
R.-O. Buchweitz et al. (2015) “Non-commutative Desingularizations II,”
International Mathematics Research Notices, rnv207, 65 pages.
doi:10.1093/imrn/rnv207

Non-commutative Desingularization of Determinantal
Varieties, II: Arbitrary Minors

Ragnar-Olaf Buchweitz1, Graham J. Leuschke2, and Michel Van den
Bergh3

1Department of Computer and Mathematical Sciences, University of
Toronto Scarborough, Toronto, ON, Canada M1C 1A4, 2Department of
Mathematics, Syracuse University, Syracuse, NY 13244, USA, and
3Departement WNI, Universiteit Hasselt, 3590 Diepenbeek, Belgium

Correspondence to be sent to: e-mail: gjleusch@syr.edu

In our paper “Non-commutative desingularization of determinantal varieties I”, we con-

structed and studied non-commutative resolutions of determinantal varieties defined by

maximal minors. At the end of the introduction, we asserted that the results could be

generalized to determinantal varieties defined by non-maximal minors, at least in char-

acteristic zero. In this paper, we prove the existence of non-commutative resolutions in

the general case in a manner which is still characteristic free, and carry out the explicit

description by generators and relations in characteristic zero. As an application of our

results, we prove that there is a fully faithful embedding between the bounded derived

categories of the two canonical (commutative) resolutions of a determinantal variety,

confirming a well-known conjecture of Bondal and Orlov in this special case.

1 Introduction

Let K be a field and let F , G be two K-vector spaces of ranks m and n, respec-

tively. We take unadorned tensor products over K and denote by (−)∨ the K-dual.

Received April 16, 2015; Accepted June 10, 2015

Communicated by Corrado De Concini

c© The Author(s) 2015. Published by Oxford University Press. All rights reserved. For permissions,
please e-mail: journals.permissions@oup.com.

 International Mathematics Research Notices Advance Access published July 26, 2015
 at Syracuse U

niversity L
ibrary on July 28, 2015

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


2 R.-O. Buchweitz et al.

Put H = HomK(G, F ), viewed as the affine variety of K-rational points of Spec S,

where S = SymK(H
∨) is isomorphic to a polynomial ring in mn indeterminates. The

generic S-linear map ϕ : G ⊗ S −→ F ⊗ S corresponds to multiplication by the generic

(m × n)-matrix comprising those indeterminates.

Fix a non-negative integer l <min(m,n), and let Spec R be the locus in Spec S

where
∧l+1

ϕ = 0. Then R is the quotient of S by the ideal of (l + 1)-minors of the

generic (m × n)-matrix. It is a classical result that R is Cohen–Macaulay of codimen-

sion (n− l)(m − l), with singular locus defined by the l-minors of the generic matrix; in

particular, R is smooth in codimension 2.

In this paper, we consider some natural R-modules. For a partition

α = (α1, . . . , αr) and a vector space V , write

∧αV =∧α1 V ⊗ · · · ⊗∧αr V.

Let α′ denote the conjugate partition of α, and
∧α′

ϕ∨ :
∧α′

F ∨ ⊗ S −→∧α′
G∨ ⊗ S the nat-

ural map induced by ϕ. Define

Tα = image

⎛
⎜⎝∧α′

F ∨ ⊗ R

(∧α′
ϕ∨
)

⊗R

−−−−−−−−→∧α′
G∨ ⊗ R

⎞
⎟⎠ .

Let Bu,v be the set of all partitions with at most u rows and at most v columns and set

T =
⊕

α∈Bl,m−l

Tα and E = EndR(T).

Our first main result generalizes the case l = m − 1 [5, Theorem A], and shows

that general determinantal varieties admit a non-commutative desingularization in the

following sense.

Theorem A. For m� n, the endomorphism ring E = EndR(T) is maximal Cohen–

Macaulay as an R-module, and has moreover finite global dimension. In particular, Tα is

a maximal Cohen–Macaulay R-module for each α ∈ Bl,m−l . �

If m = n, then R is Gorenstein; in this case, E is an example of a non-

commutative crepant resolution as defined in [22].

The R-module Tα is in general far from indecomposable. Assume for a moment

that K has characteristic zero and denote by LαV the irreducible GL(V)-module with
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Non-commutative Desingularizations II 3

Fig. 1. The Young quiver.

highest weight α (a.k.a. Schur module [24]). It then follows from the Pieri rule that
∧α′

V =
LαV ⊕ W, where W is a direct sum of certain LβV with β < α for the natural order on

partitions. Hence, if we put

Nα = image
(

Lα(F ∨)⊗ R
(Lα(ϕ∨))⊗R−−−−−−−→ Lα(G∨)⊗ R

)
,

then in characteristic zero Tα is a direct sum of Nβ for β � α with Nα appearing with

multiplicity 1. In particular, we obtain that Nα is maximal Cohen–Macaulay. This is false

in small characteristic; see Remark 3.7 where we make the connection with the work of

Weyman [24, Section 6].

If we set N =⊕
α∈Bl,m−l

Nα and A= EndR(N), then A is Morita equivalent to

E = EndR(T). Clearly, Theorem A remains valid in characteristic zero if we replace E

by A. Furthermore, we have the following description by generators and relations of the

non-commutative desingularization A. Write α↗ β if β is obtained by adding a box to α.

Theorem B (Theorem 6.9). Assume that K has characteristic zero and m − l > 1. As a

K-algebra, A is isomorphic to the bound path algebra of the truncated Young quiver

(Figure 1) having vertices α ∈ Bl,m−l and arrows α −→ β indexed by bases for

⎧⎨
⎩F ∨ if α↗ β and

G if β ↗ α,
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4 R.-O. Buchweitz et al.

with vector spaces of relations between two vertices α, γ ∈ Bl,m−l given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sym2 F ∨ if γ ↗↗ α, two boxes in a column,∧2 F ∨ if γ ↗↗ α, two boxes in a row,

Sym2 F ∨ ⊕∧2 F ∨ ∼= F ∨ ⊗ F ∨ if γ ↗↗ α, two disconnected boxes,

F ∨ ⊗ G if α �= γ and α↗ β, γ ↗ β, for some β with β1 � m − l,

(F ∨ ⊗ G)⊕(t(α)−1) if α = γ,

Sym2G if α↗↗ γ, two boxes in a column,∧2G if α↗↗ γ, two boxes in a row,

Sym2G ⊕∧2G ∼= G ⊗ G if α↗↗ γ, two disconnected boxes,

where t(α) is the number of ways to add a box to α without making any row longer

than m − l. �

Note that the representations defining the listed relations, for example,

Sym2 F ∨ ⊂ F ∨ ⊗ F ∨, are not induced by the obvious diagonal inclusions; there are some

non-trivial scalars appearing. See Section 7.

Now let K be general again. We have taken care to state Theorems A and B in

algebraic language but as in [5] the proofs proceed by invoking algebraic geometry, that

is, by constructing a suitable tilting bundle on the Springer resolution of Spec R.

Write G= Grass(l, F )∼= Grass(l,m) for the Grassmannian variety of

l-dimensional subspaces of F , and let π : G−→ Spec K be the structure morphism

to the base scheme Spec K. On G, we have a tautological exact sequence of vector

bundles

0 −→R−→ π∗F ∨ −→Q−→ 0 (1.1)

whose fiber above a point (V ⊂ F ) ∈G is the short exact sequence 0 −→ (F/V)∨ −→
F ∨ −→ V∨ −→ 0. In [6], we proved that the OG-module

T0 =
⊕

α∈Bl,m−l

∧α′
Q

is a tilting bundle on G. From this, we derive our main geometric result as follows. Set

Y =G ×Spec K H , with the canonical projections p: Y −→G and q : Y −→ H . Define the

incidence variety

Z = {(V, θ) ∈G ×Spec K H |image θ ⊂ V} ⊆Y
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Non-commutative Desingularizations II 5

Fig. 2. The schemes and maps of interest.

and denote by j the natural inclusion Z −→Y. The composition q′ = qj : Z −→ H is then

a birational isomorphism from Z onto its image q′(Z)= Spec R, while p′ = pj : Z −→G

is a vector bundle (with zero section θ = 0). Figure 2 summarizes the schemes and maps

we have defined. We call Z the Springer resolution of Spec R.

Theorem C. The OZ-module

T = p′∗
⎛
⎝ ⊕
α∈Bl,m−l

∧α′
Q

⎞
⎠

is a classical tilting bundle on Z, that is,

(i) T classically generates the derived category Db(coh Z), in that the smallest

thick subcategory of Db(coh Z) containing T is Db(coh Z) and

(ii) HomDb(coh Z)(T , T [i])= 0 for i �= 0.

Furthermore, we have

(iii) Tα ∼= Rq′
∗
∧α′

Q for each α ∈ Bl,m−l , so that T ∼= Rq′
∗T and

(iv) E ∼= EndOZ (T ). �

The proofs of Theorems A and C are substantially simpler than the correspond-

ing ones in [5], even in the case treated there of maximal minors.

As H = HomK(G, F ) is canonically isomorphic to HomK(F ∨,G∨), we obtain a

second Springer resolution q′
2 : Z2 −→ Spec R by replacing (F,G) with (G∨, F ∨). Put

Ẑ =Z ×H Z2. As an application of Theorem C, we prove the following.

Theorem D. If m� n, then the Fourier–Mukai transform with kernel OẐ induces

a fully faithful embedding FM : Db(coh Z) ↪→Db(coh Z2). If m = n, then FM is an

equivalence. �
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6 R.-O. Buchweitz et al.

A general conjecture by Bondal and Orlov [4] asserts that a flip between algebraic

varieties induces a fully faithful embedding between their derived categories. It is not

hard to see that the birational map Z2 ���Z is a flip, so we obtain a confirmation of the

Bondal–Orlov conjecture in this special case.

The first half of the paper is characteristic-free. We include a short section

recalling the results we need from [6], as well as some background on characteristic-

free versions of the Cauchy formula and Littlewood–Richardson rule. These are used to

prove Theorem C, and as a consequence Theorem A, in Section 3. Section 4 contains the

proof of Theorem D.

In the second half, we specialize to characteristic zero. Section 5 contains the

calculation of the Ext groups between the simple A-modules, which will be used in

Section 6 to construct an isomorphism between A and the path algebra of the truncated

Young quiver Yl,m−l in Theorem B. The relations on the path algebra of Yl,m−l are induced

by relations between certain maps occurring in Pieri’s formula which were introduced by

Olver [18]; in Section 7, we show how to compute these relations and thereby the scalars

appearing in Theorem B. The first non-trivial example (m,n, l)= (4,4,2) is worked out

in Section 8.

We include an Appendix giving an alternative description of the non-

commutative desingularization as a “quiverized Clifford algebra” as in our earlier

paper [5].

Since the original version of this article was posted on the arXiv, similar results

have been obtained by other authors [2, 7, 8, 25].

2 Preliminaries

We recall two results from [6]. Recall that we write Lα for the Schur functors; our conven-

tions are that L(t)V = SymtV and L(1
t)V =∧tV . (This convention differs from that in [24].

Our indexing is such that Lα has highest weight α.) The functors Lα are defined for all

dominant weights, that is, weakly decreasing sequences of integers. A partition is a

dominant weight with non-negative entries.

Theorem 2.1 ([6, Theorem 1.2]). The OG-module

T0 =
⊕

α∈Bl,m−l

∧α′
Q
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Non-commutative Desingularizations II 7

is a classical tilting bundle on G, that is,

(i) T0 classically generates the derived category Db(coh G), in that Db(coh G) is

the smallest thick subcategory of itself containing T0 and

(ii) HomDb(coh G)(T0, T0[i])= 0 for i �= 0. �

Proposition 2.2 ([6, Proposition 1.3]). Let α ∈ Bl,m−l and let δ be any partition. Then for

all i > 0 one has

Hi(G, (
∧α′

Q)∨ ⊗OG
LδQ)= 0. �

We also state for easy reference the following characteristic-free versions of the

Cauchy formula and the Littlewood–Richardson rule. See [24, Theorems 2.3.2 and 2.3.4].

Theorem 2.3 (Boffi [3], Doubilet–Rota–Stein [9]). Let V and W be K-vector spaces and

let α and β be dominant weights.

(i) There is a natural filtration on Symt(V ⊗ W)whose associated graded object

is a direct sum with summands tensor products LγV ⊗ Lγ
′
W of Schur

functors.

(ii) There is a natural filtration on
∧t
(V ⊗ W) whose associated graded object

is a direct sum with summands tensor products LγV ⊗ (Lγ
′
W∨)∨ of Schur

functors.

(iii) There is a natural filtration on LαV ⊗ LβV whose associated graded object

is a direct sum of Schur functors LγV . The γ that appear, and their multi-

plicities, can be computed using the usual Littlewood–Richardson rule.

If char K = 0, then the filtrations above degenerate to direct sums. Note that in charac-

teristic zero (Lγ
′
W∨)∨ ∼= Lγ

′
W. �

3 A Tilting Bundle on the Resolution

To prove Theorem C, keep all the notation introduced there. One easily verifies that

Z = Spec (SymG(G ⊗ Q));

indeed, a closed point of the right-hand side consists of a pair (V ⊂ F, θ), where (V ⊂
F ) ∈G and θ is an element of the fiber of (G ⊗ Q)∨ over the point (V ⊂ F ). That fiber is

(G ⊗ V∨)∨ = HomK(G,V)⊂ HomK(G, F ),

so the pair (V, θ) is precisely a point of Z.
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8 R.-O. Buchweitz et al.

We have T0 =⊕
α∈Bl,m−l

∧α′
Q, a tilting bundle on G by Theorem 2.1. Set T = p′∗T0,

a vector bundle on Z.

Proposition 3.1. The OZ-module T = p′∗T0 is a tilting bundle on Z. �

Proof. Since T0 classically generates Db(coh G) and p′ is an affine morphism, it is easy

to see that T classically generates Db(coh Z), so it remains to prove Ext-vanishing. We

have

Exti
OZ (T , T )= Hi(G,SymG(G ⊗ Q)⊗OG

EndOG
(T0))

and hence we need to prove that

SymG(G ⊗ Q)⊗OG
HomOG

(
∧α′

Q,
∧β ′

Q) (3.1)

has vanishing higher cohomology for α, β ∈ Bl,m−l .

Using Theorem 2.3, we find that (3.1) has a filtration whose associated graded

object is a direct sum of vector bundles of the form

(
∧α′

Q)∨ ⊗OG
LδQ, (3.2)

where α ∈ Bl,m−l and δ is some partition containing β. It now suffices to invoke Proposi-

tion 2.2. �

To prove the rest of Theorem C, we shall show that EndR(Rq′
∗T )= Rq′

∗EndOZ (T ),
and that the latter is MCM and has finite global dimension. Put

E = EndOZ (T ),

and let ωZ be the dualizing sheaf of Z.

Lemma 3.2. Assume m� n. Then Exti
OZ (E, ωZ)= 0 for all i > 0. �

Proof. We have E = p′∗E0, with E0 =HomOG
(T0, T0). Substituting this and using the fact

that E0 is self-dual, we find

Exti
OZ (E, ωZ)= Exti

OZ (p
′∗E0, ωZ)

= Exti
OG
(E0, p′

∗ωZ)

= Hi(G, E0 ⊗OG
p′

∗ωZ).
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Non-commutative Desingularizations II 9

Hence, to continue we must be able to compute p′
∗ωZ . Since Z = Spec (SymG(G ⊗ Q)), the

standard expression, see, for example, [11, Exercise III.8.4], for the dualizing sheaf of a

symmetric algebra gives

p′
∗ωZ =ωG ⊗OZ

∧ln
(G ⊗ Q)⊗OZ SymG(G ⊗ Q).

Furthermore, the sheaf ΩG of differential forms on G is known to be given by ΩG =
Q∨ ⊗OG

R, where R is the tautological sub-bundle of π∗F ∨ as in (1.1). Hence,

ωG =∧ln
(Q∨ ⊗OG

R) and so

p′
∗ωZ =∧ln

(Q∨ ⊗OG
R)⊗OG

∧ln
(G ⊗ Q)⊗OG

SymG(G ⊗ Q).

Rewriting all the exterior powers in terms of Q, we find

∧ln
(Q∨ ⊗ R)⊗∧ln

(G ⊗ Q)= (
∧lQ)−m+l ⊗ (

∧m−lR)l ⊗ (
∧nG)l ⊗ (

∧lQ)n

= (
∧lQ)−m+l ⊗ (

∧m F )−l ⊗ (
∧lQ)−l ⊗ (

∧nG)l ⊗ (
∧lQ)n

= (
∧lQ)n−m ⊗ (

∧m F )−l ⊗ (
∧nG)l .

So finally

E0 ⊗OG
p′

∗ωZ = (
∧m F )−l ⊗ (

∧nG)l ⊗ E0 ⊗OG
(
∧lQ)n−m ⊗OG

SymG(G ⊗ Q).

Discarding the copies of the vector spaces
∧m F and

∧nG, we find a direct sum of vector

bundles of the form

∧α′Q∨ ⊗OG

∧βQ ⊗OG
(
∧lQ)n−m ⊗OG

SymG(G ⊗ Q),

which (since m� n) are the subject of Proposition 2.2. �

Next we verify Theorem C for

Ē = EndOZ (T )= Γ (Z, E) and T̄ = Γ (Z, T ).

