,)" =L}
Here

s . |K ifa/pand
Ll[x = .
0 otherwise;

s | K if B /"« and
LA, =

0 otherwise.

In particular, these properties yield a “categorified Pieri rule” yielding a canonical
decomposition

ve L v=PLive w1,
B

and similarly
veLv=@Lrive w.,".
B

where the sum in each case is over all partitions 8. More generally, we have a “categori-

fied Littlewood-Richardson rule”

LVRLIV=P L'V L’
14
and the dimensions of the spaces }Lgﬂ are given by the usual Littlewood-Richardson
numbers cgﬂ. There is no canonical choice of bases for the spaces L;’jﬁ, but see Section 7.
Now we are ready to define the (truncated) Young quiver and its action on the
tilting bundle. Return to the notation set in Section 1, so that F¥ and G are K-vector

spaces of ranks m and n, respectively, and [ < min{m, n}.
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Definition 6.3. Let Y be the quiver having vertices labeled by dominant weights « for

GL(), and arrows @« —> 8 indexed by

LY ® FY ifa /g and
L., ®G ifg 7a.

Further let Y; ,,—; be the subquiver of Y obtained by deleting all vertices « having more

than [ rows or more than m — [ columns, as well as all the arrows incident to them. O

To define a ring homomorphism from the path algebra KI[Y;,,;] to the non-
commutative desingularization A=Endp_.A, we must define an action of the arrows
on the summands N, = p*L%Q.

Proposition 6.4. There is a ring homomorphism KI[Y; ;] — Endo_ (V). O

Proof. Asin the proof of Proposition 3.5, let ¢: ¢*(G ® S) —> ¢"*(F ® S) be the pullback
of the generic map of free S-modules to Z, and let (V, ) be a point of Z. The fiber of the
dual ¥ over (V, 0) factors as

FY —>V' — G
so we have induced maps of bundles
p/*T[*FV N p/*Q N p/*ﬂ*Gv
Tensoring with N, = p*L*Q and an appropriate L, we obtain natural maps

Lllgo, ® p/*n*F\/ ® p/*LaQ —_ Lllga ® p/*Q ® p/*LaQ N p/*LﬁQ’
(6.1)
Lf, @' G p*L'Q— 1L, ®p Q' ® pP'L'Q— p*LPQ
for all g such that o 8, respectively, 8 / «.
Thus, K[Y] acts on N and in fact K[Y; ,_;] acts since A/ contains only bundles N,
with o € By m-1. |

To identify the kernel of the homomorphism of Proposition 6.4, observe that if
y is obtained by adding two boxes to «, we have canonical decompositions into one-

dimensional spaces

]L)llloz = erlot @ ]L%/ll]a’ (6.2)
L= P L, ®Li, 6.3)

a/ By
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If the two boxes are added in the same row, respectively, column, then ]L[yma =0, respec-
tively, ]Lz’z]a =0, and the sum in (6.3) has only one summand. If, however, the two boxes
are in different rows and columns, each of (6.2) and (6.3) provides the two-dimensional
space L},, with a basis defined up to scalar multiples, but these bases are not the same,
even up to scalars.

Similarly, we have the canonical decompositions

]L(i(*l*y == LFIZ]*)/ ® HJ([XI 1]*)/, (6.4)
L%, = P Ly, ®LL,. (6.5)
a/ By

which again define two essentially different bases for L{.;.,.
If y is obtained by moving a box in « from row i to row j, then we have canonical

isomorphisms

L., =PLl, e L., (6.6)
B

Ly =EPLl, LY, 6.7)
B

As long as i # j, the space L., is again one-dimensional and acquires two different
basis elements from the sums (6.6) and (6.7), each of which has only one non-zero
summand.

Finally, for each partition « the dimension of the space L., is equal to the
number of addable boxes in «, or equivalently the number of ways to remove a box from
« and obtain a dominant weight. (We allow the removal of a “phantom” box below the

lowest row of «.) Again this space has a canonical decomposition into one-dimensional

spaces
LY., = EPLS, ® L, (6.8)
B
L%, =EPLs, e Ls,. (6.9)
B

We use these decompositions (6.2)—(6.9) of the universal coefficient spaces to
define the relations on Y; ;.

Definition 6.5. We impose relations I on the Young quiver Y generated by the following

subspaces of K[Y],.
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(i) For y obtained by adding two boxes to «,

Li, ® Sym,FY
ker| P LI, @ F'®L}, @ F' — @ =L}, ®F' QF"
w B 2
g ]L%/ll]a ® /\ FY

(ii) For y obtained by deleting two boxes from «,

Ly, ® SymyG
ker| @ L, ®GoLL, ®G— ® =L{., ®G®G
a/ B/ o 2
By Ly, ® A°G

(iii) For y obtained by moving a box in « from row i to row j #1,

Lle—e ® FY®LI®G
ker ® — L., ®F'®G

a+ej

]L}l/*oz-&-ej ® G ® ]Lla ® Fv

(iv) For each partition «,

PLy, oL, ®F

/P

ker ® — L., QF'®G
PLyeF oL, ®6
pra

In each case the indicated maps are defined by the canonical decompositions (6.2)—(6.9),
together with the natural surjections F¥ ® F¥ — Sym,F", F¥ @ FY —> /\ZFV, etc.
We apply these relations to the truncated Young quiver Y; ,,_; as well, keeping in

mind that any path traveling outside B; ,,—; is zero. O

Proposition 6.6. The relations listed in Definition 6.5 act trivially on A/, thus induce a

ring homomorphism K[Y; ,,—;]/(relations) — Ende (NV). O

Proof. This amounts to checking in each case that the composition of two arrows in
the quiver maps to the Hom-space by the obvious projection. For example, in case (i) the
composition of maps N, — Nz —> N,, where o / B /v, is given by the pullback of the

evaluation

Hom(Q®LQ, L"Q) ® Q@ Hom(Q® L*Q, LF Q) ® Q® L“Q — L7 Q.
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Shuffling the tensor products around and using the fixed splitting O ® Q =Sym,Q0 &

/\ZQ, we can rewrite this as
Hom((Sym,Q @& A\*Q) ® L“Q, L” Q) ® (Sym,Q & A\*Q) ® LYQ — L” Q,

so that the map is nothing but the natural projection. Similar manipulations take care
of the other cases. |

To show that the vector spaces of relations defined in Definition 6.5, after restric-

tion to Y; ,—;, have the dimensions predicted by (5.1), we must verify that the maps

P L oLl — Ly, ® LY. (6.10)
BEBIm-1
o ﬂ o o
P Ly, eLL, — L., oLy, (6.11)
BEBIm-1
L0 ® L @ MLl o L)) — Lig ™, (6.12)
P L,ell,e P Ly, LY, — L., (6.13)
a/B B/
BEBIm-1 BEBIm-1

obtained by restricting all «, 8, y,« — ¢; and « + ¢; to lie in the box B; ,,_;, remain surjec-
tive. Our proof of this fact relies on an explicit computation relating two bases for L{,.,,.
In order not to disrupt the flow of the argument, we postpone this computation to the
next section. See Corollary 7.16.

Lemma 6.7. Assume m —1[ > 1. The restricted maps (6.10)-(6.13) are surjective. The

spaces of relations between two vertices «, y € B; ,—; of Y; 1, are thus given by

Sym,FY ifa /"y, two boxes in a column,
N’FY ifa /7y, two boxes in a row,

Sym,FY & /\ZFv =ZFYQFY ifa 7y, two disconnected boxes,

FY®G ifa#y,anda 78,y /B, for some g with gy <m —1,
(F¥ ® G)®¢@~-D ifa=y,

Sym,G if y /7 «, two boxes in a column,

NG ify / / «, two boxes in a row,

Sym,G @ /\2G =E6QG if y / 7 «a, two disconnected boxes,
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where t(«) is the number of ways to add a box to ¢ without making any row longer
than m — L. O

Proof. The statements about (6.10)—(6.12) are clear, since if one of the intermediate par-
titions lies outside Bj,,—;, then so does y and the target of the map vanishes.
Fix o € B; ;. There is exactly one dominant weight p ¢ B; ,,—; such that p " «,

namely the result of deleting the phantom box below the lowest row of «. Thus, the sum

@ L?ﬁ ® Lﬂ*a

B/
BEBIm-1

has r(@) — 1 summands, where r(«) is the total number of ways to add a box to «.
There are two cases, depending on whether the first row of « has maximal length.
If ;1 <m —1, then there are no g8 ¢ B; ,—; with o 7 8, so that

@ Ll ® LY, — Ly

a/B
BEBIm-1

is an isomorphism, and (6.13) is surjective. In this case, we have t(«¢) =r(«), and the
kernel of (6.13) has dimension r(a) — 1 =t(a) — 1.

