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Introduction

This book is about the representation theory of commutative local
rings, specifically the study of maximal Cohen-Macaulay modules over
Cohen-Macaulay local rings.

The guiding principle of representation theory, broadly speaking,
is that we can understand an algebraic structure by studying the sets
upon which it acts. Classically, this meant understanding finite groups
by studying the vector spaces they act upon; the powerful tools of lin-
ear algebra can then be brought to bear, revealing information about
the group that was otherwise hidden. In other branches of represen-
tation theory, such as the study of finite-dimensional associative alge-
bras, sophisticated technical machinery has been built to investigate
the properties of modules, and how restrictions on modules over a ring
restrict the structure of the ring.

The representation theory of maximal Cohen-Macaulay modules
began in the late 1970s and grew quickly, inspired by three other ar-
eas of algebra. Spectacular successes in the representation theory of
finite-dimensional algebras during the 1960s and 70s set the standard
for what one might hope for from a representation theory. In particu-
lar, this period saw: P. Gabriel’s introduction of the representations of
quivers and his theorem that a quiver has finite representation type
if and only if it is a disjoint union of ADE Coxeter-Dynkin diagrams;
M. Auslander’s influential Queen Mary notes applying his work on
functor categories to representation theory; Auslander and I. Reiten’s
foundational work on AR sequences; and key insights from the Kiev
school, particularly Y. Drozd, L. A. Nazarova, and A. V. Roı̆ter. All
these advances continued the work on finite representation type be-
gun in the 1940s and 50s by T. Nakayama, R. Brauer, R. Thrall, and
J. P. Jans. Secondly, the study of lattices over orders, a part of integral
representation theory, blossomed in the late 1960s. Restricting atten-
tion to lattices rather than arbitrary modules allowed a rich theory
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xii INTRODUCTION

to develop. In particular, the work of Drozd-Roı̆ter and H. Jacobinski
around this time introduced the conditions we call “the Drozd-Roı̆ter
conditions” classifying commutative orders with only a finite num-
ber of non-isomorphic indecomposable lattices. Finally, M. Hochster’s
study of the homological conjectures emphasized the importance of the
maximal Cohen-Macaulay condition (even for non-finitely generated
modules). The equality of the geometric invariant of dimension with
the arithmetic one of depth makes this class of modules easy to work
with, simultaneously ensuring that they faithfully reflect the structure
of the ring.

The main focus of this book is on the problem of classifying Cohen-
Macaulay local rings having only a finite number of indecomposable
maximal Cohen-Macaulay modules, that is, having finite CM type. No-
tice that we wrote “the problem,” rather than “the solution.” Indeed,
there is no complete classification to date. There are many partial re-
sults, however, including complete classifications in dimensions zero
and one, a characterization in dimension two under some mild as-
sumptions, and a complete understanding of the hypersurface singu-
larities with this property. The tools developed to obtain these clas-
sifications have many applications to other problems as well, in addi-
tion to their inherent beauty. In particular there are applications to
the study of other representation types, including countable type and
bounded type.

This is not the first book about the representation theory of Cohen-
Macaulay modules over Cohen-Macaulay local rings. The text [Yos90]
by Y. Yoshino is a fantastic book and an invaluable resource, and has
inspired us both on countless occasions. It has been the canonical ref-
erence for the subject for twenty years. In those years, however, there
have been many advances. To give just two examples, we mention
C. Huneke and Leuschke’s elementary proof in 2002 of Auslander’s
theorem that finite CM type implies isolated singularity, and R. Wie-
gand’s 2000 verification of F.-O. Schreyer’s conjecture that finite CM
type ascends to and descends from the completion. These develop-
ments alone might justify a new exposition. Furthermore, there are
many facets of the subject not covered in Yoshino’s book, some of which
we are qualified to describe. Thus this book might be considered simul-
taneously an updated edition of [Yos90], a companion volume, and an
alternative.
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In addition to telling the basic story of finite CM type, our choice of
material is guided by a number of themes.

(i) For a homomorphism of local rings R −→ S, which maximal
Cohen-Macaulay modules over S “come from” R is a basic question.
It is especially important when S = R̂, the completion of R, for then
the Krull-Remak-Schmidt uniqueness theorem holds for direct-sum
decompositions of R̂-modules.

(ii) The failure of the Krull-Remak-Schmidt theorem is often more
interesting than its success. We can often quantify exactly how badly
it fails.