Recall the following consequence of tilting (see, e.g., [12]).

Proposition 3.3. Assume that T is a tilting bundle on a smooth variety X. Then

RHomOX (T ,−) defines an equivalence of derived categories Db(coh X)∼=Db(modE)

where E = EndOX (T ). If X is projective over an affine variety, then E is finite over its

center and has finite global dimension. �

Proposition 3.4. Assume m� n. Then

 at Syracuse U
niversity L

ibrary on July 28, 2015
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


10 R.-O. Buchweitz et al.

(i) Ē ∼= EndR(T̄);

(ii) Ē and T̄ are MCM R-modules; and

(iii) Ē has finite global dimension. �

Proof. That Ē has finite global dimension follows from Propositions 3.1 and 3.3. Since

Exti
OZ (T , T )= 0 for i > 0 by Proposition 3.1, the higher direct images of E vanish, that is,

Rq′
∗E = q′

∗E = Ē .

To prove that Ē is MCM, we must show that Exti
R(Ē, ωR)= 0 for i > 0, where ωR is the

dualizing module for R. Replacing Ē by Rq′
∗E and using duality for the proper morphism

q′ [24, Theorem 1.2.22], we see that this is equivalent to showing Exti
OZ (E,q

′!ωR)= 0 for

i > 0. But q′!ωR =ωZ is the dualizing sheaf for Z, so Lemma 3.2 implies that Ē is MCM.

As OZ is a direct summand of T , we see that T̄ is a summand of Ē , whence

T̄ is Cohen–Macaulay as well. Furthermore, we have an obvious homomorphism

i : EndOZ (T )−→ EndR(T̄) between reflexive R-modules, which is an isomorphism on the

locus where q′ : Z −→ Spec R is an isomorphism. The complement of this locus is given

by the matrices which have rank <l, a subvariety of Spec R of codimension � 2. Hence, i

is an isomorphism. �

Propositions 3.1 and 3.4 imply Theorems A and C provided we can show T ∼= T̄ .

We do this next. Recall that for a partition α, we denote

Nα = image
(

Lα(F ∨)⊗ R
(Lα(ϕ∨))⊗R−−−−−−→ Lα(G∨)⊗ R

)
.

Set Nα = p′∗LαQ.

Proposition 3.5. With notation as above, we have

Nα ∼= Γ (Z,Nα). �

Proof. With ϕ : G ⊗ S −→ F ⊗ S, the generic map defined over S, let ψ = j∗q∗ϕ be the

map induced over Z. Then the fiber of ψ∨ over a point (V, θ) factors as

F ∨ −→ V∨ −→ G∨,

where the first map is the dual of the given inclusion V ↪→ F . Thus, ψ∨ factors as

p′∗π∗F ∨ −→ p′∗Q−→ p′∗π∗G∨.
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Non-commutative Desingularizations II 11

The first map is obviously surjective. The second map is injective since it is a map

between vector bundles which is generically injective. Schur functors preserve epimor-

phisms and monomorphisms of vector bundles [10, Section 8.1], so we get an epi-mono

factorization

Lα(ψ∨) : Lα(p′∗π∗F ∨)−→ Lα p′∗Q−→ Lα(p′∗π∗G∨).

To prove the claim, it is clearly sufficient to show that the first map remains an epimor-

phism after applying q′
∗, that is, that the epimorphism

π∗Lα(F ∨)⊗OG
SymG(G ⊗ Q)−→ LαQ ⊗OG

SymG(G ⊗ Q)

remains an epimorphism upon applying Γ (G,−). In fact, it suffices to show that

π∗(Lα(F ∨)⊗OG
SymG(G ⊗ F ∨))−→ LαQ ⊗OG

SymG(G ⊗ Q)

remains an epimorphism upon applying Γ (G,−). By Theorem 2.3, source and target are

filtered by Schur functors, so it is enough to show that for any partition δ the canonical

map

π∗Lδ(F ∨)−→ LδQ

remains an epimorphism upon applying Γ (G,−). But taking global sections of this map

gives

Lδ(F ∨)−→ Γ (G, LδQ),

which is even an isomorphism by the definition of Schur modules. Hence, we

are done. �

Set T̄α = Γ (Z, Tα), where Tα = p′∗(
∧α′Q) as in Theorem 2.1, and recall

Tα = image

(∧α′
(F ∨)⊗ R

(
∧α′

ϕ∨)⊗R−−−−−−→∧α′
(G∨)⊗ R

)
.

Filtering everything by Schur functors and applying Proposition 3.5, we see that these

coincide.

Corollary 3.6. We have Tα ∼= T̄α for each α ∈ Bl,m−l . In particular, T ∼= T̄ is a maximal

Cohen–Macaulay R-module. �

Assembling the pieces, we obtain Theorem C and, as a consequence, Theorem A.
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12 R.-O. Buchweitz et al.

Remark 3.7. It follows from Proposition 3.5 that Nα = M(α,0) in the notation of [24,

Section 6]. In particular, the very general result [24, Corollary (6.5.17)] gives an alter-

native way to see that Nα is Cohen–Macaulay in characteristic zero. Furthermore, [24,

Example (6.5.18)] shows that N2 is not Cohen–Macaulay in characteristic 2. �

Example 3.8. Assume that m − l = 1 with m� n. Then we have G= Pm−1. Set P= Pm−1,

so that Q=Ω∨
P
(−1), and let α = 1a for some a, 0 � a� m − 1. We find

Tα = p′∗(
∧a
Ω∨

P
(−a))

= p′∗(
∧m−1−a

ΩP ⊗OP
ω−1
P
(−a))

= p′∗(
∧m−1−a

ΩP(m − a)).

Thus, in the notation of [5] we have Tα = Mm−a = cok
∧m−aX. �

4 Proof of Theorem D

We now need to refer to the two resolutions of Spec R in a uniform way, so we introduce

appropriate symmetrical notation for this section only. We start by putting G1 = F ∨ and

G2 = G so that

H = SymK(G1 ⊗ G2).

We also put ni = rankK Gi and Gi = Grass(ni − l,Gi). Thus, n1 = m, n2 = n, and we have

canonically G1
∼=G.

For symmetry, we also put Z1 =Z. In general, we will decorate the notations in

the diagram (2) by a “1” or a “2” depending on whether they refer to Z1 or Z2.

We now explain how we prove Theorem D. In Proposition 3.1, we have con-

structed tilting bundles T1, T2 on Z1, Z2. For our purposes, it turns out to be technically

more convenient to use the tilting bundle T ∨
1 on Z1 rather than T1. With E ′

1, E2 the endo-

morphism rings of T ∨
1 and T2, respectively, it turns out that if n1 � n2, then E ′

1
∼= eE2e

for a suitable idempotent e ∈ E2. Thus, we immediately obtain a fully faithful embed-

ding Db(coh Z1) ↪→ Db(coh Z2). We then show that this embedding coincides with the

indicated Fourier–Mukai transform.

Now we proceed with the actual proof. On Gi, we have the tautological exact

sequence

0 −→Ri −→ π∗
i Gi −→Qi −→ 0.
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Non-commutative Desingularizations II 13

We also define

Ẑ =Z1 ×H Z2.

There are projection maps r1 : Ẑ −→Z1, r2 : Ẑ −→Z2. These fit together in the following

commutative diagram.

Ẑ

Z1 Z2

G1 Spec R G2

r1 r2

p′′
1 p′′

2

q′
1p′

1 q′
2 p′

2

Let H0 ⊂ Spec R be the (open) locus of tensors of rank exactly l, so that the maps q′
i and

ri, for i = 1,2, are all isomorphisms above H0. Let Ẑ0 be the inverse image of H0 in Ẑ.

Let α be a partition and set Tα,i = p′
i
∗
(
∧α′

Qi) for i = 1,2. Further set Bi = Bl,ni−l ,

Ti =
⊕
α∈Bi

Tα,i and Ei = EndOZi
(Ti).

By Theorem C, Ti is a tilting bundle on Zi and hence Db(coh Zi)∼=Db(modEi).

Here is an asymmetrical piece of notation. Assume that n1 � n2. Then B1 ⊆ B2. Set

T ′
2 =

⊕
α∈B1

Tα,2 ⊆
⊕
α∈B2

Tα,2 = T2 and E ′
2 = EndOZ2

(T ′
2). (4.1)

As T ′
2 is a direct summand of T2, we have E ′

2 = eE2e for a suitable idempotent e ∈ E2.

Hence, there is a fully faithful embedding

ẽ: Db(modE ′
2) ↪→Db(modE2) (4.2)

given by ẽ(M)= (E2)e ⊗E ′
2
M.

Put E ′
1 = EndOZ1

(T ∨
1 ). Note that it follows easily from Grothendieck duality that

T ∨
1 is also a tilting bundle on Z1.

Finally, set

Tα,i = q′
i∗Tα,i, Ti = q′

i∗Ti,

and T ′
2 = q′

2∗T ′
2 . By Theorem C, we have Ei = EndR(Ti), E ′

1 = EndR(T∨
1 ), and E ′

2 = EndR(T ′
2).

Lemma 4.1. One has Ẑ = Spec (SymG1×G2
(Q1 �Q2)). �
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14 R.-O. Buchweitz et al.

Proof. This is a straightforward computation.

Z1 ×H Z2 =Z1 ×G1×H (G1 × H)×H (G2 × H)×G2×H Z2

=Z1 ×G1×H (G1 × G2 × H)×G2×H Z2

= (Z1 × G2)×
Ĝ×H (Z2 × G1)

= Spec (SymG1×G2
(Q1 � π∗

2 G2)⊗SymG1×G2
(π∗

1 G1�π∗
2 G2) SymG1×G2

(π∗
1 G1 �Q2))

= Spec (SymG1×G2
(Q1 �Q2)). �

Proposition 4.2. Assume n1 � n2. Then T ′
2
∼= T∨

1 . In particular, E ′
2
∼= E ′

1, and there is a fully

faithful embedding Db(modE ′
1) ↪→Db(modE2) (using (4.2)). If n1 = n2, then the embedding

is an equivalence. �

Proof. Since Ẑ = Spec (SymG1×G2
(Q1 �Q2)), we have a canonical map

u: (p′′
2)

∗Q2 −→ (p′′
1)

∗Q∨
1 ,

which is an isomorphism on Ẑ0. Apply
∧α′

(−) for a partition α to obtain a map

∧α′
u: r∗

2Tα,2 −→ r∗
1(Tα,1)∨ (4.3)

and push down with (q′
1r1)∗ = (q′

2r2)∗ to get a homomorphism of R-modules

τα : Tα,2 −→ T∨
α,1, (4.4)

which is an isomorphism on H0. Letting α run over partitions in B1, we find a homo-

morphism τ : T ′
2 −→ T∨

1 which is also an isomorphism on H0. Since the exceptional loci

for the q′
i in Zi have codimension at least 2, the modules T1 and T ′

2 are reflexive by [23,

Lemma 4.2.1]. (In fact, we know already that T1 is Cohen–Macaulay.) Hence, τ : T ′
2 −→ T∨

1

is an isomorphism.

In particular, τ induces an isomorphism τ̃ : E ′
1 −→ E ′

2. �

The birational map Z2 −→Z1 is easily seen to be a flip, and, if n1 = n2, even a

flop. Our final result thus verifies, in this special case, a general conjecture of Bondal

and Orlov [4].
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Non-commutative Desingularizations II 15

Theorem 4.3. Assume n1 � n2. Then there is a fully faithful embedding

F : Db(coh Z1)−→Db(coh Z2)

given by

F(M)= T ′
2

L⊗E ′
1

RHomOZ1
(T ∨

1 ,M),

where E ′
1 = EndR(T ∨

1 ) acts on T ′
2 via the isomorphism E ′

1
∼= EndOZ2

(T ′
2) of Proposition 4.2.

If n1 = n2, then F is an equivalence. �

Proof. Since T ∨
1 and T2 are tilting on Z1 and Z2, respectively, we have equivalences

RHomOZ1
(T ∨

1 ,−) : Db(coh Z1)−→Db(modE ′
1)

and

T2
L⊗E2 − : Db(modE2)−→Db(coh Z2).

Putting these together with the isomorphism E ′
1
∼= E ′

2 and the fully faithful embedding

ẽ: Db(modE ′
2)−→Db(modE2), we find the composition

F : Db(coh Z1)
∼=−→Db(modE ′

1)
∼=−→Db(modE ′

2) ↪→Db(modE2)
∼=−→Db(coh Z2),

of the form asserted. �

Theorem 4.4. Assume that n1 � n2. Then the Fourier–Mukai transform FM = Rr2∗Lr∗
1

with kernel (r1, r2)∗OẐ defines a fully faithful embedding

FM : Db(coh Z1) ↪→Db(coh Z2),

which is an equivalence if n1 = n2. There is a natural isomorphism between FM and the

functor F = T ′
2

L⊗E ′
1

RHomOZ1
(T ∨

1 ,−) introduced in Proposition 4.3. In particular, FM is

fully faithful. �

Proof. For a partition α ∈ B1, the map
∧α′

u: r∗
2Tα,2 −→ r∗

1(Tα,1)∨ constructed in (4.3) gives

by adjointness a homomorphism on Z2

σ : Tα,2 −→ Rr2∗r∗
1(Tα,1)∨.

We claim that σ is an isomorphism. In particular, we must show Rir2∗r∗
1(Tα,1)∨ = 0

for i > 0. To this latter end, it is sufficient to show that for all y∈G2 and all i > 0
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16 R.-O. Buchweitz et al.

we have

Hi(G1,
∧α′

Q∨
1 ⊗OG1

SymG1
(Q1 ⊗ (Q2)y))= 0.

This follows again from the Cauchy formula together with Proposition 2.2.

Now we can see that σ : Tα,2 −→ r2∗r∗
1(Tα,1)∨ is an isomorphism. The source is

reflexive, the target is torsion-free, and over Ẑ0 the map σ coincides with (q′
2)

∗τα, where

τα : Tα,2 −→ T∨
α,1 as in (4.4). Since each τα is an isomorphism, so is σ .

In particular, we obtain an isomorphism σ̃ : T ′
2 −→ Rr2∗Lr∗

1T ∨
1 by summing over

α ∈ B1.

To define the desired natural transformation η : F −→ FM, we must construct a

morphism

η(M) : T ′
2

L⊗E ′
1

RHomOZ1
(T ∨

1 ,M)−→ Rr2∗r∗
1M

for every M in Db(coh Z1). The desired map is the composition of

T ′
2

L⊗E ′
1

RHomOZ1
(T ∨

1 ,M)

Rr2∗Lr∗
1T ∨

1

L⊗E ′
1

RHomOZ2
(Rr2∗Lr∗

1T ∨
1 ,Rr2∗Lr∗

1M)

σ̃⊗E ′
1
Rr2∗Lr∗

1

and the evaluation map from the derived tensor product to Rr2∗Lr∗
1M. To show that η is

an isomorphism, it suffices, since T ∨
1 generates, to prove that η(T ∨

1 ) is an isomorphism.

In this case, we have

T ′
2

L⊗E ′
1

RHomOZ1
(T ∨

1 , T ∨
1 )

∼= T ′
2

L⊗E ′
1

E ′
1
∼= T ′

2
∼= Rr2∗r∗

1T ∨
1 ,

an isomorphism by construction. �

Remark 4.5. Though we did not use it, in fact we have E ′
1
∼= E1. Indeed, for

α = (α1, . . . , αl) ∈ Bi, define

α! = (ni − l − αl, . . . ,ni − l − α1).

Then ∧α′
Q∨

i
∼= (
∧lQi)

−(ni−l) ⊗OGi

∧(α!)′Qi.

Thus,

(Tα,i)∨ ∼= p′
i
∗
(
∧lQi)

−(ni−l) ⊗OZi
Tα!,i
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Non-commutative Desingularizations II 17

and hence

T ∨
i

∼= p′
i
∗
(
∧lQ)−(ni−l) ⊗OZi

Ti.

It follows that EndOZi
(T ∨

i )
∼= EndOZi

(Ti). �

5 Presentations of the Simples

Throughout this section, we assume that the characteristic of our ground field is zero.

We give an algorithm, based on Bott’s theorem and the Littlewood–Richardson rule,

for determining the Ext-groups between the simple modules over the non-commutative

desingularization. We work out explicitly the representations appearing in the Ext-

groups of low degree, for later use in the proof of Theorem B. The method is a direct

generalization of that used in [5] for the case of maximal minors, and was indepen-

dently established in a more general form by Weyman and Zhao [25]. It was known to

the authors how to extend our methods to arbitrary minors, but after seeing [25] we real-

ized we could simplify the part of the argument involving Bott’s theorem. In particular,

Lemma 5.4 is contained in [25, Corollary 3.6]. We provide a proof for the convenience of

the reader.

Since we work in characteristic zero, we consider the tilting bundle N =⊕
αNα =⊕

α p′∗LαQ (cf. Proposition 3.5) on the desingularization Z and its endo-

morphism ring A= EndOZ (N ). Then A is Morita equivalent to E = EndR(T) of

Theorem A.

For α ∈ Bl,m−l , let Pα = HomOZ (N ,Nα) be the projective left A-module correspond-

ing to α, and let Sα be its associated simple module. As in [5], we have the following

identification of Sα.