If on the other hand «; =m — 1, then there is exactly one partition o ¢ Bj ;-
with « /0. To show that (6.13) is onto, it suffices to see that the images of the one-
dimensional spaces LS., ® L{, and L{, ® L}., do not coincide in L{,.,. This follows
from Corollary 7.16; the matrix relating the two Pieri bases for L{,., has no non-
zero entries, so no element of one basis is a scalar multiple of an element of the
other basis. Now t(a) =r(x) — 1 in this case, so that the kernel of (6.13) has dimension
r@) — 1)+ (r@) — 1) — r(a) =r(a) — 2 = t(a) — 1. ]

Remark 6.8. In the case m —[ =1, Lemma 6.7 fails; there are cubic minimal relations
in the quiver [5, Remark 7.6]. See Proposition A.10 for another point of view on their

disappearance when m — [ > 1. O
Theorem 6.9. Assume m —1[l>1. The homomorphism KI[Y;,;]/(relations) — A=
Ende, (V) is an isomorphism. Thus, A is isomorphic to the bound path algebra of the
Young quiver Y; ,,; having vertices « € By ,—; and arrows « —> § indexed by bases for
FY ifa /B and
G ifg "«

with Pieri relations as indicated in Lemma 6.7. O
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Proof. The computation of EXt%l’z(Sﬁ,Sa) for simple A-modules S, and Sz in

Example 5.1 shows that A is a quotient of KI[Y;,_;] with relations generated by
(EXti(S’y, Su))ay. We also have a surjection K[Y;,,_l/(relations) — A. The induced
endomorphism KI[Y; ,,—;] — KI[Y;,—;] may not be the identity, but the map KI[Y; ;] —
A is GL(F) x GL(G)-equivariant, and there is a unique such map up to scaling arrows.
We may therefore rescale to assume that the induced endomorphism of K[Y; ,,—;] is the
identity.

Write I for the ideal of relations. Take graded pieces of degree 2 to obtain the

following commutative diagram of vector spaces.

0 > Ip > KIY;m-ilo — KIY;mlo/In — O
‘ | |
I
L

0 — (Ext5(S,. S)V)ay — K[Yimil2 > A > 0

Now, the dashed arrow is injective, whence an isomorphism since I has the same
dimension as (Extil(Sy, S«)Y)a,y by Example 5.1. It follows that K[Y; ;] — A is an iso-

morphism. u

7 Pieri Systems

To extract a really explicit description of the non-commutative desingularization A from
Theorem 6.9, as well as to finish the proof of Lemma 6.7 and thereby Theorem 6.9,
we must compute the non-diagonal surjections (F¥ ® FV)2? »FY® FY, (G®G)?> »G®
G, and (FY® G)® (GQ® FY) » FY ® G in Definition 6.5. Equivalently, we must choose
bases for the one-dimensional universal vector spaces appearing in the canonical

decompositions

14 YooY — ¥ B
Ligte ® Lo = L1 = @ Lis ® L,
/By

B
H"([)[2]*)/ ® H"([)(II]*)/ :]L(f*l*y = @ Lip®L yo
/By

PL oLl =L, =PLl, LL,.
B B

(7.1)

@L(fﬂ ® Lﬁ*a = ]L(f*lot = @L?*ﬂ ® ]Lllga’
B B

where in the first two equations y is obtained by adding two boxes to @ and in the third

equation « and y are related by moving a box from one row to another.
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There is no canonical way to make these choices, but there is a coherent set of
choices due to Olver [16, 18], see also [19, 21]. We do not give the details of the intricate
construction of Olver's maps, but instead we characterize the choices one can make and
show how they determine the scalars in the quiver.

It is more convenient below to work with IL};" rather than the canonically isomor-
phic space L{.,. This replacement gives isomorphic maps to those in Definition 6.5, so
makes no difference for the purpose of identifying the relations.

Throughout this section, K is a field of characteristic zero and V is a vector space
of dimension d. Let ¢; be the vector (0,...,0,1,0,...,0) with 1 at the ith position.

Pieri’s theorem tells us

o€’

V®L“V§@L“+fiV®LW
i

la
where L% .

system is a family of non-zero GL(V)-equivariant linear maps

is one-dimensional if « + ¢; is still a partition, and zero otherwise. A Pieri

Xei: LTV — VQLV.

These maps are unique up to non-zero scalars. One easily deduces that for i < j such

that o + ¢; and o + ¢; are partitions one has that
Homgr (LT TV, V@ VR LYV)
is two-dimensional with basis

Xai,j = (1 ® Xa,i) © Xater,js

Xaji = (1 ® Xa.j) © Xateii-

V ® Lot+€i V
y Xatej,j
VRVQRL'V Loteites
1@)% Xateji
174 ® Lut+€j 174

Let Xo-:i.j and x,,; be obtained by postcomposing x.;;, respectively, with the
symmetrization map V ® V — Sym?V and the anti-symmetrization map V® V —

A’V. By Pieri's theorem for symmetric and exterior powers, we also know that
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both Homgpw)(L*T4tiV, Sym?V ® L*V) and Homgpv)(L* TSt 7, /\2V ® L*V) are one-
dimensional. Furthermore, these spaces are clearly spanned by {Xo'f,i’j, X:,j,i} and
Xaij» Xa ji}s respectively. This means we can define scalars (well defined but not a priori

finite or non-zero at this stage)

+ —
v _ Xajii —_ Xaji
Vaij =" F » Yeij= =
a1, Kaij

We call (y; i) Vi j) the (symmetric, exterior) characteristic ratios of the Pieri system
(Xot,i)-
We say that two Pieri systems y, x' are equivalent (notation: y ~ x’) if there are

(cy)o € K*, with o running through the partitions, such that

; CaH—ei .
Xo(,i - c X(X,l'

o

Clearly, two equivalent Pieri systems have the same characteristic ratios.

The following summarizes what we know about Pieri systems.

Proposition 7.1. Let (x«..i)s; be a Pieri system with characteristic ratios (VJ@ Daijr

Vai, o, j-

(i) The characteristic ratios are finite and non-zero.

(ii) We have
V(: ij  u— 1
Vaij Ut 1’
where
1

(7.2)

u= — A .
(—og=1D—=—-a; =D

We have written uin this peculiar way to emphasize how it depends on the
added boxes (i, o; + 1), (J, o + 1).
(iii) Assume that « is a partition andi < j <karesuchthato +¢;, o +¢;, @ + €
are partitions. Then we have
+ + o+ ot +
Yoter,ijYo,ikVate, jk = Yo, jkVarej ikVa,ij>
(7.3)
YaterijVa,ikVa+ei, jk = Ve, jkYate j,ikyo:i I
(iv) Two Pieri systems with the same characteristic ratios are equivalent.
(v) We can fix either the symmetric or the exterior characteristic ratios of a

Pieri system arbitrarily provided they satisfy (7.3). |
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Remark 7.2. Olver constructs an explicit Pieri system, which we call the classical
system, from the combinatorics of Young tableaux. Part (i) of the theorem appears
in [18, Lemma 8.3] and in [16, Section 3], where it is stated for the inverse maps
Yateit VLYV —> LotV (see Definition 7.10). A detailed proof of the non-vanishing
of X;,i,j appears in [21, Lemma 1.6], and their proof is easily modified to apply as well
10 Xe.i.j-

Sam and Weyman also compute [21, Corollary 1.8] the scalar multipliers yji!j
for the classical system (though the expression in [21] for y~ should be preceded by
a minus sign), and Sam's “PieriMaps” package implements the calculation of x* in
Macaulay2 [20].

It follows from part (v) that we may set y* =1 or ¥y~ =1, but not both. Indeed,

the canonical (basis-free) isomorphisms

[2]a [11]e _ 7 lla _ lo+te; la late; la
La+ei+ej & La+si+€j - H“a+ei+ej - (La+€i+6j ® La+si) D (L01+Ei+€j ® La+sj)

define four one-dimensional subspaces of the two-dimensional space L;ﬂ_"gﬁej. Such a
configuration is essentially classified by a single invariant, the cross-ratio, which is
independent (up to sign) of all choices. This is the origin of the constant in part (ii) of
the theorem. In [18, Section 8], Olver shows how to renormalize the classical system so
that y* =1.