(iii) A certain amount of non-commutativity can be useful even in
pure commutative algebra. In particular, the endomorphism ring of a
module, while technically a non-commutative ring, should be a stan-
dard object of consideration in commutative algebra.

(iv) An abstract, categorical point of view is not always a good thing
in and of itself. We tend to be stubbornly concrete, emphasizing ex-
plicit constructions over universal properties.

The main material of the book is divided into 17 chapters. The
first chapter contains some vital background information on the Krull-
Remak-Schmidt Theorem, which we view as a version of the Funda-
mental Theorem of Arithmetic for modules, and on the relationship
between modules over a local ring R and over its completion R̂. Chap-
ter 2 is devoted to an analysis of exactly how badly the Krull-Remak-
Schmidt Theorem can fail. Nothing here is specifically about Cohen-
Macaulay rings or maximal Cohen-Macaulay modules.

Chapters 3 and 4 contain the classification theorems for Cohen-
Macaulay local rings of finite CM type in dimensions zero and one.
Here essentially everything is known. In particular Chapter 3 intro-
duces an auxiliary representation-theoretic problem, the Artinian pair,
which is then used in Chapter 4 to solve the problem of finite CM type
over one-dimensional rings via the conductor-square construction.

The two-dimensional Cohen-Macaulay local rings of finite CM type
are at a focal point in our telling of the theory, with connections to al-
gebraic geometry, invariant theory, group representations, solid geom-
etry, representations of quivers, and other areas, by way of the McKay
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correspondence. Chapter 5 sets the stage for this material, introduc-
ing (in arbitrary dimension) the necessary invariant theory and re-
sults of Auslander relating a ring of invariants to the associated skew
group ring. These results are applied in Chapter 6 to show that two-
dimensional rings of invariants have finite CM type. In particular
this applies to the Kleinian singularities, also known as Du Val sin-
gularities, rational double points, or ADE hypersurface singularities.
We also describe some aspects of the McKay correspondence, including
the geometric results due to M. Artin and J.-L. Verdier. Finally Chap-
ter 7 gives the full classification of complete local two-dimensional C-
algebras of finite CM type. This chapter also includes Auslander’s the-
orem mentioned earlier that finite CM type implies isolated singular-
ity.

In dimensions higher than two, our understanding of finite CM
type is imperfect. We do, however, understand the Gorenstein case
more or less completely. By a result of J. Herzog, a complete Gorenstein
local ring of finite CM type is a hypersurface ring; these are completely
classified in the equicharacteristic case. This classification is detailed
in Chapter 9, including the theorem of R.-O. Buchweitz, G.-M. Greuel,
and Schreyer which states that if a complete equicharacteristic hy-
persurface singularity over an algebraically closed field has finite CM
type, then it is a simple singularity in the sense of V. I. Arnol′d. We
also write down the matrix factorizations for the indecomposable MCM
modules over the Kleinian singularities, from which the matrix fac-
torizations in arbitrary dimension can be obtained. Our proof of the
Buchweitz-Greuel-Schreyer result is by reduction to dimension two
via the double branched cover construction and H. Knörrer’s period-
icity theorem. Chapter 8 contains these background results, after a
brief presentation of the theory of matrix factorizations.

Chapter 10 addresses the critical questions of ascent and descent
of finite CM type along ring extensions, particularly between a Cohen-
Macaulay local ring and its completion, as well as passage to a local
ring with a larger residue field. This allows us to extend the clas-
sification theorem for hypersurface singularities of finite CM type to
non-algebraically closed fields.

Chapters 11 and 13 describe two powerful tools in the study of
maximal Cohen-Macaulay modules over Cohen-Macaulay rings: MCM
approximations and Auslander-Reiten sequences. We are not aware
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of another complete, concise and explicit treatment of Auslander and
Buchweitz’s theory of MCM approximations and hulls of finite injec-
tive dimension, which we believe deserves to be better known. The
theory of Auslander-Reiten sequences and quivers, of course, is essen-
tial. Chapter 12 establishes some homological tools and introduces to-
tally reflexive modules, whose homological behavior over general local
rings mimics that of MCM modules over Gorenstein rings.