Lemma 5.1. Let u: G−→Z be the zero section of the vector bundle p′ : Z −→G. Then the

object in Db(coh Z) corresponding to the simple module Sα is u∗Lα
′R[|α|]. �

Proof. By [15], the bundles {Lα′R[|α|]}α∈Bl,m−l form a dual exceptional collection to the

full strong exceptional collection {LαQ}α∈Bl,m−l , that is,

Extt
OG
(LαQ, Lβ

′R[|β|])=
⎧⎨
⎩K if t = 0 and α= β and

0 otherwise.

This Ext group is by adjunction isomorphic to Extt
OZ (p

′∗LαQ,u∗Lβ
′R[|β|]). Since p′∗LαQ

corresponds to the projective Pα over A, this gives the desired statement. �
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18 R.-O. Buchweitz et al.

To compute the extensions between the simple objects, we use the following

proposition [5, Proposition 10.6]. The proof given in [5] is over P, but is equally valid

over G.

Lemma 5.2. Let U ,V be objects in Db(coh G). Then

Extt
OZ (u∗U ,u∗V)=

⊕
s

Extt−s
OG
(
∧s
(Q ⊗ G)⊗OG

U ,V). �

Theorem 5.3. Let α, β ∈ Bl,m−l . For the simple left A-modules Sα and Sβ, we have

Extt
A(Sβ, Sα)=

⊕
λ

Ht−|λ|+|α|−|β|(G, LλQ∨ ⊗ Lα
′R ⊗ Lβ

′R∨)⊗ Lλ
′
G∨,

where the sum is over all λ ∈ Bl,n. �

Observe that the λ appearing in the formula have the same bound on the number

of rows as α and β, but the constraint on their widths depends on G.

Proof. This is a direct calculation using Lemma 5.2 and the Cauchy decomposition from

Proposition 2.3:

Extt
A(Sβ, Sα)= Extt

OZ (u∗Lβ
′R[|β|],u∗Lα

′R[|α|])

= Extt+|α|−|β|
OZ (u∗Lβ

′R, u∗Lα
′R)

=
⊕

s

Extt−s+|α|−|β|
OG

(
∧s
(Q ⊗ G)⊗OG

Lβ
′R, Lα

′R)

=
⊕

s

Ht−s+|α|−|β|(G,
∧s
(Q ⊗ G)∨ ⊗OG

(Lβ
′R)∨ ⊗ Lα

′R)

=
⊕

s

⊕
|λ|=s

Ht−s+|α|−|β|(G, LλQ∨ ⊗OG
Lα

′R ⊗ Lβ
′R∨)⊗ Lλ

′
G∨,

which is equal to the desired sum since rank Q= l and rank G = n. �

For any given t, computing the cohomology indicated in the theorem is algo-

rithmic, though a complete combinatorial description of exactly which representa-

tions appear remains open. We can evaluate the sum for small values of t using the

Littlewood–Richardson rule and Bott’s theorem [24]. Recall the algorithm of Bott: a

bundle of the form LλQ∨ ⊗ LγR∨, for dominant weights λ and γ , has at most one non-

vanishing cohomology group, and the index k for which Hk(G, LλQ∨ ⊗ LγR∨) �= 0 is com-

puted by flattening the weight (γ, δ) using the twisted action of the symmetric group
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Non-commutative Desingularizations II 19

Sm. (Technically, we must flatten (λ∗, γ ∗), where λ∗ = −w0λ and w0 is the long word in

Sm. However, it is easy to see that the result is the same, since passing to the dual

Grassmannian replaces (λ∗, γ ∗) with (γ, λ).) This means that the adjacent transpositions

σi = (i, i + 1) act on a weight α = (α1, . . . , αm) by σi · α= (α1, . . . , αi+1 + 1, αi − 1, . . . , αm). If

there exists a permutation τ such that τ · (γ, λ) is dominant (i.e., weakly decreasing), then

the only non-vanishing cohomology is

Hl(τ )(G, LλQ∨ ⊗ LγR∨)= Lτ ·(γ,λ)F,

where l(τ ) is the length of τ ’s expansion in adjacent transpositions. If there exists no

such τ , or equivalently τ · (γ, λ)= (γ, λ) for some non-trivial τ ∈ Sm, then all cohomology

of LλQ∨ ⊗ LγR∨ vanishes.

We can describe the algorithm equivalently by defining the action of Sm via σi ·
α = σi(α + ρ)− ρ, where ρ = (m − 1,m − 2, . . . ,1,0). If α + ρ contains a repetition, there

is no cohomology.

Note that in this procedure γ and λ are not assumed to have non-negative entries.

We write α = α+ + α− for the decomposition of a weight α into positive and negative

parts, and |α| = |α+| + |α−| for the signed area of α.

We need a combinatorial lemma. (A similar argument in [25] allowed us to

simplify our original argument significantly.) The LγR∨ appearing in the Littlewood–

Richardson decomposition of Lα
′R ⊗ Lβ

′R∨, for α, β ∈ Bl,m−l , will have γi �−l for all i.

Lemma 5.4. Let γ = (γ1, . . . , γm−l) and λ= (λ1, . . . , λl) be dominant weights. Assume that

γi �−l for all i. If Hk(G, LλQ∨ ⊗ LγR∨) �= 0 for some k, then −γ− ⊆ λ′ and k�−|γ−|. In

particular, if Ht−|λ|+|γ |(G, LλQ∨ ⊗ LγR∨) �= 0 for some t, then t − |λ|� |γ+|. �

Proof. We have to show that the negative part of γ is contained in the first columns

of λ. If γ has no negative entries, we are of course done. Set s = −γm−l � l and

assume s> 0. Then λ can have at most l − s zero entries, for otherwise (γ, λ)+ ρ =
(γ1 + m − 1, . . . , γm−l−1 + l + 1, l − s, λ1 + l − 1, . . . , λl) would have a repetition of l − s

and all cohomology would vanish. The result of partially flattening γm−l is there-

fore (γ1, . . . , γm−l−1, λ1 − 1, . . . , λs − 1,0, λs−1, . . . , λl) and λs − 1 � 0. Since γm−l−1 �−s, we

may repeat the argument with the weight (γ1, . . . , γm−l−1, λ1 − 1, . . . , λs − 1) to see that

(λ1 − 1, . . . , λs − 1) can have at most s − γm−l−1 zero entries. Iterate. The last sentence is

clear from |γ | = |γ+| + |γ−|. �

Recall that we use the notation α↗ β to indicate that β is obtained from α by

adding a single box.

 at Syracuse U
niversity L

ibrary on July 28, 2015
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


20 R.-O. Buchweitz et al.

5.1 Computation of Extt for t= 0, 1, 2

We apply Bott’s algorithm first with t = 0 to compute HomA(Sβ, Sα) as a sanity check.

Theorem 5.3 asks us to compute

⊕
λ∈Bl,n

H−|λ|+|γ |(G, LλQ∨ ⊗ LγR∨)⊗ Lλ
′
G∨

for all γ such that LγR∨ appears in Lα
′R ⊗ Lβ

′R∨. By the lemma, if this cohomol-

ogy is non-zero, then we must have −|λ|� |γ+|, which since λ is non-negative forces

λ= (0, . . . ,0) and γ+ = (0, . . . ,0). The lemma furthermore implies −γ− ⊆ λ′, so γ is also

the zero partition. This occurs only when α= β, and we obtain

HomA(Sβ, Sα)=
⎧⎨
⎩K if α= β and

0 otherwise,

as expected.

For t = 1, 1 − |λ|� |γ+| implies either λ= (0, . . . ,0) or λ= (1, . . . ,0). In the first

case, we find γ− = 0 and γ+ can be either (0, . . . ,0) or (1, . . . ,0). The first choice for γ leads

to H1(G,OG)= 0, and the second to H0(G,R∨)= F . In the second case, we have γ+ = 0 and

γ− = (0, . . . ,0) or (0, . . . ,−1) since −γ− ⊆ λ′. Here the first choice gives no cohomology and

the second contributes H1(G,Q∨ ⊗ R)= K.

A direct summand of the form L(1,0,...,0)R∨ appearing in Lα
′R ⊗ Lβ

′R∨ implies that

α′ ⊆ β ′ and β ′ differs from α′ in exactly one entry, where β ′
i = α′

i + 1, so α↗ β. Similarly,

the appearance of L(0,...,0,−1)R∨ indicates that β is the result of removing a box from α.

Thus,

Ext1
A(Sβ, Sα)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F if α↗ β,

G∨ if β ↗ α, and

0 otherwise.

The case t = 2 requires considering several cases corresponding to |λ| = 0,1,2.

If λ is the zero partition, then γ− = 0 and γ+ is one of (0, . . . ,0), (1, . . . ,0), (2, . . . ,0)

or (1,1,0, . . . ,0). These are all already dominant, so contribute only H0, so we obtain

H0(G,Sym2R∨)= Sym2 F and H0(G,
∧2R∨)=∧2 F . These γ correspond to obtaining β ′

by adding to α′, respectively, two boxes not in the same column and two boxes not in the

same row.

In case λ= (1,0, . . . ,0) then |γ+|� 1 and −|γ−|� 1. The case γ = (0, . . . ,0) gives

no cohomology. If γ = (0, . . . ,0,−1), then one swap gives the zero partition so we find
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Non-commutative Desingularizations II 21

a contribution to H1 but none to H2. If γ = (1,0, . . . ,0,−1), then we obtain H1(G,Q∨ ⊗
L(1,0,...,0,−1)R∨)= F . These γ correspond to the β ′ obtained by adding one box to α′ and

removing one box. Finally, if λ= (1,0, . . . ,0) and γ = (1,0, . . . ,0), then we again have no

cohomology, unless γ has just one entry, in which case m − l = 1 and we get H0(G,Q∨ ⊗
R∨)= L(1,1,0,...,0)F =∧2 F . This arises from α′ ↗ β ′.

Assume λ= (1,1,0, . . . ,0). Then γ+ = 0 and the possibilities for γ− are (0, . . . ,0),

(0, . . . ,0,−1), and (0, . . . ,0,−2). The first and second cases lead to no cohomology,

while the third possibility takes two swaps to give the zero partition, so H2(G,
∧2Q ⊗

L(0,...,0,−2)R∨)= K. This γ appears when α′ is obtained by adding two boxes to β ′, not in

the same row.

Lastly suppose λ= (2,0, . . . ,0). Then again γ+ = 0 and now the possibilities for

γ− are (0, . . . ,0), (0, . . . ,0,−1), and (0, . . . ,0,−1,−1). The first case gives no cohomology

unless m − l = 1 = l, in which case (0,2) flattens in one swap to (1,1) and we get a contri-

bution to H1 but none to H0. The second case flattens in one step to (0, . . . ,0,1,0, . . . ,0),

which gives no cohomology if m − l > 1 and H1(G,Sym2Q ⊗ L(0,...,0,−1)R∨)= F if

m − l = 1. This occurs when α′ ↗ β ′. The third case flattens to the zero partition in two

swaps, so gives H2(G,Sym2Q ⊗ L(0,...,0,−1,−1)R∨)= K. This occurs when α′ is obtained by

adding two boxes to β ′, not in the same column.

Analyzing the ways in which the LγR∨ appearing above can appear in Lα
′R ⊗

Lβ
′R∨, we arrive at the final results. If m − l > 1, then Ext2

A(Sβ, Sα) is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sym2 F if α↗↗ β, two boxes in a column,∧2 F if α↗↗ β, two boxes in a row,

Sym2 F ⊕∧2 F ∼= F ⊗ F if α↗↗ β, two disconnected boxes,

F ⊗ G∨ if α �= β and α↗ δ, β ↗ δ, for some δ ∈ Bl,m−l ,

(F ⊗ G∨)⊕(t(α)−1) if α = β,

Sym2G∨ if β ↗↗ α, two boxes in a column,∧2G∨ if β ↗↗ α, two boxes in a row,

Sym2G∨ ⊕∧2G∨ ∼= G∨ ⊗ G∨ if β ↗↗ α, two disconnected boxes.

(5.1)

Here t(α) is the number of ways to add a box to α without passing out of the sides of the

box Bl,m−l . This is the case corresponding to γ = (1,0, . . . ,0,−1) and α = β.

In the case of maximal minors, where m − l = 1, some of the cases above

do not occur and also we have some additional contributions to Ext2. In that case
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22 R.-O. Buchweitz et al.

we find

Ext2
A(Sβ, Sα)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Sym2 F if α↗↗ β, two boxes in a column,

Sym2G∨ if β ↗↗ α, two boxes in a column,∧2 F ⊗ G∨ if α↗ β,

F ⊗∧2G∨ if β ↗ α.

Remark 5.5. The computation of Ext2(Sβ, Sα) when m − l = 1 appears already in [5,

Example 10.3], and the cubic relations between adjacent vertices in the last two lines

above are reflected in the commutativity relations on the quiverized Clifford algebra in

[5, Remark 7.6]. See Proposition A.10 for an explanation of their disappearance when

m − l > 1. �

6 The Young Quiver with Pieri Relations

We continue to assume that K is a field of characteristic zero.

Now we give an explicit description of the non-commutative desingularization

as a path algebra of a certain quiver with relations. The vertices of the quiver are iden-

tified with partitions α ∈ Bl,m−l , or alternatively with the corresponding vector bundles

Nα = p′∗LαQ on Z, or again with the corresponding MCM R-modules Nα. The arrows

from α to β will, in accordance with Example 5.1, correspond to (a basis of) F ∨ if α↗ β,

and to (a basis of) G if β ↗ α. To define an explicit action of the arrows on the modules

or bundles, however, requires a bookkeeping device.

Fix a K-vector space V of dimension d. For irreducible (rational) representations

LαV and LβV of GL(V), we know that the tensor product LαV ⊗ LβV has a canonical

decomposition into irreducibles
⊕

γ (L
γV)c

γ

αβ with multiplicities cγαβ , but in general the

decomposition projectors are defined only up to some choices of bases for the vector

spaces HomGL(V)(LαV ⊗ LβV, LγV). To avoid making these choices, we introduce the fol-

lowing notation.

Definition 6.1. Let α1, . . . , αr and β1, . . . , βs be dominant weights for GL(V), and set

Lβ1···βs
α1···αr

= HomGL(V)(L
α1 V ⊗ · · · ⊗ Lαr V, Lβ1 V ⊗ · · · ⊗ Lβs V). �

The spaces L
β1···βs
α1···αr satisfy various easily verified properties. Denote by α∗

the dominant weight corresponding to the dual representation (LαV)∨ = HomGL(V)

(LαV, K).
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Proposition 6.2. Let α1, . . . , αr, β1, . . . , βs be dominant weights and let σ ∈ Sr. We have

canonical (basis-independent) isomorphisms

(i) L
β1···βs
α1···αr =L

β1···βs
ασ(1)···ασ(r) ;

(ii) L
β1···βs
α1···αr =L

β1···βsα
∗
r

α1···αr−1 ;

(iii) L
β1···βs
α1···αr =⊕

γ L
β1···βs
γαi+1···αr ⊗ L

γ
α1···αi ;

(iv) (L
β1···βs
α1···αr )

∨ =L
α1···αr
β1···βs

. �

The cases of (iv) we will use most often are the identifications

(L
β

1α)
∨ =L1α

β and (L
β

1∗α)
∨ =L1∗α

β .

Here

L
β

1α
∼=
⎧⎨
⎩K if α↗ β and

0 otherwise;

L
β

1∗α
∼=
⎧⎨
⎩K if β ↗ α and

0 otherwise.

In particular, these properties yield a “categorified Pieri rule” yielding a canonical

decomposition

V ⊗ LαV ∼=
⊕
β

LβV ⊗ (L
β

1α)
∨,

and similarly

V∨ ⊗ LαV ∼=
⊕
β

LβV ⊗ (L
β
1∗α)

∨,

where the sum in each case is over all partitions β. More generally, we have a “categori-

fied Littlewood–Richardson rule”

LαV ⊗ LβV =
⊕
γ

LγV ⊗ (L
γ

αβ)
∨

and the dimensions of the spaces L
γ

αβ are given by the usual Littlewood–Richardson

numbers cγαβ . There is no canonical choice of bases for the spaces Lαβγ , but see Section 7.

Now we are ready to define the (truncated) Young quiver and its action on the

tilting bundle. Return to the notation set in Section 1, so that F ∨ and G are K-vector

spaces of ranks m and n, respectively, and l <min{m,n}.
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Definition 6.3. Let Y be the quiver having vertices labeled by dominant weights α for

GL(l), and arrows α −→ β indexed by⎧⎨
⎩L

β
1α ⊗ F ∨ if α↗ β and

L
β

1∗α ⊗ G if β ↗ α.

Further let Yl,m−l be the subquiver of Y obtained by deleting all vertices α having more

than l rows or more than m − l columns, as well as all the arrows incident to them. �

To define a ring homomorphism from the path algebra K[Yl,m−l ] to the non-

commutative desingularization A= EndOZN , we must define an action of the arrows

on the summands Nα = p′∗LαQ.