Note also that (7.3) is automatically satisfied if V;,[i, ; depends only on the added

boxes (i, o; + 1), (j, @; + 1). In other words, we may put
H=1— =—(1
Yaij= U Vi = 1+w

with u as in (7.2). These happen to be the characteristic ratios for the classical system.
See Lemma 7.7 and Remark 7.8. d

7.1 Schur-Weyl duality

For o a partition with |«|=n, let H, be the corresponding irreducible representation
of S,. Consider the contravariant functor D: Rep(S,) — Rep(GL(V)) which sends H to
Homg, (H, V®"). Let S be the full subcategory of Rep(S,) spanned by the H, such that «
has > d parts. Then D defines a duality between Rep(S,)/S and the full subcategory of

Rep(GL(V)) consisting of polynomial representations. We also have
D(Indg+’s, (Hy ® Hp)) =D(H;) ® D(Hyp)

for H,, H, representations of S,, S, respectively.
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We may take L*V =D(H,). For partitions A1, ..., A¥ «, put
\]Lzl"')\k =Homs, x..xs, (Hu ® -+ ® Hy, Resgz1 x...stkHa)’
where [A!| =¢;, |¢| = a. Then
]Lﬁl""\k = Homgyw)(D(Hy), D(H1) ® - - - @ D(H,;x))
= HomSa(Indg‘c’1 X,,,XS%(H,\I ® -+ ® Hyx), Hy)
= Homs, «.xs, (H ® - ® Hy, Resg o H,)
— \]Lzl...)hk‘

We will denote the so obtained canonical isomorphism ‘]Lgl'”’\k = }Lj}[l'"*k also by D. As in

Proposition 6.2, we have canonical isomorphisms:
PLI Ll — 1, ¢ e~ 1®¢)on.
A
Likewise we have canonical isomorphisms
P @ 'Ly — L, 6 @6 (1®61)0 0.
A

One easily checks that these decompositions are compatible, that is,
D((1 ® 61) 0 62) = (1 @ D(62)) o D(By).
In particular, we see that the canonical decomposition

L= @ LieLlie oLl (7.4)

Al A=

is the image under D of the corresponding canonical decomposition

H=L""= P LioLle &L . (7.5)

The right-hand side of (7.5) is precisely the decomposition into one-dimensional sub-
spaces of H, given by a Young basis. This observation is due to Jucys [13, 14] and is the
basis for the new approach to the representation theory of the symmetric group in [17,
Equation (1.2)].

Below we follow the setup of [17] but we formulate the results directly in terms
of the decomposition (7.4).
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7.2 The Pieri complex

The claims (iv) and (v) in Proposition 7.1 can be proved directly, but this is notation-
ally somewhat cumbersome. Therefore, we prefer to deduce them from some topological
considerations. This is based on the fact that a certain cubical complex is contractible.

We define the Pieri complex P as the cubical set whose non-degenerate h-cubes
are given by tuples («, i1, ..., i) such that 1 <i; <--- <i, <d and such that « is a parti-
tion with at most d parts with the property that for all 1 <u< h we have that « + ¢;, is

also a partition. Thus, the vertices of P are simply the partitions with at most d rows. We

say that (o, 71, ...,1;) is a face of («, i1, ..., 1p) if either o’ =« and {i}, ..., i},} C{i1, ..., in},
oro’ =a+¢; forsome je{l,...,uand (i}, ..., i} C{i1,..., fj, ..., 1n}. (The reader should
have no difficulty visualizing («, i1, ..., 1,) as an h-dimensional hypercube; see Figure 1

for inspiration.) The following is our basic result about P.

Proposition 7.3. The geometric realization |P| of PP is contractible. O

Proof. By construction, |P|is a CW complex. For s > 0, let P<; C P be the subcomplex of
faces that contain only vertices o with |a| < s. We first claim that |P¢,_| is a deformation
retract of [Pggl.

If « is a vertex in P, but not in P¢,_;, then it belongs to a unique maximal face
O=(«',11,..., i) in P<, and all other vertices of O lie in P¢,_;. Thus, two different such
maximal faces intersect each other in P¢;_;.

Therefore, it is sufficient to retract each such maximal face individually to its

intersection with |P<s_;|. The following picture shows this schematically for a 2-cube.

Hence, each |P| is contractible. So |P| is contractible as well (see, e.g., [1, Theorem
5.1.35]). [ |
7.3 Proof of Proposition 7.1

We start by constructing a particular Pieri system using the results of [17]. For simplic-

ity, we encode a chain of partitions

0 Aat Ja? S Jat=a
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by a standard tableau T of shape o« where o' is the shape of T¢; which is by definition
the subtableau of T containing only the letters 1,...,i. For a partition «, we denote by
diag(x) the set of standard tableaux of shape «. The symmetric group S, partially acts
on diag(e) by permuting the entries of the tableaux. If T € diag(«), then we write o = |T|.
We put

n—1

Lr=LY% ® ..®Lk4

so that (7.4) becomes

Ll = @ Lr.

Tediag(x)

Let T, be the tableau with 1, ..., o; in the first row, o; + 1, ..., a; + a3 in the second row,
and so on. We write T =wrT, for wr € S,. We put I(T) =1l(wr) (see [17, Remark 6.3]). If
T e diag(x), then a transposition s=(i,i + 1) is admissible with respect to T if i and
i 4+ 1 are neither in the same row nor in the same column. We say that an admissible
transposition is strongly admissible if it increases [(T). This happens if and only if it
moves the i + 1 box upward.

Following [17], we fix a non-zero vector vy, in Ly, for every partition «. For

T € diag(w), we define vr € Ly as the projection of wrvy, € LL! on L.

Proposition 7.4 (see [17, Proposition 5, Equation (7.3), and (7.4)]). Let T € diag(«) and let
s=(i,1+ 1) be a transposition. Then the following hold.

(i) Ifiandi+4 1 arein the same row in T, then
Sur = vr.
(i) Ifi and i+ 1 arein the same column in T, then
Svr = —vr.
(iii) If sis strongly admissible with respect to T and T’ =sT, then
Svr = v + Uy,
(7.6)
svp = —uwwp + (1 — uz)vT
with

1
R gy p—

with k, [ being the rows of i and i + 1, respectively. O
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Note that the case where s is admissible but not strongly admissible follows by
exchanging T and T'.

The following lemma is a slight extension of [17, Equation (7.2)].

Lemma 7.5. (i) Let w € S, and T € diag(w). Then

wur = E YRVR

Rediag(a), I(R)<U(T)+l(w)

for some yg € Q.

(ii) Assume in addition that w is a product of strongly admissible transposi-

tions. Then

WV = Vyr + Z YRUR
Rediag(a), I((R)<l(wT)

for some yg € Q. 0

Proof. Assertion (i) follows easily from Proposition 7.4 by writing w as a composition
of transpositions.

For the second statement, write w = sw’ where s is a strongly admissible trans-
position and w’ is a product of strongly admissible transpositions. By induction, we
have

/ ’
WU = VyT + Z YrRUR
Rediag(a), I(R)<Il(w'T)

so that we obtain
WU = Svyr + Z YR SUR

Rediag(a), I(R)<l(w'T)

= UyT + Wy + Z ylla’sz’
Rediag(e), I(R)<l(w'T)

= UyT + Z YRVUR,
Rediag(a), l(R)<l(wT)

where in the second line we have used (7.6) and in the third line we have invoked the

first part of the lemma. |

Assume now that T € diag(c) and that 8 =« + ¢; is a partition. Let 7" be obtained
from T by adjoining a box labeled n+ 1 at the end of row i. Thus, T’ € diag(g8).
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We now have vy € Ly, v € L. Since Ly =Ly ® L;*, we may choose x{; € IL}g"‘ such
that vr ® x7; and v correspond to each other. The following key result makes everything

work.

Lemma 7.6. The map x; is independent of the choice of T € diag(x). |

Proof. If is sufficient to prove that for any T we have x7; = xr. ;. Consider wr € S, as an
element of S,;;. Let T, be obtained from T, by adjoining a box labeled n+ 1 at the end
of row i. If we write wr € S, as a product of strongly admissible transpositions, then
it remains a product of strongly admissible transpositions with respect to T,, when
considered as an element of S, ;. Furthermore, we have vy = wrvr,.