The last four chapters consider other representation types, namely
countable and bounded CM type, and finite CM type in higher di-
mensions. Chapter 14 uses recent results of I. Burban and Drozd,
based on a modification of the conductor-square construction, to prove
Buchweitz-Greuel-Schreyer’s classification of the hypersurface singu-
larities with countable CM type. It also proves certain structural re-
sults for rings of countable CM type, due to Huneke and Leuschke.
Chapter 15 contains a proof of the first Brauer-Thrall conjecture, that
an excellent isolated singularity with bounded CM type necessarily
has finite CM type. Our presentation follows the original proofs of
E. Dieterich and Yoshino. The Brauer-Thrall theorem is then used, in
Chapter 16, to prove that two three-dimensional examples have finite
CM type. We also quote the theorem of D. Eisenbud and Herzog which
classifies the homogeneous rings of finite CM type; in particular, their
result says that there are no examples in dimension > 3 other than
the ones we have described in the text. Finally, in Chapter 17, we con-
sider the rings of bounded but infinite CM type. It happens that for
hypersurface rings they are precisely the same as the rings of count-
able but infinite CM type. We also classify the one-dimensional rings
of bounded CM type.

We include two Appendices. In Appendix A, we gather for ease of
reference some basic definitions and results of commutative algebra
that are prerequisites for the book. Appendix B, on the other hand,
contains material that we require from ramification theory that is not
generally covered in a general commutative algebra course. It includes
the basics on unramified and étale homomorphisms, Henselian rings,
ramification of prime ideals, and purity of the branch locus. We make
essential use of these concepts, but they are peripheral to the main
material of the book.

The knowledgeable reader will have noticed significant overlap be-
tween the topics mentioned above and those covered by Yoshino in his
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book [Yos90]. To a certain extent this is unavoidable; the basics of the
area are what they are, and any book on Cohen-Macaulay represen-
tation types will mention them. However, the reader should be aware
that our guiding principles are quite different from Yoshino’s, and con-
sequently there are few topics on which our presentation parallels that
in [Yos90]. When it does, it is generally because both books follow the
original presentation of Auslander, Auslander-Reiten, or Yoshino.

Early versions of this book have been used for advanced graduate
courses at the University of Nebraska in Fall 2007 and at Syracuse
University in Fall 2010. In each case, the students had had at least
one full-semester course in commutative algebra at the level of Mat-
sumura’s book [Mat89]. A few more advanced topics are needed from
time to time, such as the basics of group representations and character
theory, properties of canonical modules and Gorenstein rings, Cohen’s
structure theory for complete local rings, the Artin-Rees Lemma, and
the material on multiplicity and Serre’s conditions in the Appendix.
Many of these can be taken on faith at first encounter, or covered as
extra topics.

The core of the book, Chapters 3 through 9, is already more ma-
terial than could comfortably be covered in a semester course. One
remedy would be to streamline the material, restricting to the case of
complete local rings with algebraically closed residue fields of charac-
teristic zero. One might also skip or sketch some of the more tangential
material. We regard the following as essential: Chapter 3 (omitting
most of the proof of Theorem 3.7); the first three sections of Chapter 4;
Chapter 5; Chapter 6 (omitting the proof of Theorem 6.11, the calcu-
lations in §3, and §4); Chapters 7 and 8; and the first two sections of
Chapter 9. Chapters 2 and 10 can each stand alone as optional top-
ics, while the thread beginning with Chapters 11 and 13, continuing
through Chapters 15 and 17 could serve as the basis of a completely
separate course (though some knowledge of the first half of the book
would be necessary to make sense of Chapters 14 and 16).

At the end of each chapter is a short section of exercises of varying
difficulty, over 120 in all. Some are independent problems, while oth-
ers ask the solver to fill in details of proofs omitted from the body of
the text.



INTRODUCTION xvii

We gratefully acknowledge the many, many people and organiza-
tions whose support we enjoyed while writing this book. Our stu-
dents at Nebraska and Syracuse endured early drafts of the text, and
helped us improve it; thanks to Tom Bleier, Jesse Burke, Ela Çelik-
bas, Olgur Çelikbas, Justin Devries, Kos Diveris, Christina Eubanks-
Turner, Inês Bonacho dos Anjos Henriques, Nick Imholte, Brian John-
son, Micah Leamer, Laura Lynch, Matt Mastroeni, Lori McDonnell,
Sean Mead-Gluchacki, Livia Miller, Frank Moore, Terri Moore, Hamid
Rahmati, Silvia Saccon, and Mark Yerrington. GJL was supported by
National Science Foundation grants DMS-0556181 and DMS-0902119
while working on this project, and RW by a grant from the National Se-
curity Agency. The CIRM at Luminy hosted us for a highly productive
and enjoyable week in June 2010. Each of us visited the other several
times over the years, and enjoyed the hospitality of each other’s home
department, for which we thank UNL and SU, respectively.