Proposition 6.4. There is a ring homomorphism K[Yl,m−l ] −→ EndOZ (N ). �

Proof. As in the proof of Proposition 3.5, let ψ : q′∗(G ⊗ S)−→ q′∗(F ⊗ S) be the pullback

of the generic map of free S-modules to Z, and let (V, θ) be a point of Z. The fiber of the

dual ψ∨ over (V, θ) factors as

F ∨ −→ V∨ −→ G∨

so we have induced maps of bundles

p′∗π∗F ∨ −→ p′∗Q−→ p′∗π∗G∨.

Tensoring with Nα = p′∗LαQ and an appropriate L, we obtain natural maps

L
β
1α ⊗ p′∗π∗F ∨ ⊗ p′∗LαQ−→L

β
1α ⊗ p′∗Q ⊗ p′∗LαQ−→ p′∗LβQ,

L
β
1∗α ⊗ p′∗π∗G ⊗ p′∗LαQ−→L

β
1∗α ⊗ p′∗Q∨ ⊗ p′∗LαQ−→ p′∗LβQ

(6.1)

for all β such that α↗ β, respectively, β ↗ α.

Thus, K[Y] acts on N and in fact K[Yl,m−l ] acts since N contains only bundles Nα

with α ∈ Bl,m−l . �

To identify the kernel of the homomorphism of Proposition 6.4, observe that if

γ is obtained by adding two boxes to α, we have canonical decompositions into one-

dimensional spaces

L
γ

11α =L
γ

[2]α ⊕ L
γ

[11]α, (6.2)

L
γ

11α =
⊕

α↗β↗γ

L
γ

1β ⊗ L
β

1α. (6.3)
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If the two boxes are added in the same row, respectively, column, then L
γ

[11]α = 0, respec-

tively, Lγ[2]α = 0, and the sum in (6.3) has only one summand. If, however, the two boxes

are in different rows and columns, each of (6.2) and (6.3) provides the two-dimensional

space L
γ

11α with a basis defined up to scalar multiples, but these bases are not the same,

even up to scalars.

Similarly, we have the canonical decompositions

Lα1∗1∗γ =Lα[2]∗γ ⊗ Lα[11]∗γ , (6.4)

Lα1∗1∗γ =
⊕

α↗β↗γ

Lα1∗β ⊗ L
β

1∗γ , (6.5)

which again define two essentially different bases for Lα1∗1∗γ .

If γ is obtained by moving a box in α from row i to row j, then we have canonical

isomorphisms

L
γ

11∗α =
⊕
β

L
γ

1β ⊗ L
β
1∗α, (6.6)

L
γ

1∗1α =
⊕
β

L
γ

1∗β ⊗ L
β
1α. (6.7)

As long as i �= j, the space L
γ

11∗α is again one-dimensional and acquires two different

basis elements from the sums (6.6) and (6.7), each of which has only one non-zero

summand.

Finally, for each partition α the dimension of the space Lα11∗α is equal to the

number of addable boxes in α, or equivalently the number of ways to remove a box from

α and obtain a dominant weight. (We allow the removal of a “phantom” box below the

lowest row of α.) Again this space has a canonical decomposition into one-dimensional

spaces

Lα11∗α =
⊕
β

Lα1β ⊗ L
β
1∗α, (6.8)

Lα1∗1α =
⊕
β

Lα1∗β ⊗ L
β
1α. (6.9)

We use these decompositions (6.2)–(6.9) of the universal coefficient spaces to

define the relations on Yl,m−l .

Definition 6.5. We impose relations I on the Young quiver Y generated by the following

subspaces of K[Y]2.
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26 R.-O. Buchweitz et al.

(i) For γ obtained by adding two boxes to α,

ker

⎛
⎜⎜⎝ ⊕
α↗β↗γ

L
γ

1β ⊗ F ∨ ⊗ L
β

1α ⊗ F ∨ −→
L
γ

[2]α ⊗ Sym2 F ∨

⊕
L
γ

[11]α ⊗∧2 F ∨
=L

γ

11α ⊗ F ∨ ⊗ F ∨

⎞
⎟⎟⎠ .

(ii) For γ obtained by deleting two boxes from α,

ker

⎛
⎜⎜⎝ ⊕
α↗β↗γ

Lα1∗β ⊗ G ⊗ L
β

1∗γ ⊗ G −→
Lα[2]∗γ ⊗ Sym2G

⊕
Lα[11]∗γ ⊗∧2G

=Lα1∗1∗γ ⊗ G ⊗ G

⎞
⎟⎟⎠ .

(iii) For γ obtained by moving a box in α from row i to row j �= i,

ker

⎛
⎜⎜⎝

L
γ

1α−εi
⊗ F ∨ ⊗ L

α−εi
1∗α ⊗ G

⊕
L
γ

1∗α+ε j
⊗ G ⊗ L

α+ε j

1α ⊗ F ∨
−→L

γ

11∗α ⊗ F ∨ ⊗ G

⎞
⎟⎟⎠ .

(iv) For each partition α,

ker

⎛
⎜⎜⎜⎜⎜⎝

⊕
α↗β

Lα1∗β ⊗ G ⊗ L
β

1α ⊗ F ∨

⊕⊕
β↗α

Lα1β ⊗ F ∨ ⊗ L
β
1∗α ⊗ G

−→Lα11∗α ⊗ F ∨ ⊗ G

⎞
⎟⎟⎟⎟⎟⎠ .

In each case the indicated maps are defined by the canonical decompositions (6.2)–(6.9),

together with the natural surjections F ∨ ⊗ F ∨ −→ Sym2 F ∨, F ∨ ⊗ F ∨ −→∧2 F ∨, etc.

We apply these relations to the truncated Young quiver Yl,m−l as well, keeping in

mind that any path traveling outside Bl,m−l is zero. �

Proposition 6.6. The relations listed in Definition 6.5 act trivially on N , thus induce a

ring homomorphism K[Yl,m−l ]/(relations)−→ EndOZ (N ). �

Proof. This amounts to checking in each case that the composition of two arrows in

the quiver maps to the Hom-space by the obvious projection. For example, in case (i) the

composition of maps Nα −→Nβ −→Nγ , where α↗ β ↗ γ , is given by the pullback of the

evaluation

Hom(Q ⊗ LβQ, LγQ)⊗ Q ⊗ Hom(Q ⊗ LαQ, LβQ)⊗ Q ⊗ LαQ−→ LγQ.
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Shuffling the tensor products around and using the fixed splitting Q ⊗ Q= Sym2Q ⊕∧2Q, we can rewrite this as

Hom((Sym2Q ⊕∧2Q)⊗ LαQ, LγQ)⊗ (Sym2Q ⊕∧2Q)⊗ LαQ−→ LγQ,

so that the map is nothing but the natural projection. Similar manipulations take care

of the other cases. �

To show that the vector spaces of relations defined in Definition 6.5, after restric-

tion to Yl,m−l , have the dimensions predicted by (5.1), we must verify that the maps

⊕
β∈Bl,m−l

L
γ

1β ⊗ L
β
1α −→L

γ

[2]α ⊕ L
γ

[11]α, (6.10)

⊕
β∈Bl,m−l

Lα1∗β ⊗ L
β

1∗γ −→Lα[2]∗γ ⊕ Lα[11]∗γ , (6.11)

(L
α−εi+ε j

1α−εi
⊗ L

α−εi
1∗α )⊕ (L

α−εi+ε j

1∗α+ε j
⊗ L

α+ε j

1α )−→L
α−εi+ε j

11∗α , (6.12)

⊕
α↗β

β∈Bl,m−l

Lα1∗β ⊗ L
β
1α ⊕

⊕
β↗α

β∈Bl,m−l

Lα1β ⊗ L
β
1∗α −→Lα11∗α, (6.13)

obtained by restricting all α, β, γ, α − εi and α + ε j to lie in the box Bl,m−l , remain surjec-

tive. Our proof of this fact relies on an explicit computation relating two bases for Lα11∗α.

In order not to disrupt the flow of the argument, we postpone this computation to the

next section. See Corollary 7.16.

Lemma 6.7. Assume m − l > 1. The restricted maps (6.10)–(6.13) are surjective. The

spaces of relations between two vertices α, γ ∈ Bl,m−l of Yl,m−l are thus given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sym2 F ∨ if α↗↗ γ, two boxes in a column,∧2 F ∨ if α↗↗ γ, two boxes in a row,

Sym2 F ∨ ⊕∧2 F ∨ ∼= F ∨ ⊗ F ∨ if α↗↗ γ, two disconnected boxes,

F ∨ ⊗ G if α �= γ , and α↗ β, γ ↗ β, for some β with β1 � m − l,

(F ∨ ⊗ G)⊕(t(α)−1) if α= γ,

Sym2G if γ ↗↗ α, two boxes in a column,∧2G if γ ↗↗ α, two boxes in a row,

Sym2G ⊕∧2G ∼= G ⊗ G if γ ↗↗ α, two disconnected boxes,
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where t(α) is the number of ways to add a box to α without making any row longer

than m − l. �

Proof. The statements about (6.10)–(6.12) are clear, since if one of the intermediate par-

titions lies outside Bl,m−l , then so does γ and the target of the map vanishes.

Fix α ∈ Bl,m−l . There is exactly one dominant weight ρ /∈ Bl,m−l such that ρ↗ α,

namely the result of deleting the phantom box below the lowest row of α. Thus, the sum

⊕
β↗α

β∈Bl,m−l

Lα1β ⊗ L
β
1∗α

has r(α)− 1 summands, where r(α) is the total number of ways to add a box to α.

There are two cases, depending on whether the first row of α has maximal length.

If α1 <m − l, then there are no β /∈ Bl,m−l with α↗ β, so that

⊕
α↗β

β∈Bl,m−l

Lα1∗β ⊗ L
β
1α −→Lα11∗α

is an isomorphism, and (6.13) is surjective. In this case, we have t(α)= r(α), and the

kernel of (6.13) has dimension r(α)− 1 = t(α)− 1.

If on the other hand α1 = m − l, then there is exactly one partition σ /∈ Bl,m−l

with α↗ σ . To show that (6.13) is onto, it suffices to see that the images of the one-

dimensional spaces Lα1∗σ ⊗ Lσ1α and Lα1ρ ⊗ L
ρ
1∗α do not coincide in Lα11∗α. This follows

from Corollary 7.16; the matrix relating the two Pieri bases for Lα11∗α has no non-

zero entries, so no element of one basis is a scalar multiple of an element of the

other basis. Now t(α)= r(α)− 1 in this case, so that the kernel of (6.13) has dimension

(r(α)− 1)+ (r(α)− 1)− r(α)= r(α)− 2 = t(α)− 1. �

Remark 6.8. In the case m − l = 1, Lemma 6.7 fails; there are cubic minimal relations

in the quiver [5, Remark 7.6]. See Proposition A.10 for another point of view on their

disappearance when m − l > 1. �

Theorem 6.9. Assume m − l > 1. The homomorphism K[Yl,m−l ]/(relations)−→ A=
EndOZ (N ) is an isomorphism. Thus, A is isomorphic to the bound path algebra of the

Young quiver Yl,m−l having vertices α ∈ Bl,m−l and arrows α−→ β indexed by bases for

⎧⎨
⎩F ∨ if α↗ β and

G if β ↗ α,

with Pieri relations as indicated in Lemma 6.7. �
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Proof. The computation of Ext0,1,2
A (Sβ, Sα) for simple A-modules Sα and Sβ in

Example 5.1 shows that A is a quotient of K[Yl,m−l ] with relations generated by

(Ext2
A(Sγ , Sα)∨)α,γ . We also have a surjection K[Yl,m−l ]/(relations)−→ A. The induced

endomorphism K[Yl,m−l ] −→ K[Yl,m−l ] may not be the identity, but the map K[Yl,m−l ] −→
A is GL(F )× GL(G)-equivariant, and there is a unique such map up to scaling arrows.

We may therefore rescale to assume that the induced endomorphism of K[Yl,m−l ] is the

identity.

Write I for the ideal of relations. Take graded pieces of degree 2 to obtain the

following commutative diagram of vector spaces.

0 I2 K[Yl.m−l ]2 K[Yl,m−l ]2/I2 0

0 〈Ext2
A(Sγ , Sα)∨〉α,γ K[Yl,m−l ]2 A2 0

Now, the dashed arrow is injective, whence an isomorphism since I2 has the same

dimension as 〈Ext2
A(Sγ , Sα)∨〉α,γ by Example 5.1. It follows that K[Yl,m−l ] −→ A is an iso-

morphism. �

7 Pieri Systems

To extract a really explicit description of the non-commutative desingularization A from

Theorem 6.9, as well as to finish the proof of Lemma 6.7 and thereby Theorem 6.9,

we must compute the non-diagonal surjections (F ∨ ⊗ F ∨)2 	 F ∨ ⊗ F ∨, (G ⊗ G)2 	 G ⊗
G, and (F ∨ ⊗ G)⊕ (G ⊗ F ∨)	 F ∨ ⊗ G in Definition 6.5. Equivalently, we must choose

bases for the one-dimensional universal vector spaces appearing in the canonical

decompositions

L
γ

[2]α ⊕ L
γ

[11]α =L
γ

11α =
⊕

α↗β↗γ

L
γ

1β ⊗ L
β
1α,

Lα[2]∗γ ⊕ Lα[11]∗γ =Lα1∗1∗γ =
⊕

α↗β↗γ

Lα1∗β ⊗ L
β

1∗γ ,

⊕
β

L
γ

1β ⊗ L
β

1∗α =L
γ

1∗1α =
⊕
β

L
γ

1∗β ⊗ L
β

1α,

⊕
β

Lα1β ⊗ L
β
1∗α =Lα1∗1α =

⊕
β

Lα1∗β ⊗ L
β
1α,

(7.1)

where in the first two equations γ is obtained by adding two boxes to α and in the third

equation α and γ are related by moving a box from one row to another.
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There is no canonical way to make these choices, but there is a coherent set of

choices due to Olver [16, 18], see also [19, 21]. We do not give the details of the intricate

construction of Olver’s maps, but instead we characterize the choices one can make and

show how they determine the scalars in the quiver.

It is more convenient below to work with L1α
β rather than the canonically isomor-

phic space Lα1∗β . This replacement gives isomorphic maps to those in Definition 6.5, so

makes no difference for the purpose of identifying the relations.

Throughout this section, K is a field of characteristic zero and V is a vector space

of dimension d. Let εi be the vector (0, . . . ,0,1,0, . . . ,0) with 1 at the ith position.

Pieri’s theorem tells us

V ⊗ LαV ∼=
⊕

i

Lα+εi V ⊗ L1α
α+εi

,

where L1α
α+εi

is one-dimensional if α + εi is still a partition, and zero otherwise. A Pieri

system is a family of non-zero GL(V)-equivariant linear maps

χα,i : Lα+εi V −→ V ⊗ LαV.

These maps are unique up to non-zero scalars. One easily deduces that for i < j such

that α + εi and α + ε j are partitions one has that

HomGL(V)(L
α+εi+ε j V,V ⊗ V ⊗ LαV)

is two-dimensional with basis

χα,i, j = (1 ⊗ χα,i) ◦ χα+εi , j,

χα, j,i = (1 ⊗ χα, j) ◦ χα+ε j ,i.

V ⊗ Lα+εi V

V ⊗ V ⊗ LαV Lα+εi+ε j

V ⊗ Lα+ε j V

1⊗χα,i χα+εi , j

χα+ε j ,i1⊗χα, j

Let χ+
α,i, j and χ−

α,i, j be obtained by postcomposing χα,i, j, respectively, with the

symmetrization map V ⊗ V −→ Sym2V and the anti-symmetrization map V ⊗ V −→∧2V . By Pieri’s theorem for symmetric and exterior powers, we also know that
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both HomGL(V)(Lα+εi+ε j V,Sym2V ⊗ LαV) and HomGL(V)(Lα+εi+ε j V,
∧2V ⊗ LαV) are one-

dimensional. Furthermore, these spaces are clearly spanned by {χ+
α,i, j, χ

+
α, j,i} and

{χ−
α,i, j, χ

−
α, j,i}, respectively. This means we can define scalars (well defined but not a priori

finite or non-zero at this stage)

γ+
α,i, j = χ+

α, j,i

χ+
α,i, j

, γ−
α,i, j = χ−

α, j,i

χ−
α,i, j

.

We call (γ+
α,i, j), (γ

−
α,i, j) the (symmetric, exterior) characteristic ratios of the Pieri system

(χα,i).

We say that two Pieri systems χ, χ ′ are equivalent (notation: χ ∼ χ ′) if there are

(cα)α ∈ K∗, with α running through the partitions, such that

χ ′
α,i = cα+εi

cα
χα,i.

Clearly, two equivalent Pieri systems have the same characteristic ratios.

The following summarizes what we know about Pieri systems.

Proposition 7.1. Let (χα,i)α,i be a Pieri system with characteristic ratios (γ+
α,i, j)α,i, j,

(γ−
α,i, j)α,i, j.

(i) The characteristic ratios are finite and non-zero.

(ii) We have
γ+
α,i, j

γ−
α,i, j

= u− 1

u+ 1
,

where

u= 1

(i − αi − 1)− ( j − α j − 1)
. (7.2)

We have written u in this peculiar way to emphasize how it depends on the

added boxes (i, αi + 1), ( j, α j + 1).