Leti: Ly — L1, p: L1 — Ly be, respectively, the injection and the projec-
tion and let cs g: Ls —> Lg be the linear morphism which sends vs to vg. We have the

following diagram.

Lz, ® L} Ly

i®l /

1.1 la 1.1
L, (X)]L/3 ‘—HLﬂ

Cr, T®1 wT®1l le Cry

1---1 la 1.1
Ly ®@Lg" —— Ly

N2 pR1 X‘ N

Lr ® Ly Ly

The commutativity of the leftmost trapezoid is by definition. The commutativity of
the middle square is clear. The commutativity of the rightmost trapezoid follows from
Lemma 7.5(ii). The commutativity of the upper and lower trapezoid is again by construc-
tion. From this, it is easy to see that the outer square is commutative which proves the
lemma. ]

We now write x; = xr,; for T € diag(a) chosen arbitrarily. Thus, (x; ;). is a par-
ticular Pieri system.

Lemma 7.7. The symmetric and exterior characteristic ratios of (xJ ;)i are, respec-

tively, given by

Vaij=1-u
(7.7)
Veij=—1-u

with uas in (7.6). O
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Proof. Assume that o, a + €;, o + ¢ are partitions and i < j. We have the decomposition

la+e€; la late; la ~ 71 lla
La+€i+ej QL ©® La+ei+ej QL =L

a+te; a+e; a+teite;”

To determine the characteristic ratios, we have to compose this with the canonical maps

Ll L[z]oz

a+€i+€j at€i+€;°
1la [11]«
La+ei+q - ]LaJreiJrej'

After left-multiplying everything with an arbitrary Ly, T € diag(e), we may then use
Equations (7.6) to compute the characteristic ratios, taking into account that s acts by
+1 after projecting to the symmetric, respectively, exterior square. It is easy to see that
we obtain indeed (7.7). |

Proof of Proposition 7.1.

(i) It is sufficient to prove this for (x;;).:; where it follows directly from
Lemma 7.7.

(ii) One easily checks that the ratio y*/y~ is the same for every Pieri system.
Again the conclusion follows from Lemma 7.7.

(iii) This follows by writing down the six possible maps LV — VQVQV ®
LV that can arise as compositions of maps in the Pieri system and apply-
ing the symmetrization V ® V ® V — Sym®V and anti-symmetrization V ®
V®V— A’V to them.

(iv) Assume that ( X;’i)a,i, ( X(ii)a,i are Pieri systems with the same characteristic
ratios. Put pai = x2;/xa ;- Then

Mate,j* Ma,i -1 (7.8)
Ma,j * Matej,i
We have to find ¢, € K* such that
Cute;
Ui = —=< (7.9)
Co

The condition (7.8) implies that u represents a cocycle in the cochain com-
plex C*(P, K*). Since P is contractible by Proposition 7.3, u must be a

coboundary. This amounts precisely to 4 being writable in the form (7.9).
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(v) We will only discuss the symmetric characteristic ratios. The exterior char-

acteristic ratios are entirely similar. Assume we want to construct a Pieri

system (xu.i)ei With prescribed y,; ; satisfying (7.3). Put 8u.ij=v." ;/Vai -

Then § satisfies the equation

Satei, jkba,ikSaterij ]

Su, jkOa+e;.ikOa.if
We put xui = Ua,iXs ;- It follows that u,; must satisfy

Ha+tei,j - Mai
=08a,i,j-
Ha,j * Hatej,i

(7.10)

(7.11)

The condition (7.10) implies that § represents a cocycle in the cochain

complex C*(P, K*). Since P is contractible by Proposition 7.3, § must

be a coboundary. This amounts precisely to § being writable in the

form (7.11).

Remark 7.8. If we combine Proposition 7.1(iv), Remark 7.2, and Lemma 7.7, we see that

the classical Pieri system constructed by Olver is equivalent to (x,;)«:- Recall that the

construction of (x; ;)a.i depends on the choice of a basis element in L1, for each partition.

Since we do not need it we have not verified which basis element one should take to

obtain equality rather than equivalence.

O

Remark 7.9. We extend the definitions of Vfi, ; to include the possibilities i=j or

a; =a; by

Vaii=1 and y.;; =0,
while

J/in,j =0 and Va_,i,j =1
if g =aj.

We also require basis vectors for the one-dimensional spaces L.

Definition 7.10. A compatible pair of Pieri systems consists of two families of non-zero

equivariant maps

Xai: LTV — VR LV,

Yui: VLYYV — LV
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such that for each « the composition

Xoi Pate;.i

Ltey 25 7 LYV —5 Loty (7.12)
is the identity on L* € V. O

One can of course make other choices of normalization for the compatibility
condition in Definition 7.10. One natural choice is to require that (7.12) is given by mul-
tiplication by the scalar dimg L*V. This complicates the formulas below only slightly.

The relations among the maps in a dual Pieri system are completely determined
by the compatibility condition (7.12) and the relations in Proposition 7.1. Let o be a

partition and i < j such that « + ¢; and « + ¢; are both partitions, so we have the picture

below.
174 ® LotJrGi 174
1®¢V \%Jrsfrsj,j
VeV®LYV Loteites
1®¢m %Jrej,i
174 ® La+EjV
Set

Pai.j = Patetei © (1 @ Qe j)s

Pa,ji = Potei+ej,j © 1® ‘Pa+ei,i)~

Let ¢, ; GL‘[XZJ]F;#E" and ¢, ; ; eLﬁﬁ;ﬂj be obtained by symmetrizing, respectively, anti-

symmetrizing the input, and define characteristic ratios
+
Pa,ji

+
Pai,j

6— _ (p‘x»jai
’ a,l,j .

Paij

8+

o]

Proposition 7.11. Let (x..;) and (¢, ;) be a compatible pair of Pieri systems and let (y;fi_j),

(V.. ;) be the characteristic ratios for (xo,). Then

(i) The characteristic ratios 67, ; are finite and non-zero.
(ii) We have
+ - - .+
80 = "Vaij and 8aisj = "Vaij-

In particular,
8aij Vaij U+l

—_ - + 9
8aij VYaij U1

where uis as in (7.2). 0
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Proposition 7.11 follows immediately from the next lemma, which will also be

used in results below. Observe that
Do i j Xt i = Pareite; il @ Puve; ) (L ® Xa,j) Xate;i
=1

asamap L9V — VQV® LYV — LYt . We wish to compute <pji,jxofj,i, which
amounts to understanding the effect of inserting the projectors V® V — Sym,V —
VVandVV— A’V—TVQ®V.

Note on the other hand that ¢4 j;xe, i =0. Indeed,

P, i Xat, joi = Pateite;, j(1 @ Pate,i) (1 & Xa,j) Xate;,i
and the middle two maps (1 ® @at;,1)(1 ® Xo j) COmMprise
1 ® Quieifaj: VOLTIV—VQVL'V— VL™V,
but there are no non-zero maps L*T4V —s L*T4 T,

Lemma 7.12. We have

+ o+ —v"
Pa,i,jXa,ji = - — oyt =@ jiXai,j (7.13)
_ _ 12 _
Yuilaji = 5= 7 = Qo jiXaij (7.14)
where y* =y ;. O

Proof. Suppress « from the notation, writing simply ¢;;, etc. Applying
Hom(L%t4t4V, —) to the composition LéT4TSV — V@V LYV — LTSSV, we

see that computing ¢

i xj; is the same as finding the image of xj; € L}}% . under the

Ji a+eitej
sequence of maps

Lllo{ (1®<ﬂa+sj,j)o_ Ll!a—i—ej Patej+ej i ]La+€i+€j
a+€i+e€j ’ ateite; ’ ateite;”

We know that xj; — 1 and that y;; — 0, so we have only to rewrite the basis {th., Xit in
terms of the basis {x;;, x;;}. We have
1 1
. T -_ _— ,t oy
Xij = Xij + Xij = )/+in + V,in’

Xji = Xj; + Xji-
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Inverting the 2 x 2 matrix [/7" /77 ] gives

X+_Y*_V‘(X.. 1X_.)
i — iy T _AJi )
Ji y— — J Y- J

v (o
in_J/_—J/+ Xij V+X]l .