(iii) Assume that α is a partition and i < j < k are such that α + εi, α + ε j, α + εk

are partitions. Then we have

γ+
α+εk,i jγ

+
α,ikγ

+
α+εi , jk = γ+

α, jkγ
+
α+ε j ,ikγ

+
α,i j,

γ−
α+εk,i jγ

−
α,ikγ

−
α+εi , jk = γ−

α, jkγ
−
α+ε j ,ikγ

−
α,i j.

(7.3)

(iv) Two Pieri systems with the same characteristic ratios are equivalent.

(v) We can fix either the symmetric or the exterior characteristic ratios of a

Pieri system arbitrarily provided they satisfy (7.3). �
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Remark 7.2. Olver constructs an explicit Pieri system, which we call the classical

system, from the combinatorics of Young tableaux. Part (i) of the theorem appears

in [18, Lemma 8.3] and in [16, Section 3], where it is stated for the inverse maps

ϕα+εi ,i : V ⊗ LαV −→ Lα+εi V (see Definition 7.10). A detailed proof of the non-vanishing

of χ+
α,i, j appears in [21, Lemma 1.6], and their proof is easily modified to apply as well

to χ−
α,i, j.

Sam and Weyman also compute [21, Corollary 1.8] the scalar multipliers γ±
α,i, j

for the classical system (though the expression in [21] for γ− should be preceded by

a minus sign), and Sam’s “PieriMaps” package implements the calculation of χ+ in

Macaulay2 [20].

It follows from part (v) that we may set γ+ = 1 or γ− = 1, but not both. Indeed,

the canonical (basis-free) isomorphisms

L[2]α
α+εi+ε j

⊕ L[11]α
α+εi+ε j

=L11α
α+εi+ε j

= (L
1α+εi
α+εi+ε j

⊗ L1α
α+εi

)⊕ (L
1α+ε j
α+εi+ε j

⊗ L1α
α+ε j

)

define four one-dimensional subspaces of the two-dimensional space L11α
α+εi+ε j

. Such a

configuration is essentially classified by a single invariant, the cross-ratio, which is

independent (up to sign) of all choices. This is the origin of the constant in part (ii) of

the theorem. In [18, Section 8], Olver shows how to renormalize the classical system so

that γ+ = 1.

Note also that (7.3) is automatically satisfied if γ±
α,i, j depends only on the added

boxes (i, αi + 1), ( j, α j + 1). In other words, we may put

γ+
α,i, j = 1 − u, γ−

α,i, j = −(1 + u)

with u as in (7.2). These happen to be the characteristic ratios for the classical system.

See Lemma 7.7 and Remark 7.8. �

7.1 Schur–Weyl duality

For α a partition with |α| = n, let Hα be the corresponding irreducible representation

of Sn. Consider the contravariant functor D : Rep(Sn)−→ Rep(GL(V)) which sends H to

HomSn(H,V⊗n). Let S be the full subcategory of Rep(Sn) spanned by the Hα such that α

has >d parts. Then D defines a duality between Rep(Sn)/S and the full subcategory of

Rep(GL(V)) consisting of polynomial representations. We also have

D(IndSa+b
Sa×Sb

(H1 ⊗ H2))=D(H1)⊗ D(H2)

for H1, H2 representations of Sa, Sb, respectively.

 at Syracuse U
niversity L

ibrary on July 28, 2015
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Non-commutative Desingularizations II 33

We may take LαV =D(Hα). For partitions λ1, . . . , λk, α, put

�Lλ
1···λk

α = HomSc1 ×···×Sck
(Hλ1 ⊗ · · · ⊗ Hλk,ResSa

Sc1 ×···×Sck
Hα),

where |λi| = ci, |α| = a. Then

Lλ
1···λk

α = HomGL(V)(D(Hα),D(Hλ1)⊗ · · · ⊗ D(Hλk))

= HomSa(IndSa
Sc1 ×···×Sck

(Hλ1 ⊗ · · · ⊗ Hλk), Hα)

= HomSc1 ×···×Sck
(Hλ1 ⊗ · · · ⊗ Hλk,ResSa

Sc1 ×···×Sck
Hα)

= �Lλ
1···λk

α .

We will denote the so obtained canonical isomorphism �Lλ
1···λk

α
∼=Lλ

1···λk

α also by D. As in

Proposition 6.2, we have canonical isomorphisms:

⊕
λ

Lβλα ⊗ Lδελ −→Lβδεα , ϕ1 ⊗ ϕ2 �→ (1 ⊗ ϕ2) ◦ ϕ1.

Likewise we have canonical isomorphisms

⊕
λ

�Lβλα ⊗ �Lδελ −→ �Lβδεα , θ1 ⊗ θ2 �→ (1 ⊗ θ1) ◦ θ2.

One easily checks that these decompositions are compatible, that is,

D((1 ⊗ θ1) ◦ θ2)= (1 ⊗ D(θ2)) ◦ D(θ1).

In particular, we see that the canonical decomposition

L1···1
α =

⊕
λ1,...,λn=α

L1
λ1 ⊗ L1λ1

λ2 ⊗ · · · ⊗ L1λn−1

λn (7.4)

is the image under D of the corresponding canonical decomposition

Hα = �L1···1
α =

⊕
λ1,...,λn=α

�L1
λ1 ⊗ �L1λ1

λ2 ⊗ · · · ⊗ �L1λn−1

λn . (7.5)

The right-hand side of (7.5) is precisely the decomposition into one-dimensional sub-

spaces of Hα given by a Young basis. This observation is due to Jucys [13, 14] and is the

basis for the new approach to the representation theory of the symmetric group in [17,

Equation (1.2)].

Below we follow the setup of [17] but we formulate the results directly in terms

of the decomposition (7.4).
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7.2 The Pieri complex

The claims (iv) and (v) in Proposition 7.1 can be proved directly, but this is notation-

ally somewhat cumbersome. Therefore, we prefer to deduce them from some topological

considerations. This is based on the fact that a certain cubical complex is contractible.

We define the Pieri complex P as the cubical set whose non-degenerate h-cubes

are given by tuples (α, i1, . . . , ih) such that 1 � i1 < · · ·< ih � d and such that α is a parti-

tion with at most d parts with the property that for all 1� u� h we have that α + εiu is

also a partition. Thus, the vertices of P are simply the partitions with at most d rows. We

say that (α′, i′
1, . . . , i

′
h′) is a face of (α, i1, . . . , ih) if either α′ = α and {i′

1, . . . , i
′
h′ } ⊂ {i1, . . . , ih},

or α′ = α + εi j for some j ∈ {1, . . . ,u} and {i′
1, . . . , i

′
h′ } ⊂ {i1, . . . , î j, . . . , ih}. (The reader should

have no difficulty visualizing (α, i1, . . . , ih) as an h-dimensional hypercube; see Figure 1

for inspiration.) The following is our basic result about P.

Proposition 7.3. The geometric realization |P| of P is contractible. �

Proof. By construction, |P| is a CW complex. For s � 0, let P�s ⊂ P be the subcomplex of

faces that contain only vertices α with |α|� s. We first claim that |P�s−1| is a deformation

retract of |P�s|.
If α is a vertex in P�s but not in P�s−1, then it belongs to a unique maximal face

�= (α′, i1, . . . , ih) in P�s and all other vertices of � lie in P�s−1. Thus, two different such

maximal faces intersect each other in P�s−1.

Therefore, it is sufficient to retract each such maximal face individually to its

intersection with |P�s−1|. The following picture shows this schematically for a 2-cube.

Hence, each |P�s| is contractible. So |P| is contractible as well (see, e.g., [1, Theorem

5.1.35]). �

7.3 Proof of Proposition 7.1

We start by constructing a particular Pieri system using the results of [17]. For simplic-

ity, we encode a chain of partitions

∅ ↗ α1 ↗ α2 ↗ · · · ↗ αn = α
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by a standard tableau T of shape α where αi is the shape of T�i which is by definition

the subtableau of T containing only the letters 1, . . . , i. For a partition α, we denote by

diag(α) the set of standard tableaux of shape α. The symmetric group Sn partially acts

on diag(α) by permuting the entries of the tableaux. If T ∈ diag(α), then we write α= |T |.
We put

LT =L1α1

α2 ⊗ · · · ⊗ L1αn−1

αn

so that (7.4) becomes

L1···1
α =

⊕
T∈diag(α)

LT .

Let Tα be the tableau with 1, . . . , αi in the first row, αi + 1, . . . , α1 + α2 in the second row,

and so on. We write T =wT Tα for wT ∈ Sn. We put l(T)= l(wT ) (see [17, Remark 6.3]). If

T ∈ diag(α), then a transposition s = (i, i + 1) is admissible with respect to T if i and

i + 1 are neither in the same row nor in the same column. We say that an admissible

transposition is strongly admissible if it increases l(T). This happens if and only if it

moves the i + 1 box upward.

Following [17], we fix a non-zero vector vTα in LTα for every partition α. For

T ∈ diag(α), we define vT ∈LT as the projection of wTvTα ∈L1···1
α on LT .

Proposition 7.4 (see [17, Proposition 5, Equation (7.3), and (7.4)]). Let T ∈ diag(α) and let

s = (i, i + 1) be a transposition. Then the following hold.

(i) If i and i + 1 are in the same row in T, then

svT = vT .

(ii) If i and i + 1 are in the same column in T, then

svT = −vT .

(iii) If s is strongly admissible with respect to T and T ′ = sT, then

svT = vT ′ + uvT ,

svT ′ = −uvT ′ + (1 − u2)vT

(7.6)

with

u= 1

(k − αk − 1)− (l − αl − 1)

with k, l being the rows of i and i + 1, respectively. �
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Note that the case where s is admissible but not strongly admissible follows by

exchanging T and T ′.

The following lemma is a slight extension of [17, Equation (7.2)].

Lemma 7.5. (i) Let w ∈ Sn and T ∈ diag(α). Then

wvT =
∑

R∈diag(α), l(R)�l(T)+l(w)

γRvR

for some γR ∈Q.

(ii) Assume in addition that w is a product of strongly admissible transposi-

tions. Then

wvT = vwT +
∑

R∈diag(α), l(R)<l(wT)

γRvR

for some γR ∈Q. �

Proof. Assertion (i) follows easily from Proposition 7.4 by writing w as a composition

of transpositions.

For the second statement, write w= sw′ where s is a strongly admissible trans-

position and w′ is a product of strongly admissible transpositions. By induction, we

have

w′vT = vw′T +
∑

R∈diag(α), l(R′)<l(w′T)

γ ′
R′vR′

so that we obtain

wvT = svw′T +
∑

R′∈diag(α), l(R′)<l(w′T)

γ ′
R′svR′

= vwT + uvw′T +
∑

R′∈diag(α), l(R′)<l(w′T)

γ ′
R′svR′

= vwT +
∑

R∈diag(α), l(R)<l(wT)

γRvR,

where in the second line we have used (7.6) and in the third line we have invoked the

first part of the lemma. �

Assume now that T ∈ diag(α) and that β = α + εi is a partition. Let T ′ be obtained

from T by adjoining a box labeled n+ 1 at the end of row i. Thus, T ′ ∈ diag(β).
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We now have vT ∈LT , vT ′ ∈LT ′ . Since LT ′ =LT ⊗ L1α
β , we may choose χc

T,i ∈L1α
β such

that vT ⊗ χc
T,i and vT ′ correspond to each other. The following key result makes everything

work.

Lemma 7.6. The map χc
T,i is independent of the choice of T ∈ diag(α). �

Proof. If is sufficient to prove that for any T we have χc
T,i = χc

Tα,i. Consider wT ∈ Sn as an

element of Sn+1. Let T ′
α be obtained from Tα by adjoining a box labeled n+ 1 at the end

of row i. If we write wT ∈ Sn as a product of strongly admissible transpositions, then

it remains a product of strongly admissible transpositions with respect to T ′
α, when

considered as an element of Sn+1. Furthermore, we have vT ′ =wTvT ′
α
.

Let i : LT −→L1···1
α , p: L1···1

α −→LT be, respectively, the injection and the projec-

tion and let cS,S′ : LS −→LS′ be the linear morphism which sends vS to vS′ . We have the

following diagram.

LTα ⊗ L1α
β LT ′

α

L1···1
α ⊗ L1α

β L1···1
β

L1···1
α ⊗ L1α

β L1···1
β

LT ⊗ L1α
β LT ′

i⊗1

cTα ,T ⊗1

i

cT ′
α ,T ′wT ⊗1 wT

p⊗1 p

The commutativity of the leftmost trapezoid is by definition. The commutativity of

the middle square is clear. The commutativity of the rightmost trapezoid follows from

Lemma 7.5(ii). The commutativity of the upper and lower trapezoid is again by construc-

tion. From this, it is easy to see that the outer square is commutative which proves the

lemma. �

We now write χc
α,i = χc

T,i for T ∈ diag(α) chosen arbitrarily. Thus, (χc
α,i)α,i is a par-

ticular Pieri system.

Lemma 7.7. The symmetric and exterior characteristic ratios of (χc
α,i)α,i are, respec-

tively, given by

γ c+
α,i, j = 1 − u,

γ c−
α,i, j = −1 − u

(7.7)

with u as in (7.6). �
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Proof. Assume that α, α + εi, α + ε j are partitions and i < j. We have the decomposition

L
1α+εi
α+εi+ε j

⊗ L1α
α+εi

⊕ L
1α+ε j
α+εi+ε j

⊗ L1α
α+ε j

∼=L11α
α+εi+ε j

.

To determine the characteristic ratios, we have to compose this with the canonical maps

L11α
α+εi+ε j

−→L[2]α
α+εi+ε j

,

L11α
α+εi+ε j

−→L[11]α
α+εi+ε j

.

After left-multiplying everything with an arbitrary LT , T ∈ diag(α), we may then use

Equations (7.6) to compute the characteristic ratios, taking into account that s acts by

±1 after projecting to the symmetric, respectively, exterior square. It is easy to see that

we obtain indeed (7.7). �

Proof of Proposition 7.1.

(i) It is sufficient to prove this for (χc
α,i)α,i where it follows directly from

Lemma 7.7.

(ii) One easily checks that the ratio γ+/γ− is the same for every Pieri system.

Again the conclusion follows from Lemma 7.7.

(iii) This follows by writing down the six possible maps LαV −→ V ⊗ V ⊗ V ⊗
LαV that can arise as compositions of maps in the Pieri system and apply-

ing the symmetrization V ⊗ V ⊗ V −→ Sym3V and anti-symmetrization V ⊗
V ⊗ V −→∧3V to them.

(iv) Assume that (χ1
α,i)α,i, (χ

2
α,i)α,i are Pieri systems with the same characteristic

ratios. Put μα,i = χ2
α,i

/
χ1
α,i. Then

μα+εi , j · μα,i
μα, j · μα+ε j ,i

= 1. (7.8)

We have to find cα ∈ K∗ such that

μα,i = cα+εi

cα
. (7.9)

The condition (7.8) implies that μ represents a cocycle in the cochain com-

plex C•(P, K∗). Since P is contractible by Proposition 7.3, μ must be a

coboundary. This amounts precisely to μ being writable in the form (7.9).
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(v) We will only discuss the symmetric characteristic ratios. The exterior char-

acteristic ratios are entirely similar. Assume we want to construct a Pieri

system (χα,i)α,i with prescribed γ+
α,i, j satisfying (7.3). Put δα,i, j = γ+

α,i, j/γ
c+
α,i, j.

Then δ satisfies the equation

δα+εi , jkδα,ikδα+εk,i j

δα, jkδα+ε j ,ikδα,i j
= 1. (7.10)

We put χα,i =μα,iχ
c
α,i. It follows that μα,i must satisfy

μα+εi , j · μα,i
μα, j · μα+ε j ,i

= δα,i, j. (7.11)

The condition (7.10) implies that δ represents a cocycle in the cochain

complex C•(P, K∗). Since P is contractible by Proposition 7.3, δ must

be a coboundary. This amounts precisely to δ being writable in the

form (7.11). �

Remark 7.8. If we combine Proposition 7.1(iv), Remark 7.2, and Lemma 7.7, we see that

the classical Pieri system constructed by Olver is equivalent to (χc
α,i)α,i. Recall that the

construction of (χc
α,i)α,i depends on the choice of a basis element in LTα for each partition.

Since we do not need it we have not verified which basis element one should take to

obtain equality rather than equivalence. �

Remark 7.9. We extend the definitions of γ±
α,i, j to include the possibilities i = j or

αi = α j by

γ+
α,i,i = 1 and γ−

α,i,i = 0,

while

γ+
α,i, j = 0 and γ−

α,i, j = 1

if αi = α j. �

We also require basis vectors for the one-dimensional spaces Lα1α−εi
.

Definition 7.10. A compatible pair of Pieri systems consists of two families of non-zero

equivariant maps

χα,i : Lα+εi V −→ V ⊗ LαV,

ϕα,i : V ⊗ Lα−εi V −→ LαV
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such that for each α the composition

Lα+εi V
χα,i−→ V ⊗ LαV

ϕα+εi ,i−−−→ Lα+εi V (7.12)

is the identity on Lα+εi V . �

One can of course make other choices of normalization for the compatibility

condition in Definition 7.10. One natural choice is to require that (7.12) is given by mul-

tiplication by the scalar dimK LαV . This complicates the formulas below only slightly.