(7.15)

Composing with ¢;; gives the first equality in each of (7.13) and (7.14). A similar argu-
ment establishes the other; alternatively, note that interchanging i and j just amounts
to replacing y* by 1/y%. [ |

Given a pair of partitions «, y such that o 4+ ¢; =y + ¢; we obtain two composi-

tions of Pieri maps

oy, VLV
— on
A B.J
VVL'V
T®1 LAV (7.16)
VeVRL'V i
T e Ly

where 7: VQ V— V' ® V denotes the swap, f=a+¢;j=y +¢ and A=a —¢ =y —¢j.
The diagram (7.16) is not commutative; there are non-trivial quadratic relations on the
Young quiver relating the two paths.
There are two cases to consider, according to whether o« =y.
Assume first that « #y. Then L;” is one-dimensional, so we may define another
scalar
(1® ¢, )T ® 1) x1.i)

My i j = (7.17)
Xy.i®B,j

equal to the ratio of the two paths around the diagram above.

In the other case o =y, the space L}“ is no longer one-dimensional, rather, has
dimension equal to the number of ways to add a box to « to obtain a partition. This is
equal to the number of ways to remove a box from « leaving a dominant weight. Denote
this number r(«), let A, be the set of indices i such that o + ¢; is a partition, and let V,

be the set of indices j such that o — ¢; is a dominant weight.
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The canonical decompositions
la __ la a+e;
Lla - @ ]Lonrei ® Lla
€A,

_ 1o 1la—e;
- @ Llloz—sj ® IL‘loz

J€Va

equip the r(x)-dimensional space L{¢ with two bases, (Xui¢ute,i)ica, and ((1 ® @q ;)
(T ® (1 ® Xa—e;.j)) jev,- We adopt the convention that the former, corresponding to
adding, and then removing boxes, is the “natural” basis. Then for each j € V,, there are

uniquely defined scalars ¢, ; j such that

1P )T ®DA® Xames)) = D, Caj Xt iParter.i- (7.18)

€A,

To compute the scalars m, ; j and ¢, ; j, we need the following lemma.

Lemma 7.13. We have

v +r?t
P, i (T ® 1) Xij = y——
—2
$ai, (T ® 1) Xaij= Iy
where as before y* =y, ;. O

Proof. As in the proof of Lemma 7.12, we abbreviate x,;; as x;; and so on. Also as in

that proof, write X§ in terms of x;; and yj;:

1 _
ﬁ()’ Xij = Xji)»

+
Xij = -

Xij = (—v " xij + x0)-

yo—v*
Since t acts as +1 on Sym,V and —1 on A*V, we have

(Tt ® Dxij = xij — Xij
— 1 - + 2
—m((y + ¥ Xij — 2Xji)s

and the desired formulas follow since ¢j;x;; =1 and ¢;jx;; = 0. ]
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Proposition 7.14. Let o,y be partitions such that « +¢; =y +¢; for some i# j. Set
B=a+e;j=y+eandri=a —¢ =y —¢; as in (7.16). Then

-2
Meyij=——"5 - O
Vaij = )/;,ri,j
Proof. Apply Hom(L#V, —) to the diagram (7.16) to obtain the pentagon below.
]L}f‘
(1®x2.i)o—
L < \%_
B
f®1l L (7.19)
112
Ly /
1@y j)o— 1y
Ly

At the top of (7.19), we have the basis element y, ; € ]L};“. Following this vector down the
right-hand side of the diagram, we find at the bottom

1
Xy i®PB.j Xej = Xy.i € ]Lﬂ’”.
On the other hand, yx, ; maps leftward to

(1 ® X0.i) Xaj = Xoirj € LgH.

By the definition of m, ; j, we have
(1 ® @y, )T Q@ )Xai,j =MaijXyi € L,lgy~
Then composing with ¢g; gives

Oi T D )i j=0pi(1 @@y )T @ 1)x0
=Mygy i jPB,iXy.i

=My, j-

Now Lemma 7.13 finishes the proof. |

GT0Z ‘82 AInc uo Ariqi AisiBAIUN asndelAS e /BIo'sfeulnolpioixo uiwi//:dny woly papeojumoq


http://imrn.oxfordjournals.org/

Non-commutative Desingularizations II 45

Proposition 7.15. Let i, j be such that o +¢; is a partition and o —¢; is a dominant

weight. Then
+ —
Yo—ejij ¥ Vaejinj

Ca,i,j = —F = O
Va—e;,i,j yot—e,',i,j

Proof. Fixke A,, and pre-compose Equation (7.18) with yx, x while post-composing with

@o+e.k- On the right-hand side, the result is

Z CijPater,kXa,iPa+tei,iXa k-

€A,y

For i #k, note that @yt kXai: LTV — V@ L*V —> L%*% is the zero map. Hence, the
entirety of the right-hand side is

CrjPa+er.kXa,kPa+e,kXa,k = Ckj-
On the other side, we obtain

Gotre k(1 ® (pa,j)(f DA ® Xafej,j)Xa,k = ‘Potfej,k,j(f ® l)Xafej,j,k

- +
_ Va—ej-.,j,k + ya—ej,j,k

yl;—éj,j,k - yoj—ej,j,k
by Lemma 7.13. To get the result in terms of Vai_e]-,k, j» replace each y appearing by its
reciprocal. |

Corollary 7.16. For any Pieri system, any «, and any i, j, we have ¢, ; j #0. d

Proof. If ¥y ¢;ij=—VYa—c;ij thenl —u=1+u, so that u=0, which is impossible by the
definition of w. u

This finishes the proof of Lemma 6.7 and therefore Theorem 6.9.
Remark 7.17. If the given Pieri system (x,;) is equivalent to the classical system, so
that y,,; ;=1—wuand y,; ;= —(1 + w) with

1
(—ai—D—(-a;—1)’

then the other scalars can also be written in terms of w:

a,i,j

Mg j=1;
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and
u

. O
u+1

Ca,i,j =

We finish the section by making explicit the relations on the Young quiver
(Definition 6.5).

Theorem 7.18. Let (x..;), (¢..;) be a choice of a compatible pair of Pieri systems, and let
yjiqj, Sji_j be the characteristic ratios for (x«.i), (¢«.i), respectively. Let «, y € B; y,—;. The
relations on the truncated Young quiver between the vertices labeled « and y are the

kernels of the following linear maps.

(i) If y is obtained by adding two boxes to « in rows i< j, the map
(F¥ ® FV)®2 — FV ® FV defined by

(M ® Az, Ay @ Ap) > dy @ da + 510 j + Vari )21 © My + (Vi j = Vi )32 © M-

(ii) If y is obtained by removing two boxes from « in rows i< j, the map
(G ® G)®? — G ® G defined by

(G1®92.91®9) > G ®Ge + 51005 ;0. )91 ® Go + (555 — 8,5, )95 ® 1]
=01®92 — %[(Vofi,j T Vi )9 ® Go + Vot j = Vai VG2 © G1.

(iii) If y is obtained by moving a box in « from row i to row j>i, the map
(F¥ ® G)®? — F ® G defined by

A®GN®I)—>A@g+my;jd @9

_ 2 ’ /
=AQ9g+ +—_)L ®g.
Yaij = Vaij

(iv)] If y =a, the map (F' ® G)®¢@+r@-1 _ (FV @ G)®"@) defined by

(A ® Giieay,, A ® g jev)) > | 2 ® gi + Z Cui jH; ® G

5 !
Jeve ieA,

+ —
Yo—eiij T Ya—ei ]
sl ] o—€j,l, ]
=|lneg+ )y ——=);®4] ;
iev: Ya—epij = Ya—ejij
Jjevy, Ta—¢€l] a—€j,l,J A

@

where A, is the set of indices i such that « + ¢; € B; ,—;, V,, is similarly the

set of indices j with o — ¢; € B ;5_;, t(@) is the number of ways to add a box
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to « without making any row longer than m — [, and r(«) is the total number
of ways to add a box to «. O

8 Example: Grass(2, 4)

Let us compute the quiver and some of the relations for the first non-trivial exam-
ple, (m,n, 1) = (4,4, 2). As a matter of notational convenience, we denote the vertices
N, = p*L*Q of the quiver by the corresponding Young diagrams. We live inside the box
B; 5, and therefore have the quiver below.

L AN
v FY
/FG/ o
v vd ~N [ v
P -
- N Fan — ]
’\ FY FV /
G N\ ¢

In this picture, each arrow FY: @ — « + ¢; represents L% @ FY, while each G: o +

la

€; —> « represents L. ® G. The action of the linear maps on the bundles N, is via

ate;
the natural maps (6.1).