The relations among the maps in a dual Pieri system are completely determined

by the compatibility condition (7.12) and the relations in Proposition 7.1. Let α be a

partition and i < j such that α + εi and α + ε j are both partitions, so we have the picture

below.
V ⊗ Lα+εi V

V ⊗ V ⊗ LαV Lα+εi+ε j

V ⊗ Lα+ε j V

ϕα+εi+ε j , j1⊗ϕα+εi ,i

1⊗ϕα+ε j , j
ϕα+εi+ε j ,i

Set
ϕα,i, j = ϕα+εi+ε j ,i ◦ (1 ⊗ ϕα+ε j , j),

ϕα, j,i = ϕα+εi+ε j , j ◦ (1 ⊗ ϕα+εi ,i).

Let ϕ+
α,i, j ∈L

α+εi+ε j

[2]α and ϕ−
α,i, j ∈L

α+εi+ε j

[11]α be obtained by symmetrizing, respectively, anti-

symmetrizing the input, and define characteristic ratios

δ+
α,i, j = ϕ+

α, j,i

ϕ+
α,i, j

, δ−
α,i, j = ϕ−

α, j,i

ϕ−
α,i, j

.

Proposition 7.11. Let (χα,i) and (ϕα,i) be a compatible pair of Pieri systems and let (γ+
α,i, j),

(γ−
α,i, j) be the characteristic ratios for (χα,i). Then

(i) The characteristic ratios δ±
α,i, j are finite and non-zero.

(ii) We have

δ+
α,i, j = −γ−

α,i, j and δ−
α,i, j = −γ+

α,i, j.

In particular,
δ+
α,i, j

δ−
α,i, j

= γ−
α,i, j

γ+
α,i, j

= u+ 1

u− 1
,

where u is as in (7.2). �
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Proposition 7.11 follows immediately from the next lemma, which will also be

used in results below. Observe that

ϕα,i, jχα, j,i = ϕα+εi+ε j ,i(1 ⊗ ϕα+ε j , j)(1 ⊗ χα, j)χα+ε j ,i

= 1

as a map Lα+εi+ε j V −→ V ⊗ V ⊗ LαV −→ Lα+εi+ε j V . We wish to compute ϕ±
α,i, jχ

±
α, j,i, which

amounts to understanding the effect of inserting the projectors V ⊗ V −→ Sym2V −→
V ⊗ V and V ⊗ V −→∧2V −→ V ⊗ V .

Note on the other hand that ϕα, j,iχα, j,i = 0. Indeed,

ϕα, j,iχα, j,i = ϕα+εi+ε j , j(1 ⊗ ϕα+εi ,i)(1 ⊗ χα, j)χα+ε j ,i

and the middle two maps (1 ⊗ ϕα+εi ,i)(1 ⊗ χα, j) comprise

1 ⊗ ϕα+εi ,iχα, j : V ⊗ Lα+ε j V −→ V ⊗ V ⊗ LαV −→ V ⊗ Lα+εi V,

but there are no non-zero maps Lα+ε j V −→ Lα+εi V .

Lemma 7.12. We have

ϕ+
α,i, jχ

+
α, j,i = −γ+

γ− − γ+ = ϕ−
α, j,iχ

−
α,i, j, (7.13)

ϕ−
α,i, jχ

−
α, j,i = γ−

γ− − γ+ = ϕ−
α, j,iχ

+
α,i, j, (7.14)

where γ± = γ±
α,i, j. �

Proof. Suppress α from the notation, writing simply ϕi j, etc. Applying

Hom(Lα+εi+ε j V,−) to the composition Lα+εi+ε j V −→ V ⊗ V ⊗ LαV −→ Lα+εi+ε j V , we

see that computing ϕ±
i jχ

±
ji is the same as finding the image of χ±

ji ∈L11α
α+εi+ε j

under the

sequence of maps

L11α
α+εi+ε j

L
1,α+ε j
α+εi+ε j

L
α+εi+ε j
α+εi+ε j

.
(1⊗ϕα+ε j , j)◦− ϕα+εi+ε j ,i◦−

We know that χ ji �→ 1 and that χi j �→ 0, so we have only to rewrite the basis {χ+
ji, χ

−
ji} in

terms of the basis {χi j, χ ji}. We have

χi j = χ+
i j + χ−

i j = 1

γ+χ
+
ji + 1

γ−χ
−
ji,

χ ji = χ+
ji + χ−

ji .
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Inverting the 2 × 2 matrix [ 1/γ+ 1/γ−
1 1

] gives

χ+
ji = γ+γ−

γ− − γ+

(
χi j − 1

γ−χ ji

)
,

χ−
ji = γ+γ−

γ− − γ+

(
−χi j + 1

γ+χ ji

)
.

(7.15)

Composing with ϕi j gives the first equality in each of (7.13) and (7.14). A similar argu-

ment establishes the other; alternatively, note that interchanging i and j just amounts

to replacing γ± by 1/γ±. �

Given a pair of partitions α, γ such that α + ε j = γ + εi we obtain two composi-

tions of Pieri maps

V ⊗ LαV

V ⊗ V ⊗ LλV

LβV

V ⊗ V ⊗ LλV

V ⊗ LγV

1⊗χλ,i
ϕβ, j

τ⊗1

χγ,i

1⊗ϕγ, j

(7.16)

where τ : V ⊗ V −→ V ⊗ V denotes the swap, β = α + ε j = γ + εi and λ= α − εi = γ − ε j.

The diagram (7.16) is not commutative; there are non-trivial quadratic relations on the

Young quiver relating the two paths.

There are two cases to consider, according to whether α = γ .

Assume first that α �= γ . Then L
1γ
1α is one-dimensional, so we may define another

scalar

mα,i, j = (1 ⊗ ϕγ, j)(τ ⊗ 1)(1 ⊗ χλ,i)

χγ,iϕβ, j
(7.17)

equal to the ratio of the two paths around the diagram above.

In the other case α = γ , the space L1α
1α is no longer one-dimensional, rather, has

dimension equal to the number of ways to add a box to α to obtain a partition. This is

equal to the number of ways to remove a box from α leaving a dominant weight. Denote

this number r(α), let Δα be the set of indices i such that α + εi is a partition, and let ∇α

be the set of indices j such that α − ε j is a dominant weight.

 at Syracuse U
niversity L

ibrary on July 28, 2015
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Non-commutative Desingularizations II 43

The canonical decompositions

L1α
1α =

⊕
i∈Δα

L1α
α+εi

⊗ L
α+εi
1α

=
⊕
j∈∇α

L1α
11α−ε j

⊗ L
11α−ε j

1α

equip the r(α)-dimensional space L1α
1α with two bases, (χα,iϕα+εi ,i)i∈Δα and ((1 ⊗ ϕα, j)

(τ ⊗ 1)(1 ⊗ χα−ε j , j)) j∈∇α . We adopt the convention that the former, corresponding to

adding, and then removing boxes, is the “natural” basis. Then for each j ∈ ∇α, there are

uniquely defined scalars cα,i, j such that

(1 ⊗ ϕα, j)(τ ⊗ 1)(1 ⊗ χα−ε j , j)=
∑
i∈Δα

cα,i, jχα,iϕα+εi ,i. (7.18)

To compute the scalars mα,i, j and cα,i, j, we need the following lemma.

Lemma 7.13. We have

ϕα, j,i(τ ⊗ 1)χα,i, j = γ− + γ+

γ− − γ+ ,

ϕα,i, j(τ ⊗ 1)χα,i, j = −2

γ− − γ+ ,

where as before γ± = γα,i, j. �

Proof. As in the proof of Lemma 7.12, we abbreviate χα,i, j as χi j and so on. Also as in

that proof, write χ±
i j in terms of χi j and χ ji:

χ+
i j = 1

γ− − γ+ (γ
−χi j − χ ji),

χ−
i j = 1

γ− − γ+ (−γ+χi j + χ ji).

Since τ acts as +1 on Sym2V and −1 on
∧2V , we have

(τ ⊗ 1)χi j = χ+
i j − χ−

i j

= 1

γ− − γ+ ((γ
− + γ+)χi j − 2χ ji),

and the desired formulas follow since ϕ jiχi j = 1 and ϕi jχi j = 0. �
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Proposition 7.14. Let α, γ be partitions such that α + ε j = γ + εi for some i �= j. Set

β = α + ε j = γ + εi and λ= α − εi = γ − ε j as in (7.16). Then

mα,i, j = −2

γ−
λ,i, j − γ+

λ,i, j

. �

Proof. Apply Hom(LβV,−) to the diagram (7.16) to obtain the pentagon below.

L1α
β

L11λ
β

L
β

β

L11λ
β

L
1γ
β

(1⊗χλ,i)◦−
ϕβ, j◦−

τ⊗1

χγ,i◦−
(1⊗ϕγ, j)◦−

(7.19)

At the top of (7.19), we have the basis element χα, j ∈L1α
β . Following this vector down the

right-hand side of the diagram, we find at the bottom

χγ,iϕβ, jχα, j = χγ,i ∈L
1γ
β .

On the other hand, χα, j maps leftward to

(1 ⊗ χλ,i)χα, j = χλ,i, j ∈L11λ
β .

By the definition of mα,i, j, we have

(1 ⊗ ϕγ, j)(τ ⊗ 1)χλ,i, j = mα,i, jχγ,i ∈L
1γ
β .

Then composing with ϕβ,i gives

ϕλ,i, j(τ ⊗ 1)χλ,i, j = ϕβ,i(1 ⊗ ϕγ, j)(τ ⊗ 1)χλ,i, j

= mα,i, jϕβ,iχγ,i

= mα,i, j.

Now Lemma 7.13 finishes the proof. �
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Proposition 7.15. Let i, j be such that α + εi is a partition and α − ε j is a dominant

weight. Then

cα,i, j =
γ+
α−ε j ,i, j + γ−

α−ε j ,i, j

γ+
α−ε j ,i, j − γ−

α−ε j ,i, j

. �

Proof. Fix k∈Δα, and pre-compose Equation (7.18) with χα,k while post-composing with

ϕα+εk,k. On the right-hand side, the result is

∑
i∈Δα

cijϕα+εk,kχα,iϕα+εi ,iχα,k.

For i �= k, note that ϕα+εk,kχα,i : Lα+εi V −→ V ⊗ LαV −→ Lα+εk is the zero map. Hence, the

entirety of the right-hand side is

ckjϕα+εk,kχα,kϕα+εk,kχα,k = ckj.

On the other side, we obtain

ϕα+εk,k(1 ⊗ ϕα, j)(τ ⊗ 1)(1 ⊗ χα−ε j , j)χα,k = ϕα−ε j ,k, j(τ ⊗ 1)χα−ε j , j,k

=
γ−
α−ε j , j,k + γ+

α−ε j , j,k

γ−
α−ε j , j,k − γ+

α−ε j , j,k

by Lemma 7.13. To get the result in terms of γ±
α−ε j ,k, j, replace each γ appearing by its

reciprocal. �

Corollary 7.16. For any Pieri system, any α, and any i, j, we have cα,i, j �= 0. �

Proof. If γα−ε j ,i, j = −γα−ε j ,i, j, then 1 − u= 1 + u, so that u= 0, which is impossible by the

definition of u. �

This finishes the proof of Lemma 6.7 and therefore Theorem 6.9.

Remark 7.17. If the given Pieri system (χα,i) is equivalent to the classical system, so

that γ+
α,i, j = 1 − u and γ−

α,i, j = −(1 + u) with

u= 1

(i − αi − 1)− ( j − α j − 1)
,

then the other scalars can also be written in terms of u:

δ+
α,i, j = u− 1; δ−

α,i, j = u+ 1;

mα,i, j = 1;
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and

cα,i, j = u

u+ 1
. �

We finish the section by making explicit the relations on the Young quiver

(Definition 6.5).

Theorem 7.18. Let (χα,i), (ϕα,i) be a choice of a compatible pair of Pieri systems, and let

γ±
α,i, j, δ

±
α,i, j be the characteristic ratios for (χα,i), (ϕα,i), respectively. Let α, γ ∈ Bl,m−l . The

relations on the truncated Young quiver between the vertices labeled α and γ are the

kernels of the following linear maps.

(i) If γ is obtained by adding two boxes to α in rows i < j, the map

(F ∨ ⊗ F ∨)⊕2 −→ F ∨ ⊗ F ∨ defined by

(λ1 ⊗ λ2, λ
′
1 ⊗ λ′

2) �→ λ1 ⊗ λ2 + 1
2 [(γ+

α,i, j + γ−
α,i, j)λ

′
1 ⊗ λ′

2 + (γ+
α,i, j − γ−

α,i, j)λ
′
2 ⊗ λ′

1].

(ii) If γ is obtained by removing two boxes from α in rows i < j, the map

(G ⊗ G)⊕2 −→ G ⊗ G defined by

(g1 ⊗ g2, g
′
1 ⊗ g′

2) �→ g1 ⊗ g2 + 1
2 [(δ+

α,i, j + δ−
α,i, j)g

′
1 ⊗ g′

2 + (δ+
α,i, j − δ−

α,i, j)g
′
2 ⊗ g′

1]

= g1 ⊗ g2 − 1
2 [(γ+

α,i, j + γ−
α,i, j)g

′
1 ⊗ g′

2 + (γ+
α,i, j − γ−

α,i, j)g
′
2 ⊗ g′

1].

(iii) If γ is obtained by moving a box in α from row i to row j > i, the map

(F ∨ ⊗ G)⊕2 −→ F ∨ ⊗ G defined by

(λ⊗ g, λ′ ⊗ g′) �→ λ⊗ g + mα,i, jλ
′ ⊗ g′

= λ⊗ g + 2

γ+
α,i, j − γ−

α,i, j

λ′ ⊗ g′.

(iv) If γ = α, the map (F ∨ ⊗ G)⊕(t(α)+r(α)−1) −→ (F ∨ ⊗ G)⊕(r(α)) defined by

((λi ⊗ gi)i∈Δ′
α
, (λ′

j ⊗ g′
j) j∈∇′

α
) �→

⎛
⎝λi ⊗ gi +

∑
j∈∇′

α

cα,i, jλ
′
j ⊗ g′

j

⎞
⎠

i∈Δ′
α

=
⎛
⎝λi ⊗ gi +

∑
j∈∇′

α

γ+
α−ε j ,i, j + γ−

α−ε j ,i, j

γ+
α−ε j ,i, j − γ−

α−ε j ,i, j

λ′
j ⊗ g′

j

⎞
⎠

i∈Δ′
α

,

where Δ′
α is the set of indices i such that α + εi ∈ Bl,m−l , ∇′

α is similarly the

set of indices j with α − ε j ∈ Bl,m−l , t(α) is the number of ways to add a box
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to α without making any row longer than m − l, and r(α) is the total number

of ways to add a box to α. �

8 Example: Grass(2, 4)

Let us compute the quiver and some of the relations for the first non-trivial exam-

ple, (m,n, l)= (4,4,2). As a matter of notational convenience, we denote the vertices

Nα = p′∗LαQ of the quiver by the corresponding Young diagrams. We live inside the box

B2,2, and therefore have the quiver below.

∅

F ∨

G

F ∨

F ∨

F ∨

G
F ∨

G

G

G

F ∨
G

In this picture, each arrow F ∨ : α −→ α + εi represents L
α+εi
1α ⊗ F ∨, while each G : α +

εi −→ α represents Lα1∗α+εi
⊗ G. The action of the linear maps on the bundles Nα is via

the natural maps (6.1).

Even more explicitly, if we fix bases {λ1, . . . , λ4} and {g1, . . . , g4} for F ∨ and G,

then each such arrow stands for four arrows labeled by ϕα+εi ,i ⊗ λk, respectively, χα,i ⊗ gk,

where (χα,i) and (ϕα,i) is a chosen pair of compatible Pieri systems.

Let us write down a particular compatible pair of Pieri systems. In fact, it is

just as easy to write down a pair of Pieri systems for all partitions α = (p,q) with at

most two rows. The corresponding Schur functor L(p,q)V is a quotient of (
∧2V)⊗q ⊗

Symp−qV , modulo certain exchange-type relations. For example, in the case of ,

we have

u∧ v ⊗ w + v ∧ w ⊗ u+ w ∧ u⊗ v = 0.

We denote a general element of L(p,q)V by

q∏
k=1

(uk ∧ vk)⊗ x,

where x = x1 · · · xp−q ∈ Symp−qV . Further denote by xı̂ the product x1 · · · x̂i · · · xp−q with xi

deleted.
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Define χ(p,q),1 : L(p+1,q)V −→ V ⊗ L(p,q)V by

q∏
k=1

(uk ∧ vk)⊗ x �→
p−q+1∑

i=1

xi ⊗
q∏

k=1

(uk ∧ vk)⊗ xı̂

+ 1

p− q + 2

q∑
j=1

⎛
⎝uj ⊗ xi ∧ v j ⊗

∏
k�= j

(uk ∧ vk)⊗ xı̂

+v j ⊗ uj ∧ xi ⊗
∏
k�= j

(uk ∧ vk)⊗ xı̂

⎞
⎠

and χ(p,q),2 : L(p,q+1)V −→ V ⊗ L(p,q)V by

q+1∏
k=1

(uk ∧ vk)⊗ x �→
q+1∑
i=1

⎛
⎝ui ⊗

∏
k�=i

(uk ∧ vk)⊗ vix − vi ⊗
∏
k�=i

(uk ∧ vk)⊗ uix

⎞
⎠ .