Even more explicitly, if we fix bases {11, ..., A4} and {g1,..., g4} for F¥ and G,
then each such arrow stands for four arrows labeled by @4, ; ® Ak, respectively, x,; ® gk,
where (xq.;) and (¢, ;) is a chosen pair of compatible Pieri systems.

Let us write down a particular compatible pair of Pieri systems. In fact, it is
just as easy to write down a pair of Pieri systems for all partitions o = (p, @) with at
most two rows. The corresponding Schur functor LP?V is a quotient of (A*V)® ®
Sym, ,V, modulo certain exchange-type relations. For example, in the case of H.

we have

UANVQUWF+HVAWR Ut wAUR V=0.

We denote a general element of LP9V by
q
[ A v ®x
k=1

where x=x; --- X, g € Sym,, V. Further denote by x; the product x; - -- % - - - xp_q With x;
deleted.
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Define x(pq.1: LP"19V — V ® LPPV by

p—q+1 q
]_[(ukAvk)®Xr—> Yoxe]Jurwex
k=1 i=1 k=1
+—22 uj®Xi/\Uj®l—[(uk/\Uk)®)_(i
L Kt ]

+0;@ui Ax @[ [(wAv) @ x

ktj
and xpq2: LPIVV — V @ LPDV by
atl q+1
l_[(uk/\vk)®Xl—>Z ut®l_[(uk/\vk)®vl vi®n(uk/\vk)®w)_(
= ki ket

We also define the dual Pieri maps ¢(p1.91: V® LPPV — LPH1.9 by

q
(p—q+2)
W | |(the o) @ X1 (U A vg) ® wx
zg (p+2)(p— q+1)l_[
and ¢pg+1)2: V® LPOY — [(Pa+DY by
1

q
w®}g(uk/\vk)®?_f QDo qH)Zwal@][[(mAvk)@x

It is a soothing combinatorial exercise to prove that each of these maps is well
defined and that ¢, )+ is a left inverse for x, ;.

We point out that these are essentially the classical Pieri systems of Olver, as we
shall confirm below (at least up to equivalence) by computing the characteristic ratios.

For the six partitions of interest, the formulas simplify:
x61:0—V®Y, u—~u®l,
01 M— VR0 w—u®v+veu,
x2:H—Veo usveu®uv-veu

XBI:EP—>V®E], UAVQUWH WRUAV+ FURWAV+ VR UA W),

xoz2: HP— Vem, urv®@we u®vw —v® uw,
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XEP,Z:HE(_)V@EP’ IAURUVAW S IRUAWRU—URVAWRLE
+rQRIANUQW —-—wWRTAUR UV,
01t Veyv—0 u®leuy,
oo VeO—[, u®uv ju,
‘”H,z:V@D—’H’ UR V> JUA Y,
WEPJ:VQQB_)EP’ u®v/\wr—>§v/\w®u,
‘pEP.,z:V@ED_)EP’ U Vw > $(UAV® W+ UA W ® V),
@,Z:V®B]—>EH URUVAWRLEH FUATR VA W.

Let us verify the relations across the central diamond.

Vem
1®x 1 %].2
VeVeDo H
1®X.2 A/B.l
V®oH
One computes the characteristic ratios
y+ _ Xg]_’qu _§ and )/_ _ Xﬁ,z,l __l
01,2~ + - 012~ - - :
X012 2 X012 2

Observe that

y[*]’m:l—u and y5,,=-1-u

where
1 —1 1

u= = =
1-p-D-@2-q-1) p-q+l 2

3

are the characteristic ratios of Olver's classical Pieri system, cf. Lemma 7.7 and
Remark 7.8. One checks laboriously that the same holds true for all the (x(p,q).;) defined

above. In particular, we verify

V[Jrl,l,z 3/2 u—1

TC127 T u+n

Y12
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The relation in the reverse direction across the central diamond is also easy to

compute.
Ve
1®<0[|V \W‘Bj.z
Ve Voo H
1®¢Hz\‘ /B]Al
VoH
One finds .
851 2= ‘/’51,2,1 = =
T e, 2
and B
= = Y020 3
1,2 —  — -
YO1,2 2

in accordance with Proposition 7.11.
We can also compute the relation corresponding to moving a box downward in
[ to obtain H, finding

(1®¢B’2)(T®1)(1®XD,1) 1/2

=l == 172

Of course, this matches Proposition 7.14 and Remark 7.17:

mma2 =

-2 -2

= =1.
—1/2—3/2

M2 = —— oy
YOi2 ~ YO

Finally, in order to compute the relation at a single vertex, say « =0, we write
all of the 2-cycles leaving « via L}éa_ej ® G (removing a box) in terms of the basis of L1*

given by those cycles leaving via L‘i‘fi (adding a box). We have A, ={1, 2} and

T [mn|
V®o

E

H

X019 URUe tw LU v+veu),

. 1 1
XELz‘PHz- UR UV SUANVF (U VUV — VR U).
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In the other direction, we have

1®ermDEOA®xs1): URUVHURUVRLIHIRURLI—H VR U

Thus,

1) (T @D ® xg,1) = (xO19rm31) — (XO2 © fﬂHz)

and

C11= 1 while C21= —1.

This is a somewhat trivial example, coming down to 7, ; =1, ¥, ,=0, ;, , =0, and
Yoz =1

The action of the quiver on the bundles A, is defined in terms of the adjoints
in: VY ® L*T4%V — L*V of the Pieri maps y,;: LtV — V ® L*V defined above. We
denote the trace pairing Tr: V¥ @ V— K by A ® v —~ A(v).

XV eo—0, r®u— AW,

BtV em—0O AQw Awu +A)u
# . Vv

xhat V QH—DO, rQuAve A(wv—Ar(V)u,

xélz VWeoH —H r@uAav®@we Aw)uAv

+ 1w A v+ A UA W),
K VVOH—m AQuAv@wi A(wvw — A(v)uw,
Xéjszv(X)HH—)EP, AQIAURUAWR ABDVAWRU—AWVAWRLE

+rIWtAUR W — A(W)tAUR V.

The characteristic ratios of these adjoint maps are equal to those of the
originals.

Now the relations on the quiver are clear. For instance, between ¢ and (11 we have
A?FY =0, that is,

(1 ® A (e @ A1) — (e @ A) (e ® Aw) =0

forall k,1=1,...,4, or more compactly AgA; = AjAg.
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Across the central diamond, we have relations defined by the kernel of

r @ hs, Mt ® M) = Ar @ hs + 51153 i+ Vi P2 @ hut (Vi j = Vi Ju ® Ad]
=k @A+ 2E - DA @A+ G+ DA ® A
— Ar S 2\3 2 t u 2 2 u t
=0 ®hs+ 3Ae ® hu+ Ay ® Ag.

This kernel is of course isomorphic to F¥Y ® FV. Similarly, from EP to O we have relations
defined by the kernel of

(G ®Is: Gt ® G > Gr ® Gs — 39t ® Gu— Gu ® G-

Since mj;2 =1 (see Remark 7.17), the vertical relation across the central dia-
mond is just the commutativity relation.

Finally, at the vertex 0 we have relations defined by the kernel of

()\a®gba)¥c®gds)¥e®gf)'_>Om@gb+)\e®gf7)¥c®gd_)\e®gfv)\a®gb+3)\c®gd)~
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Appendix. The Quiverized Clifford Algebra

We offer here an alternative approach to the proof of Theorem B, which is conceptually
closer to the spirit of [5], but is a bit too cumbersome for explicit examples due to the

multiple identifications involved.
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Quiverization

Let I" be a linearly reductive algebraic group over an arbitrary field K and let I" be the set
of characters of I'. If « € I', then we denote its corresponding irreducible representation
by S®. The character belonging to the dual representation (S%)¥ =Hom(S*%, K) will be
denoted by o*. Write ¢ for the character of the trivial representation.

Let mod(I") be the category of rational representations of I, and let mod°(I") be

the category of collections of vector spaces V =(V,),~- We have functors

Q°: mod(I') — mod°(I'), Vi~ (Homp(S%, V))

ael™

R°: mod°(I') — mod(I"), Vi @ Vs ® SP.
ﬂef

The following lemma just expresses the fact that mod(/") is a semisimple
category.

Lemma A.1. The functors Q° and R° define inverse equivalences of categories. d

Unfortunately, it is not immediately obvious what Q° does to the monoidal struc-
ture on mod(I"). Therefore, we introduce another monoidal category mod!(I") which
consists of collections of vector spaces V= (Vg), 5. with tensor product defined as in

matrix multiplication:
— o B
VoW =@ ew.
el

Furthermore, mod'(I") acts on mod°(I") by

Ve W=V e w.
el

Lemma A.2. There is a fully faithful monoidal functor
Q: mod(I") — mod'(I"), Vr (Hom(S*,S* ® V)5,

which is also compatible with the left actions of mod(I") on itself and of mod'(I") on
mod°(I'). O

Proof. That Q is fully faithful follows from the fact that it has a left inverse

. 1 9 B
R: mod (I') — mod(I), Vi @V,S@S .
ﬂef‘

That Q is compatible with tensor product is a straightforward verification. |
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From this, we easily obtain the following.

Lemma A.3. If C is an algebra object in mod(I"), then Q(C) is an algebra object in
mod!(I"), and if C is given by generators and relations as a quotient of a tensor algebra,

say, C = TV/I for I'-representations V and I, then
a(c)=Taw))/au)).

Furthermore, Q° defines an equivalence between the category mod,(C) of left
I'-equivariant C-modules and the category mod’(Q(C)) of left Q(C)-modules in
mod’(I'). O

Here we understand T(Q(V)) to be the tensor algebra defined in terms of the
natural monoidal structure on mod!(I").

If D is a subset of I', then we denote by modp(C) the I'-equivariant C-modules
whose characters lie in D. Also write

Qp(C)=Q(C)/(ex)agp
for the quotient of Q(C) by the idempotents e, corresponding to characters « not in D.

Lemma A.4. Let C be an algebra object in mod(I"). The equivalence Q°: mod (C) —

mod°(Q(C)) restricts to an equivalence between modp(C) and mod(Qp(C)). O

We define the indicator spaces L in this more general setting analogously to
Definition 6.1.

Definition A.5. Letay,...,an B € I", and set
Ly =Hom (S, S ® --- ® §™). a
Obvious analogs of the properties in Proposition 6.2 hold in this setting.

Proposition A.6. Let V = (V,), and W= (W,), € mod°(I"). Then

B
QR (V) =0 (EB Vo ® S“) =Pv.eL’
o 1% o

and
QV® W)’ﬁ = @ Vo, ® Wa, ® ]Laylazﬂ.

oy,02
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The canonical isomorphism Q(V ® W)= Q(V) ® Q(W) is given by

D Ve ® W, @ Ly = Q(V @ W)}

1,02

=@ awmy; ® aw),
)

12

a1 B a
D V.ol ew, oLy

3,a1,02

combined with the isomorphism
oo ~ o ﬂ
Ly = @ Lyza ® Ly’
8
from Proposition 6.2(iii).

The Clifford algebra

We want to use the quiverization recipe above applied to the general linear group, so
from now on we assume that K is a field of characteristic zero.
We fix an arbitrary (m —I)-dimensional vector space U and set F=FQ®U",

G =G ® U". There is a natural pairing

which is just the inclusion F¥ ® G — S combined with the canonical pairing U ®
UY — K. We extend this pairing to a symmetric bilinear form on (FY® G) x (F¥ @ G)
and thence to a quadratic form b: F¥ & G — S.

We let C be the associated Clifford algebra of b over S. For a concrete descrip-
tion, choose ordered bases {A1,...,An}, {91,...,9n}, and {u, ..., Uy} for FY, G, and U,
respectively, and let {¢], ..., 4, ;} denote the dual basis for U". Then C is the S-algebra
generated by {}; ® u.}; . and {g; ® u;};» subject to the relations

Mi®U) M@ Up) + (A @ Up)(Ai ® Ug) =0=(h; ® Ug)* fori, j=1,...,m;
GOUGI®U) +(9;®U)(G®U)=0=(g®u)* fori,j=1,...,n and
(hi ® Ue)(g; @ U) + (9j ® W) (A ® Ug) =8apXij fori=1,...,m,j=1,....n

foralla,b=1,..., m —1.
Recall that B; ., ; denotes the set of partitions having at most [ rows and at most

m — [ columns, which we now think of as representing characters for GL(U) = GL(m — )
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via the identification « <> L* U (note the transpose!), where LY is the Schur functor for

the weight o'.
Definition A.7. The quiverized Clifford algebra is

Q3,,,,(C) = Q(C)/(€x)agBymi>

where e, denotes the idempotent corresponding to «. O

To show that the quiverized Clifford algebra is isomorphic to the non-

commutative desingularization, we define a left action on the tilting bundle

N=®,p. P LQ.

Proposition A.8. There is a ring homomorphism ®: Qg ,(C) — A=Endp, N). O

Proof. Pulling back the tautological quotient map n*F¥ — Q from G to Z and tensor-

ing with U, we obtain a map
oV " (FRS)' U —pP'QoaU.

Similarly, the fact that Z=Spec (Sym,_(Q® G)) yields a tautological map p*Q®
q" (G ® S) — Oz which we transform into a map

v " (G®S)QUY — p Qe UY.

Now FY maps to the global sections of ¢*(F ® S)¥ ® U and similarly G maps to the
global sections of ¢*(G ® S) ® U". Thus, F¥ acts via the map @? on No.(P*Q®U) by
left exterior multiplication, and G acts via the map ¥ U by contraction. It is easy to see
that these two actions satisfy the Clifford relations.

Thus, C acts on /\,_(p*Q® U) and hence Q(C) acts on Q°(/\,_(P*Q® U)). By
the Cauchy formula, we have

No.(P"QeU)= P LQ8LU= P N LT,

Q€B;m-1 €B;m-1

and hence

Q" (No, (P'QeUN= P Na=N.

o€B; ;m—1

Thus, Q(C) acts on A and in fact Qgp,,, ,(C) acts since /\oz (p*Q ® U) contains only rep-
resentations L*Q with weight in B; ,_;. [ |
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To prove that @ is an isomorphism, we must understand Qgp,,, ,(C) more con-
cretely. The presentation of C over S yields a presentation of Q(C) by Lemma A.3, and

hence of Qgp,,, ,(C). The generators are easily identified.

Proposition A.9. The quiver for Q(C) has vertices indexed by the transposes «’ of par-
titions corresponding to representations L“U, and has arrows «’ — B’ indexed by (a

basis of)
FY ifa /B and
G ifg  a. O

Proof. The Clifford algebra C is generated by F¥=F" ® U and G =G ® U". We there-

fore compute the generators of Q(C) as
Q(FY ® U)} = Homgrw) (LU, LU F¥ @ U)=F" @ L}

and

Q(G ® U¥)} =Homeyw) (LU, LU® GQUY)=GR®L}“

for two partitions «’, 8/, where the transposes arise because of our identification
o < L% U. These are the natural generators. To have them solely in terms of FY and

G, one can choose basis elements for the one-dimensional spaces ]L};"‘ and Lg"‘. [ |

The presentation of C over S can be translated into a presentation over the
ground field K. In the case of maximal minors, we saw [5, Remark 7.6] that this
presentation involves cubic relations of the form Ax(A;g; + g;A;) = (Aigj + g;ri)Ax and
gx(Aigj + gjri) = (A;gj + gjri)gr expressing the fact that the polynomial ring S lies in the
center of the algebra. We observe that this phenomenon disappears for smaller minors.

Proposition A.10. If m —1[ > 1, then the Clifford algebra C is defined by quadratic rela-

tions over K, whence Y is quadratic as well. O

Proof. We have to show that the generators x;; = 1; ® g; of the polynomial ring are cen-
tral in C, using only the quadratic relations. To show that this element commutes with
the generators A ® u, and gx ® U, fix k and a and observe that Ax ® u, and gx ® U, each

anticommute with any ; ® u, and g; ® w; for any b# a. Since m —1 > 1, we may choose
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b+ a, and then
2 ®gj= i ® Up)(gj ® W) + (g; ® Up)(hi ® Up)
commutes with Ax ® u, and gx ® ¥. The consequence that Y is quadratic follows from

Lemma A.3. [ |

We can obtain the relations in Q(C) by quiverization as well, giving an alterna-
tive to Lemma 6.7.

Proposition A.11. Assume m —1[ > 1. The spaces of relations in Q(C) between two ver-

tices o’ and y’ are given below.

Sym,F" if y /7 «a, two boxes in a column,
/\2Fv if y /7 «, two boxes in a row,

Sym,FY & /\2Fv =FYQ®FY ify / 7a, two disconnected boxes,

F'®G ifa#y, anda 78, y /B, some B,
(FV ® G)®r@-D ifa=y,

Sym,G ifa / /'y, two boxes in a column,
NG if o /7y, two boxes in a row,
Sym,G & \*G=G QG ifa /vy, two disconnected boxes.