We also define the dual Pieri maps ϕ(p+1,q),1 : V ⊗ L(p,q)V −→ L(p+1,q) by

w ⊗
q∏

k=1

(uk ∧ vk)⊗ x �→ (p− q + 2)

(p+ 2)(p− q + 1)

q∏
k=1

(uk ∧ vk)⊗ wx

and ϕ(p,q+1),2 : V ⊗ L(p,q)V −→ L(p,q+1)V by

w ⊗
q∏

k=1

(uk ∧ vk)⊗ x �→ 1

(q + 1)(p− q + 1)

p−q∑
i=1

w ∧ xi ⊗
q∏

k=1

(uk ∧ vk)⊗ xı̂.

It is a soothing combinatorial exercise to prove that each of these maps is well

defined and that ϕ(p,q)+εi ,i is a left inverse for χα,i.

We point out that these are essentially the classical Pieri systems of Olver, as we

shall confirm below (at least up to equivalence) by computing the characteristic ratios.

For the six partitions of interest, the formulas simplify:

χ∅,1 : −→ V ⊗ ∅, u �→ u⊗ 1,

χ ,1 : −→ V ⊗ , uv �→ u⊗ v + v ⊗ u,

χ ,2 : −→ V ⊗ , u∧ v �→ u⊗ v − v ⊗ u,

χ
,1

: −→ V ⊗ , u∧ v ⊗ w �→w ⊗ u∧ v + 1
2 (u⊗ w ∧ v + v ⊗ u∧ w),

χ ,2 : −→ V ⊗ , u∧ v ⊗ w �→ u⊗ vw − v ⊗ uw,
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χ
,2

: −→ V ⊗ , t ∧ u⊗ v ∧ w �→ t ⊗ v ∧ w ⊗ u− u⊗ v ∧ w ⊗ t

+ v ⊗ t ∧ u⊗ w − w ⊗ t ∧ u⊗ v,

ϕ ,1 : V ⊗ ∅ −→ , u⊗ 1 �→ u,

ϕ ,1 : V ⊗ −→ , u⊗ v �→ 1
2 uv,

ϕ
,2

: V ⊗ −→ , u⊗ v �→ 1
2 u∧ v,

ϕ
,1

: V ⊗ −→ , u⊗ v ∧ w �→ 2
3v ∧ w ⊗ u,

ϕ
,2

: V ⊗ −→ , u⊗ vw �→ 1
3 (u∧ v ⊗ w + u∧ w ⊗ v),

ϕ
,2

: V ⊗ −→ , u⊗ v ∧ w ⊗ t �→ 1
4 u∧ t ⊗ v ∧ w.

Let us verify the relations across the central diamond.

V ⊗

V ⊗ V ⊗

V ⊗

1⊗χ ,1 χ ,2

χ
,1

1⊗χ ,2

One computes the characteristic ratios

γ+
,1,2 = χ+

,2,1

χ+
,1,2

= 3

2
and γ−

,1,2 = χ−
,2,1

χ−
,1,2

= −1

2
.

Observe that

γ+
,1,2 = 1 − u and γ−

,1,2 = −1 − u,

where

u= 1

(1 − p− 1)− (2 − q − 1)
= −1

p− q + 1
= −1

2
,

are the characteristic ratios of Olver’s classical Pieri system, cf. Lemma 7.7 and

Remark 7.8. One checks laboriously that the same holds true for all the (χ(p,q),i) defined

above. In particular, we verify

γ+
,1,2

γ−
,1,2

= 3/2

−1/2
= −3 = u− 1

u+ 1
.
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The relation in the reverse direction across the central diamond is also easy to

compute.
V ⊗

V ⊗ V ⊗

V ⊗

ϕ
,21⊗ϕ ,1

1⊗ϕ
,2

ϕ
,1

One finds

δ+
,1,2 = ϕ+

,2,1

ϕ+
,1,2

= 1

2

and

δ−
,1,2 = ϕ−

,2,1

ϕ−
,1,2

= −3

2

in accordance with Proposition 7.11.

We can also compute the relation corresponding to moving a box downward in

to obtain , finding

m ,1,2 =
(1 ⊗ ϕ

,2
)(τ ⊗ 1)(1 ⊗ χ ,1)

χ
,1
ϕ

,2

= 1/2

1/2
= 1.

Of course, this matches Proposition 7.14 and Remark 7.17:

m ,1,2 = −2

γ−
,1,2 − γ+

,1,2

= −2

−1/2 − 3/2
= 1.

Finally, in order to compute the relation at a single vertex, say α = , we write

all of the 2-cycles leaving α via L
11α−ε j

1α ⊗ G (removing a box) in terms of the basis of L1α
1α

given by those cycles leaving via L
α+εi
1α (adding a box). We have Δα = {1,2} and

V ⊗
χ ,1

ϕ ,1

ϕ
,2

χ ,2

χ ,1ϕ ,1 : u⊗ v �→ 1
2 uv �→ 1

2 (u⊗ v + v ⊗ u),

χ ,2ϕ ,2
: u⊗ v �→ 1

2 u∧ v �→ 1
2 (u⊗ v − v ⊗ u).
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In the other direction, we have

(1 ⊗ ϕ ,1)(τ ⊗ 1)(1 ⊗ χ∅,1) : u⊗ v �→ u⊗ v ⊗ 1 �→ v ⊗ u⊗ 1 �→ v ⊗ u.

Thus,

(1 ⊗ ϕ ,1)(τ ⊗ 1)(1 ⊗ χ∅,1)= (χ ,1ϕ ,1)− (χ ,2 ◦ ϕ
,2
)

and

c ,1,1 = 1 while c ,2,1 = −1.

This is a somewhat trivial example, coming down to γ+
∅,1,1 = 1, γ−

∅,1,1 = 0, γ+
∅,1,2 = 0, and

γ−
∅,1,2 = 1.

The action of the quiver on the bundles Nα is defined in terms of the adjoints

χ#
α,i : V∨ ⊗ Lα+εi V −→ LαV of the Pieri maps χα,i : Lα+εi V −→ V ⊗ LαV defined above. We

denote the trace pairing Tr: V∨ ⊗ V −→ K by λ⊗ v �→ λ(v).

χ#
∅,1 : V∨ ⊗ −→ ∅, λ⊗ u �→ λ(u),

χ#
,1 : V∨ ⊗ −→ , λ⊗ uv �→ λ(u)v + λ(v)u,

χ#
,2 : V∨ ⊗ −→ , λ⊗ u∧ v �→ λ(u)v − λ(v)u,

χ#

,1
: V∨ ⊗ −→ , λ⊗ u∧ v ⊗ w �→ λ(w)u∧ v

+ 1
2 (λ(u)w ∧ v + λ(v)u∧ w),

χ#
,2 : V∨ ⊗ −→ , λ⊗ u∧ v ⊗ w �→ λ(u)vw − λ(v)uw,

χ#

,2
: V∨ ⊗ −→ , λ⊗ t ∧ u⊗ v ∧ w �→ λ(t)v ∧ w ⊗ u− λ(u)v ∧ w ⊗ t

+ λ(v)t ∧ u⊗ w − λ(w)t ∧ u⊗ v.

The characteristic ratios of these adjoint maps are equal to those of the

originals.

Now the relations on the quiver are clear. For instance, between ∅ and we have∧2 F ∨ = 0, that is,

(ϕ ,1 ⊗ λk)(ϕ ,1 ⊗ λl)− (ϕ ,1 ⊗ λl)(ϕ ,1 ⊗ λk)= 0

for all k, l = 1, . . . ,4, or more compactly λkλl = λlλk.
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Across the central diamond, we have relations defined by the kernel of

(λr ⊗ λs, λt ⊗ λu) �→ λr ⊗ λs + 1
2 [(γ+

α,i, j + γ−
α,i, j)λt ⊗ λu + (γ+

α,i, j − γ−
α,i, j)λu ⊗ λt]

= λr ⊗ λs + 1
2 [( 3

2 − 1
2 )λt ⊗ λu + ( 3

2 + 1
2 )λu ⊗ λt]

= λr ⊗ λs + 1
2λt ⊗ λu + λu ⊗ λt.

This kernel is of course isomorphic to F ∨ ⊗ F ∨. Similarly, from to we have relations

defined by the kernel of

(gr ⊗ gs, gt ⊗ gu) �→ gr ⊗ gs − 1
2 gt ⊗ gu − gu ⊗ gt.

Since m ,1,2 = 1 (see Remark 7.17), the vertical relation across the central dia-

mond is just the commutativity relation.

Finally, at the vertex we have relations defined by the kernel of

(λa ⊗ gb, λc ⊗ gd, λe ⊗ gf ) �→ (λa ⊗ gb + λe ⊗ gf , λc ⊗ gd − λe ⊗ gf , λa ⊗ gb + 3λc ⊗ gd).
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Appendix. The Quiverized Clifford Algebra

We offer here an alternative approach to the proof of Theorem B, which is conceptually

closer to the spirit of [5], but is a bit too cumbersome for explicit examples due to the

multiple identifications involved.
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Quiverization

Let Γ be a linearly reductive algebraic group over an arbitrary field K and let Γ̌ be the set

of characters of Γ . If α ∈ Γ̌ , then we denote its corresponding irreducible representation

by Sα. The character belonging to the dual representation (Sα)∨ = HomΓ (S
α, K) will be

denoted by α∗. Write ∅ for the character of the trivial representation.

Let mod(Γ ) be the category of rational representations of Γ , and let mod◦
(Γ ) be

the category of collections of vector spaces V = (Vα)α∈Γ̌ . We have functors

Q◦ : mod(Γ )−→ mod◦
(Γ ), V �→ (HomΓ (S

α,V))α∈Γ̌ ,

R◦ : mod◦
(Γ )−→ mod(Γ ), V �→

⊕
β∈Γ̌

Vβ ⊗ Sβ.

The following lemma just expresses the fact that mod(Γ ) is a semisimple

category.

Lemma A.1. The functors Q◦ and R◦ define inverse equivalences of categories. �

Unfortunately, it is not immediately obvious what Q◦ does to the monoidal struc-

ture on mod(Γ ). Therefore, we introduce another monoidal category mod1
(Γ ) which

consists of collections of vector spaces V= (Vα
β )α,β∈Γ̌ with tensor product defined as in

matrix multiplication:

(V ⊗ W)αγ =
⊕
β∈Γ̌

Vα
β ⊗ Wβ

γ .

Furthermore, mod1
(Γ ) acts on mod◦

(Γ ) by

(V ⊗ W)α =
⊕
β∈Γ̌

Vβ
α ⊗ Wβ.

Lemma A.2. There is a fully faithful monoidal functor

Q : mod(Γ )−→ mod1
(Γ ), V �→ (HomΓ (S

β,Sα ⊗ V))αβ,

which is also compatible with the left actions of mod(Γ ) on itself and of mod1
(Γ ) on

mod◦
(Γ ). �

Proof. That Q is fully faithful follows from the fact that it has a left inverse

R: mod1
(Γ )−→ mod(Γ ), V �→

⊕
β∈Γ̌

V∅
β ⊗ Sβ.

That Q is compatible with tensor product is a straightforward verification. �
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From this, we easily obtain the following.

Lemma A.3. If C is an algebra object in mod(Γ ), then Q(C ) is an algebra object in

mod1
(Γ ), and if C is given by generators and relations as a quotient of a tensor algebra,

say, C = TV/I for Γ -representations V and I , then

Q(C )= T(Q(V))/(Q(I )).

Furthermore, Q◦ defines an equivalence between the category modΓ (C ) of left

Γ -equivariant C -modules and the category mod◦
(Q(C )) of left Q(C )-modules in

mod◦
(Γ ). �

Here we understand T(Q(V)) to be the tensor algebra defined in terms of the

natural monoidal structure on mod1
(Γ ).

If D is a subset of Γ̌, then we denote by modD(C ) the Γ -equivariant C -modules

whose characters lie in D. Also write

QD(C )= Q(C )/(eα)α/∈D

for the quotient of Q(C ) by the idempotents eα corresponding to characters α not in D.

Lemma A.4. Let C be an algebra object in mod(Γ ). The equivalence Q◦ : modΓ (C )−→
mod◦

(Q(C )) restricts to an equivalence between modD(C ) and mod(QD(C )). �

We define the indicator spaces L in this more general setting analogously to

Definition 6.1.

Definition A.5. Let α1, . . . , αn, β ∈ Γ̌ , and set

L
α1···αn
β = HomΓ (S

β,Sα1 ⊗ · · · ⊗ Sαn). �

Obvious analogs of the properties in Proposition 6.2 hold in this setting.

Proposition A.6. Let V = (Vα)α and W = (Wα)α ∈ mod◦
(Γ ). Then

Q(R◦(V))βγ = Q

(⊕
α

Vα ⊗ Sα

)β
γ

∼=
⊕
α

Vα ⊗ Lαβγ

and

Q(V ⊗ W)βγ =
⊕
α1,α2

Vα1 ⊗ Wα2 ⊗ Lα1α2β
γ . �
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The canonical isomorphism Q(V ⊗ W)∼= Q(V)⊗ Q(W) is given by

⊕
α1,α2

Vα1 ⊗ Wα2 ⊗ Lα1α2β
γ

∼= Q(V ⊗ W)βγ

∼=
⊕
δ

Q(V)βδ ⊗ Q(W)δγ

∼=
⊕
δ,α1,α2

Vα1 ⊗ L
α1β

δ ⊗ Wα2 ⊗ Lα2δ
γ

combined with the isomorphism

Lα1α2β
γ

∼=
⊕
δ

Lα2δ
γ ⊗ L

α1β

δ

from Proposition 6.2(iii).

The Clifford algebra

We want to use the quiverization recipe above applied to the general linear group, so

from now on we assume that K is a field of characteristic zero.

We fix an arbitrary (m − l)-dimensional vector space U and set F̃ = F ⊗ U∨,

G̃ = G ⊗ U∨. There is a natural pairing

〈−,−〉 : F̃ ∨ × G̃ −→ S,

which is just the inclusion F ∨ ⊗ G −→ S combined with the canonical pairing U ⊗
U∨ −→ K. We extend this pairing to a symmetric bilinear form on (F̃ ∨ ⊕ G̃)× (F̃ ∨ ⊕ G̃)

and thence to a quadratic form b: F̃ ∨ ⊕ G̃ −→ S.

We let C be the associated Clifford algebra of b over S. For a concrete descrip-

tion, choose ordered bases {λ1, . . . , λm}, {g1, . . . , gn}, and {u1, . . . ,um−l} for F ∨, G, and U ,

respectively, and let {u∗
1, . . . ,u

∗
m−l} denote the dual basis for U∨. Then C is the S-algebra

generated by {λi ⊗ ua}i,a and {gj ⊗ u∗
b} j,b subject to the relations

(λi ⊗ ua)(λ j ⊗ ub)+ (λ j ⊗ ub)(λi ⊗ ua)= 0 = (λi ⊗ ua)
2 for i, j = 1, . . . ,m;

(gi ⊗ u∗
a)(gj ⊗ u∗

b)+ (gj ⊗ u∗
b)(gi ⊗ u∗

a)= 0 = (gi ⊗ u∗
a)

2 for i, j = 1, . . . ,n; and

(λi ⊗ ua)(gj ⊗ u∗
b)+ (gj ⊗ u∗

b)(λi ⊗ ua)= δabxij for i = 1, . . . ,m, j = 1, . . . ,n

for all a,b = 1, . . . ,m − l.

Recall that Bl,m−l denotes the set of partitions having at most l rows and at most

m − l columns, which we now think of as representing characters for GL(U )∼= GL(m − l)
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via the identification α↔ Lα
′
U (note the transpose!), where Lα

′
is the Schur functor for

the weight α′.

Definition A.7. The quiverized Clifford algebra is

QBl,m−l (C )= Q(C )/(eα)α/∈Bl,m−l ,

where eα denotes the idempotent corresponding to α. �

To show that the quiverized Clifford algebra is isomorphic to the non-

commutative desingularization, we define a left action on the tilting bundle

N =⊕
α∈Bl,m−l

p′∗LαQ.

Proposition A.8. There is a ring homomorphism Θ : QBl,m−l (C )−→ A= EndOZ (N ). �

Proof. Pulling back the tautological quotient map π∗F ∨ −→Q from G to Z and tensor-

ing with U, we obtain a map

ΦU : q′∗(F ⊗ S)∨ ⊗ U −→ p′∗Q ⊗ U.

Similarly, the fact that Z = Spec (SymOG
(Q ⊗ G)) yields a tautological map p′∗Q ⊗

q′∗(G ⊗ S)−→OZ which we transform into a map

Ψ U : q′∗(G ⊗ S)⊗ U∨ −→ p′∗Q∨ ⊗ U∨.

Now F̃ ∨ maps to the global sections of q′∗(F ⊗ S)∨ ⊗ U and similarly G̃ maps to the

global sections of q′∗(G ⊗ S)⊗ U∨. Thus, F̃ ∨ acts via the map ΦU on
∧

OZ (p
′∗Q ⊗ U ) by

left exterior multiplication, and G̃ acts via the map Ψ U by contraction. It is easy to see

that these two actions satisfy the Clifford relations.

Thus, C acts on
∧

OZ (p
′∗Q ⊗ U ) and hence Q(C ) acts on Q◦(

∧
OZ (p

′∗Q ⊗ U )). By

the Cauchy formula, we have

∧
OZ (p

′∗Q ⊗ U )=
⊕

α∈Bl,m−l

LαQ ⊗ Lα
′
U =

⊕
α∈Bl,m−l

Nα ⊗ Lα
′
U,

and hence

Q◦(
∧

OZ (p
′∗Q ⊗ U ))=

⊕
α∈Bl,m−l

Nα =N .

Thus, Q(C ) acts on N and in fact QBl,m−l (C ) acts since
∧

OZ (p
′∗Q ⊗ U ) contains only rep-

resentations LαQ with weight in Bl,m−l . �
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To prove that Θ is an isomorphism, we must understand QBl,m−l (C ) more con-

cretely. The presentation of C over S yields a presentation of Q(C ) by Lemma A.3, and

hence of QBl,m−l (C ). The generators are easily identified.

Proposition A.9. The quiver for Q(C ) has vertices indexed by the transposes α′ of par-

titions corresponding to representations LαU , and has arrows α′ −→ β ′ indexed by (a

basis of) ⎧⎨
⎩F ∨ if α↗ β and

G if β ↗ α. �

Proof. The Clifford algebra C is generated by F̃ ∨ = F ∨ ⊗ U and G̃ = G ⊗ U∨. We there-

fore compute the generators of Q(C ) as

Q(F ∨ ⊗ U )α
′
β ′ = HomGL(U )(L

βU, LαU ⊗ F ∨ ⊗ U )= F ∨ ⊗ L1α
β

and

Q(G ⊗ U∨)α
′
β ′ = HomGL(U )(L

βU, LαU ⊗ G ⊗ U∨)= G ⊗ L1∗α
β

for two partitions α′, β ′, where the transposes arise because of our identification

α↔ Lα
′
U . These are the natural generators. To have them solely in terms of F ∨ and

G, one can choose basis elements for the one-dimensional spaces L1α
β and L1∗α

β . �

The presentation of C over S can be translated into a presentation over the

ground field K. In the case of maximal minors, we saw [5, Remark 7.6] that this

presentation involves cubic relations of the form λk(λigj + gjλi)= (λigj + gjλi)λk and

gk(λigj + gjλi)= (λigj + gjλi)gk expressing the fact that the polynomial ring S lies in the

center of the algebra. We observe that this phenomenon disappears for smaller minors.

Proposition A.10. If m − l > 1, then the Clifford algebra C is defined by quadratic rela-

tions over K, whence Y is quadratic as well. �

Proof. We have to show that the generators xij = λi ⊗ gj of the polynomial ring are cen-

tral in C , using only the quadratic relations. To show that this element commutes with

the generators λk ⊗ ua and gk ⊗ u∗
a, fix k and a and observe that λk ⊗ ua and gk ⊗ u∗

a each

anticommute with any λi ⊗ ub and gj ⊗ u∗
b for any b �= a. Since m − l > 1, we may choose
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b �= a, and then

λi ⊗ gj = (λi ⊗ ub)(gj ⊗ u∗
b)+ (gj ⊗ u∗

b)(λi ⊗ ub)

commutes with λk ⊗ ua and gk ⊗ u∗
a. The consequence that Y is quadratic follows from

Lemma A.3. �

We can obtain the relations in Q(C ) by quiverization as well, giving an alterna-

tive to Lemma 6.7.

Proposition A.11. Assume m − l > 1. The spaces of relations in Q(C ) between two ver-

tices α′ and γ ′ are given below.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sym2 F ∨ if γ ↗↗ α, two boxes in a column,∧2 F ∨ if γ ↗↗ α, two boxes in a row,

Sym2 F ∨ ⊕∧2 F ∨ ∼= F ∨ ⊗ F ∨ if γ ↗↗ α, two disconnected boxes,

F ∨ ⊗ G if α �= γ, and α↗ β, γ ↗ β, some β,

(F ∨ ⊗ G)⊕(r(α)−1) if α = γ,

Sym2G if α↗↗ γ, two boxes in a column,∧2G if α↗↗ γ, two boxes in a row,

Sym2G ⊕∧2G ∼= G ⊗ G if α↗↗ γ, two disconnected boxes.

Here r(α) denotes the number of rows in which a box can be added to α to obtain a

partition. �

Note that as in Definition 6.5, the embedding in each case is not the obvious

diagonal one, but relies on the canonical decompositions (7.1).

We prove the proposition by considering in turn the quiverizations of the three

kinds of relations on C . These are defined by subspaces of the degree-2 part of the tensor

algebra TS((F̃ ∨ ⊕ G̃)⊗ S), which decomposes

(F̃ ∨ ⊕ G̃)⊗ (F̃ ∨ ⊕ G̃)= (F̃ ∨ ⊗ F̃ ∨)⊕ (G̃ ⊗ G̃)⊕ (F̃ ∨ ⊗ G̃)⊕ (F̃ ∨ ⊗ G̃).

Relations coming from F̃∨

In C , the elements of F̃ ∨ anticommute; equivalently, the relations defining C include the

representation Sym2(F
∨ ⊗ U ). Now

Sym2(F
∨ ⊗ U )= (Sym2 F ∨ ⊗ Sym2U )⊕ (

∧2 F ∨ ⊗∧2U )

 at Syracuse U
niversity L

ibrary on July 28, 2015
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Non-commutative Desingularizations II 59

naturally (for definiteness we take the splitting Sym2 F ∨ −→ F ∨ ⊗ F ∨ sending λμ to 1
2 (λ⊗

μ+ μ⊗ λ)). So in fact we have two types of relations Sym2 F ∨ ⊗ Sym2U and
∧2 F ∨ ⊗∧2U .

We discuss these individually.

For the first case, we need to describe the map Q(Sym2 F ∨ ⊗ Sym2U )−→
Q(Sym2 F ∨)⊗ Q(Sym2U ). Specializing to two vertices α′, γ ′, we need to describe the

induced map

Sym2 F ∨ ⊗ L[2]α
γ = Q(Sym2 F ∨ ⊗ Sym2U )α

′
γ ′

−→
⊕
β ′

Q(F ∨ ⊗ U )β
′
γ ′ ⊗ Q(F ∨ ⊗ U )γ

′
α′

=
⊕
β ′

F ∨ ⊗ L1β
γ ⊗ F ∨ ⊗ L1α

β

= F ∨ ⊗ F ∨ ⊗ L11α
γ .

The map on the F ∨ factors is the natural one Sym2 F ∨ −→ F ∨ ⊗ F ∨, as we have not

really touched F ∨. The inclusion map L[2]α
γ −→L11α

γ is obtained from the canonical

decomposition

L11α
γ = (L11

[2] ⊗ L[2]α
γ )⊕ (L11

[11] ⊗ L[11]α
γ ).

There are three essentially different possibilities for α′, γ ′.

(i) γ ′ is obtained from α′ by adding two boxes to a row. In this case, there is

a unique β ′ such that α′ ↗ β ′ ↗ γ ′. By the Littlewood–Richardson rule, we

have L[11]α
γ = 0 and hence

L11α
γ =L[2]α

γ =L1β
γ ⊗ L1α

β .

The corresponding relations are given by

Sym2 F ∨ ⊗ L1β
γ ⊗ L1α

β ↪→ (F ∨ ⊗ L1β
γ )⊗ (F ∨ ⊗ L1α

β ).

Thus, for α′ ↗ β ′ ↗ γ ′ with the boxes being added in the same row the rela-

tions are the anti-commutation relations.

(ii) γ ′ is obtained from α′ by adding two boxes to a column. In this case, L[2]α
γ =

0 and hence there are no such relations.

(iii) γ ′ is obtained from α′ by adding two boxes not in the same row or col-

umn. In this case, there are distinct β ′
1, β ′

2 such that α′ ↗ β ′
1 ↗ γ ′, α′ ↗

β ′
2 ↗ γ ′. The corresponding relations are now relations between paths going
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α′ −→ β ′
1 −→ γ ′ and α′ −→ β ′

2 −→ γ ′:

Sym2 F ∨ ⊗ L[2]α
γ ↪→ (F ∨ ⊗ L1β1

γ )⊗ (F ∨ ⊗ L1α
β1
)⊕ (F ∨ ⊗ L1β2

γ )⊗ (F ∨ ⊗ L1α
β2
).

Now we describe the relations on Q(C ) derived from the inclusion

∧2 F ∨ ⊗∧2U −→ (F ∨ ⊗ U )⊗ (F ∨ ⊗ U ).

Applying Q(−)α′
γ ′ to both sides yields

∧2 F ∨ ⊗ L[11]α
γ = Q(

∧2 F ∨ ⊗∧2U )α
′
γ ′

−→
⊕
β ′

Q(F ∨ ⊗ U )β
′
γ ′ ⊗ Q(F ∨ ⊗ U )α

′
β ′

=
⊕
β ′

F ∨ ⊗ L1β
γ ⊗ F ∨ ⊗ L1α

β

= F ∨ ⊗ F ∨ ⊗ L11α
γ .

We discuss again the possible cases.

(i) γ ′ is obtained from α′ by adding two boxes to a row. In this case, L[11]α
γ = 0

and hence there are no such relations.

(ii) γ ′ is obtained from α′ by adding two boxes to a column. In this case, there

is again a unique β ′ such that α′ ↗ β ′ ↗ γ ′. The corresponding relations are

∧2 F ∨ ⊗ L1β
γ ⊗ L1α

β ↪→ (F ∨ ⊗ L1β
γ )⊗ (F ∨ ⊗ L1α

β ).

Thus, for α′ ↗ β ′ ↗ γ ′ with the boxes being added in the same column the

relations are the commutation relations.

(iii) γ ′ is obtained from α′ by adding two boxes not in the same row or column.

In this case, there are distinct β ′
1, β ′

2 such that α′ ↗ β ′
1 ↗ γ ′, α′ ↗ β ′

2 ↗ γ ′. The

corresponding relations are now relations between paths going α′ −→ β ′
1 −→

γ ′ and α′ −→ β ′
2 −→ γ ′:

∧2 F ∨ ⊗ L[11]α
γ −→ (F ∨ ⊗ L1β1

γ )⊗ (F ∨ ⊗ L1α
β1
)⊕ (F ∨ ⊗ L1β2

γ )⊗ (F ∨ ⊗ L1α
β2
).

Relations coming from G̃

Next we discuss the relations on Q(C ) coming from the inclusion

Sym2(G ⊗ U∨)⊆ (G ⊗ U∨)⊗ (G ⊗ U∨).
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A discussion exactly parallel to the one above, using the identity Q(G ⊗ U∨)β
′
γ ′ = G ⊗ L1∗β

γ ,

leads to the following cases.

(i) γ ′ is obtained from α′ by deleting two boxes from a row. Here there is a

unique β ′ such that γ ′ ↗ β ′ ↗ α′. We find L[11]∗α
γ = 0 and hence L[2]∗α

γ =L1∗β
γ ⊗

L1∗α
β . This leads to the inclusion

Sym2G ⊗ L1∗β
γ ⊗ L1∗α

β ↪→ (G ⊗ L1∗β
γ )⊗ (G ⊗ L1∗α

β ),

so we obtain the anti-commutation relations.

(ii) γ ′ is obtained from α′ by deleting two boxes from a column. In this case,

there is again a unique β ′ such that α′ ↗ β ′ ↗ γ ′. We find the corresponding

relations ∧2G ⊗ L1∗β
γ ⊗ L1∗α

β ↪→ (G ⊗ L1∗β
γ )⊗ (G ⊗ L1∗α

β ),

that is, the commutation relations.

(iii) γ ′ is obtained from α′ by deleting two boxes not in the same row or col-

umn. There are now two distinct β ′
1, β ′

2 such that α′ ↗ β ′
1 ↗ γ ′, α′ ↗ β ′

2 ↗ γ ′.

The corresponding relations are now relations between paths going α′ −→
β ′

1 −→ γ ′ and α′ −→ β ′
2 −→ γ ′:

Sym2G ⊗ L[2]∗α
γ ↪→ (G ⊗ L1∗β1

γ )⊗ (G ⊗ L1∗α
β1
)⊕ (G ⊗ L1∗β2

γ )⊗ (G ⊗ L1∗α
β2
)

and

∧2G ⊗ L[11]∗α
γ −→ (G ⊗ L1∗β1

γ )⊗ (G ⊗ L1∗α
β1
)⊕ (G ⊗ L1∗β2

γ )⊗ (G ⊗ L1∗α
β2
).

Mixed relations

Finally, we discuss the anti-commutativity relations between F ∨ ⊗ U and G ⊗ U∨. They

are defined by the image of the map defined by the identity, the swap, and the trace:

(F ∨ ⊗ U )⊗ (G ⊗ U∨)

[
id
τ

−Tr

]
−−−−→

(F ∨ ⊗ U )⊗ (G ⊗ U∨)

⊕
(G ⊗ U∨)⊗ (F ∨ ⊗ U ).

⊕
(F ∨ ⊗ G)

(A.1)
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The summands on the right-hand side are living in the obvious places in the tensor

algebra TS((F̃ ∨ ⊕ G̃)⊗ S); in particular, the third summand sits inside the degree zero

part of the tensor algebra, which is S.

We apply Q(−)α′
γ ′ to the components of (A.1), using the canonical isomorphisms

L11∗α
γ

∼=
⊕
β ′

L1β
γ ⊗ L1∗α

β , (A.2)

L11∗α
γ

∼=
⊕
β ′

L1∗β
γ ⊗ L1α

β . (A.3)

We see first that if α �= γ, then the third component of the target vanishes:

Q(F ∨ ⊗ G)α
′
γ ′ = F ∨ ⊗ G ⊗ Lαγ = 0

since Lαγ = δα,γ K. Therefore, when α �= γ the direct sums appearing in the quiverizations

of the first two components

F ∨ ⊗ G ⊗ L11∗α
γ = Q(F ∨ ⊗ U ⊗ G ⊗ U∨)α

′
γ ′

−→
⊕
β ′

Q(F ∨ ⊗ U )β
′
γ ′ ⊗ Q(G ⊗ U∨)α

′
β ′

=
⊕
β ′
(F ∨ ⊗ L1β

γ )⊗ (G ⊗ L1∗α
β )

and

F ∨ ⊗ G ⊗ L11∗α
γ = Q(F ∨ ⊗ U ⊗ G ⊗ U∨)α

′
γ ′

−→
⊕
β ′

Q(G ⊗ U∨)β
′
γ ′ ⊗ Q(F ∨ ⊗ U )α

′
β ′

=
⊕
β ′
(G ⊗ L1∗β

γ )⊗ (F ∨ ⊗ L1α
β )

have exactly one summand each, and are thus of the form

F ∨ ⊗ G ⊗ L11∗α
γ −→ (F ∨ ⊗ L1β1

γ )⊗ (G ⊗ L1∗α
β1
)

and

F ∨ ⊗ G ⊗ L11∗α
γ −→ (G ⊗ L1α

β2
)⊗ (F ∨ ⊗ L1∗β2

γ )

for some partitions β1, β2 with β ′
1 ↗ α′ ↗ β ′

2 and β ′
1 ↗ γ ′ ↗ β ′

2. The image in this case is

thus F ∨ ⊗ G.
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If α = γ , then we discard the degree-zero relations expressing the orthogo-

nality of the idempotents corresponding to the vertices and need only consider the

image of F ∨ ⊗ G ⊗ Tr0U in (F ∨ ⊗ U )⊗ (G ⊗ U∨)⊕ (G ⊗ U∨)⊗ (F ∨ ⊗ U ), where Tr0U =
ker(Tr: U∨ ⊗ U −→ K). The direct sums appearing in (A.2) and (A.3) have one non-zero

summand for each partition β ′ such that α′ ↗ β ′ and β ′ has at most m − l rows (so that

Lβ
′
U �= 0). That is, they have t(α) direct summands. Since L11∗α

α = K ⊕ Tr0U , the image of

F ∨ ⊗ G ⊗ Tr0U is (F ∨ ⊗ G)⊕(t(α)−1).

Arguments parallel to those in Lemma 6.7 and Theorem 6.9 now prove the

following.

Theorem A.12. The homomorphism QBl,m−l (C )−→ A= EndOZ (N ) is an isomorphism. �

Remark A.13. The description of the non-commutative desingularization as a quiver-

ized Clifford algebra depends essentially on characteristic zero, relying as it does on the

canonical direct-sum decompositions of representations of GL(U ) into irreducibles. In

retrospect, it was the fact that the torus GL(1) is linearly reductive in all characteris-

tics that allowed us to prove the analogous result for the case of maximal minors in a

characteristic-free manner. �

Remark A.14. Using the description above of the non-commutative desingularization

as a quiverized Clifford algebra, one can prove an analog of [5, Theorem D], to the effect

that Z is the fine moduli space for certain representations of the truncated Young quiver.

The details are essentially identical to those in [5, Section 8], so we do not pursue this

direction further. �
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