Here r(x) denotes the number of rows in which a box can be added to « to obtain a

partition. O

Note that as in Definition 6.5, the embedding in each case is not the obvious
diagonal one, but relies on the canonical decompositions (7.1).

We prove the proposition by considering in turn the quiverizations of the three
kinds of relations on C. These are defined by subspaces of the degree-2 part of the tensor
algebra Ts(F¥ & G) ® S), which decomposes

(F'eG)@F @6 =F' @F)0(GR6) & (F 86 & (F' o0).
Relations coming from FV

In C, the elements of FV anticommute; equivalently, the relations defining C include the
representation Sym,(F" ® U). Now

Sym,(F¥ ® U) = (Sym,F* ® Sym,U) & (\*F” & \*U)
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naturally (for definiteness we take the splitting Sym,F¥ — FY ® F sending Au to %()\ ®
i+ 1 ® ). So in fact we have two types of relations Sym,F¥ ® Sym,U and A\*F¥ ® A\*U.
We discuss these individually.

For the first case, we need to describe the map Q(Sym,F" ® Sym,U) —
Q(Sym,FY) ® Q(Sym,U). Specializing to two vertices o', y’, we need to describe the
induced map

Sym,F' ® L?* = Q(Sym,F" ® Sym,U)*,

—@ParF v eaF U,
ﬁ/
_PrieLyer sy
1

:Fv ® F\/ ®L11/1a.

The map on the FY factors is the natural one Sym,FY — FY ® FY, as we have not
really touched FV. The inclusion map LI* — L' is obtained from the canonical
decomposition

}Lll/la — (]L[lzl] ® ]]“5/2]“) @ (L[llll] ® ]Lg/ll]a)~

There are three essentially different possibilities for o', y’.

(i) ¢’ is obtained from o’ by adding two boxes to a row. In this case, there is
a unique B’ such that o’ /8’ /' y’. By the Littlewood-Richardson rule, we
have L' = 0 and hence

1le _ 7 [2le _ 7 18 1
L =L *=L'®Ls".
The corresponding relations are given by
Sym,F' @ LI @ Lj* — (F¥ @ LIf) ® (FY @ L}).

Thus, for o’ /8’ / vy’ with the boxes being added in the same row the rela-
tions are the anti-commutation relations.

(ii) y’isobtained from o' by adding two boxes to a column. In this case, ]LE,Z]“ =
0 and hence there are no such relations.

(iii) y’ is obtained from o' by adding two boxes not in the same row or col-
umn. In this case, there are distinct g;, 8, such that o’ /8] "y, &' /

B5 /' v'. The corresponding relations are now relations between paths going
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o — py—y' and o’ — B, — y":
Sym,F¥ @ L — (F¥ @ L") ® (F¥ ® Li) & (F¥ ® L)) ® (F¥ ® LY.
Now we describe the relations on Q(C) derived from the inclusion
NF'@ N'U— (F¥ @ U)® (F' @ U).
Applying O(—)gl to both sides yields
N FY @ LM = o\’ FY @ \*U)%,

— P oarev) e arF o)
ﬁ/

~@reLier oLy
L

_ Vv v 11
=F'®@F QL.
We discuss again the possible cases.

(i) y’is obtained from o' by adding two boxes to a row. In this case, L} =0
and hence there are no such relations.
(ii) y’ is obtained from o' by adding two boxes to a column. In this case, there

is again a unique 8’ such that «’ /8’ 7 y’. The corresponding relations are
NF QLY QLY — (FY @ L) ® (FY @ Li").

Thus, for «’ /' B’ /7y’ with the boxes being added in the same column the
relations are the commutation relations.

(iii) y’is obtained from o’ by adding two boxes not in the same row or column.
In this case, there are distinct 81, 8, such thato’ /8] /v, &' /7 B5 /' v'. The
corresponding relations are now relations between paths going o’ — ] —

y and o/ — B, —> ¥
N FY@Li — (FYoLM e (FY oL e (F' oL © (FY o Ly).
Relations coming from G
Next we discuss the relations on Q(C) coming from the inclusion

Sym,(GRU)C(GRUY)®(GRUY).
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A discussion exactly parallel to the one above, using the identity Q(G ® Uv)ff: =GQ® ]L},W,

leads to the following cases.

(i) y’ is obtained from o' by deleting two boxes from a row. Here there is a
unique g’ such that y’ /g’ /7 o’. We find LI!'"* =0 and hence L?"* = LI/ @

]L;;". This leads to the inclusion
Sym,G L ®LL" — (G®LI") ® (G®LL™),

so we obtain the anti-commutation relations.
(ii) 9y’ is obtained from o' by deleting two boxes from a column. In this case,
there is again a unique g’ such that o’ /8’ 7 y’. We find the corresponding

relations

NGRLIY QLY (GR®L") ® (GOLL™),

that is, the commutation relations.

(iii) y’ is obtained from o' by deleting two boxes not in the same row or col-
umn. There are now two distinct g}, 8, such thate’ /8] 7y, &' /B, /v’
The corresponding relations are now relations between paths going o' —

By — vy and o’ — B, — ¥
Sym,G @ LY — (G@LM) ® (GRLLM) ® (GR®LL”) ® (G ®LL"
and

ANGRLIY — (GeL"M @ (GeoL,) ®(GeL”) @ (GeLL®).

Mixed relations

Finally, we discuss the anti-commutativity relations between F¥ ® U and G ® U"”. They

are defined by the image of the map defined by the identity, the swap, and the trace:

F'el)®(GeUY)

id P
(FV@U)@(G@UV>[—“> GRU)® (F'®U). (A.1)
D

(F'®G)
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The summands on the right-hand side are living in the obvious places in the tensor
algebra Ts(F¥Y @ G) ® S); in particular, the third summand sits inside the degree zero
part of the tensor algebra, which is S.

We apply O(—)g’, to the components of (A.1), using the canonical isomorphisms

Live EB Lf @Ly*, (A.2)
5

LV =PL)” @ Ly (A.3)
5

We see first that if o # y, then the third component of the target vanishes:
QF'®G)%=F'®G®LI=0

since LJ = J,,, K. Therefore, when o # y the direct sums appearing in the quiverizations
of the first two components
F'eGeL!* =QF ' eUeGRU")
—Poarev)eaceUuy
ﬂ/

=PF' L) e G L™
ﬂ/

and
F'RGoLl " =QF ' eUeGRU")

—@PaceuearF oU)
ﬂ/

=PGeLhHeF oLy
i

have exactly one summand each, and are thus of the form
FYeGeL"™ — (FYoL/)® (G oLy

and

F'eGeL' " — (GRLY®(F'®L,™)

for some partitions 8, B2 with g; o' 7 B, and 81 /¥’ 7 B,. The image in this case is
thus FV ® G.
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If « =y, then we discard the degree-zero relations expressing the orthogo-
nality of the idempotents corresponding to the vertices and need only consider the
image of F¥ @ G® TroU in (FYRU)Q(GRUY)®(GRUY)® (FYQU), where TroU =
ker(Tr: UY ® U — K). The direct sums appearing in (A.2) and (A.3) have one non-zero
summand for each partition g’ such that «’ / g’ and g’ has at most m —[ rows (so that
LP'U #0). That is, they have t(«) direct summands. Since L}'* = K @ TroU, the image of
FY® G Q TroU is (FY @ G)®t@-1,

Arguments parallel to those in Lemma 6.7 and Theorem 6.9 now prove the
following.

Theorem A.12. The homomorphism Qg,,, ,(C) — A=Endp, (N) is an isomorphism. O

Remark A.13. The description of the non-commutative desingularization as a quiver-
ized Clifford algebra depends essentially on characteristic zero, relying as it does on the
canonical direct-sum decompositions of representations of GL(U) into irreducibles. In
retrospect, it was the fact that the torus GL(1) is linearly reductive in all characteris-
tics that allowed us to prove the analogous result for the case of maximal minors in a
characteristic-free manner. O

Remark A.14. Using the description above of the non-commutative desingularization
as a quiverized Clifford algebra, one can prove an analog of [5, Theorem D], to the effect
that Z is the fine moduli space for certain representations of the truncated Young quiver.
The details are essentially identical to those in [5, Section 8], so we do not pursue this

direction further. g
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