GRAHAM J. LEUSCHKE

gjleusch@math.syr.edu
ROGER WIEGAND

rwiegand@math.unl.edu
Syracuse and Lincoln, December 2011





CHAPTER 1

The Krull-Remak-Schmidt Theorem

In this chapter we will prove the Krull-Remak-Schmidt unique-
ness theorem for direct-sum decompositions of finitely generated mod-
ules over complete local rings. The first such theorem, in the context
of finite groups, was stated by Wedderburn [Wed09]: Let G be a fi-
nite group with two direct-product decompositions G = H1 × ·· · × Hm
and G = K1 ×·· ·×Kn, where each Hi and each K j is indecomposable.
Then m = n, and, after renumbering, Hi ∼= K i for each i. In 1911
Remak [Rem11] gave a complete proof, and actually proved more:
Hi and K i are centrally isomorphic, that is, there are isomorphisms
f i : Hi −→ K i such that x−1 f (x) is in the center of G for each x ∈ Hi, i =
1, . . . ,m. These results were extended to groups with operators satis-
fying the ascending and descending chain conditions by Krull [Kru25]
and Schmidt [Sch29]. In 1950 Azumaya [Azu50] proved an analo-
gous result for possibly infinite direct sums of modules, with the as-
sumption that the endomorphism ring of each factor is local in the
non-commutative sense.

§1. KRS in an additive category

Looking ahead to an application in Chapter 3, we will clutter things
up slightly by working in an additive category, rather than a category
of modules. An additive category is a category A with 0-object such
that (i) HomA (M1, M2) is an abelian group for each pair M1, M2 of
objects, (ii) composition is bilinear, and (iii) every finite set of objects
has a biproduct. A biproduct of M1, . . . , Mm consists of an object M
together with maps ui : Mi −→ M and pi : M −→ Mi, i = 1, . . . ,m, such
that piu j = δi j and u1 p1 + ·· ·+um pm = 1M . We denote the biproduct
by M1 ⊕·· ·⊕Mm.

We will need an additional condition on our additive category, that
idempotents split (cf. [Bas68, Chapter I, §3, p. 19]). Given an object M
and an idempotent e ∈EndA (M), we say that e splits provided there is
a factorization M

p−−→ K u−−→ M such that e = up and pu = 1K .
The reader is probably familiar with the notion of an abelian cat-

egory, that is, an additive category in which every map has a kernel

1



2 1. THE KRULL-REMAK-SCHMIDT THEOREM

and a cokernel, and in which every monomorphism (respectively epi-
morphism) is a kernel (respectively cokernel). Over any ring R the
category R-Mod of all left R-modules is abelian; if R is left Noether-
ian, then the category R-mod of finitely generated left R-modules is
abelian. It is easy to see that idempotents split in an abelian category.
Indeed, suppose e : M −→ M is an idempotent, and let u : K −→ M be
the kernel of 1M − e. Since (1M − e)e = 0, the map e factors through u;
that is, there is a map p : M −→ K satisfying up = e. Then upu = eu =
eu+ (1M − e)u = u = u1K . Since u is a monomorphism (as kernels are
always monomorphisms), it follows that pu = 1K .

A non-zero object M in the additive category A is said to be de-
composable if there exist non-zero objects M1 and M2 such that M ∼=
M1 ⊕M2. Otherwise, M is indecomposable. We leave the proof of the
next result as an exercise:

1.1. PROPOSITION. Let M be a non-zero object in an additive cate-
gory A , and let E =EndA (M).

(i) If 0 and 1 are the only idempotents of E, then M is indecompos-
able.

(ii) Conversely, suppose e = e2 ∈ E, with e 6= 0,1. If both e and 1− e
split, then M is decomposable. �

We say that the Krull-Remak-Schmidt Theorem (KRS for short)
holds in the additive category A provided

(i) every object in A is a biproduct of indecomposable objects, and
(ii) if M1⊕·· ·⊕Mm ∼= N1⊕·· ·⊕Nn, with each Mi and each N j an in-

decomposable object in A , then m = n and, after renumbering,
Mi ∼= Ni for each i.

It is easy to see that every Noetherian object is a biproduct of
finitely many indecomposable objects (cf. Exercise 1.19), but there are
easy examples to show that (ii) can fail. For perhaps the simplest ex-
ample, let R = k[x, y], the polynomial ring in two variables over a field.
Letting m= Rx+R y and n= R(x−1)+R y, we get a short exact sequence

0−→m∩n−→m⊕n−→ R −→ 0 ,

since m+n= R. This splits, so m⊕n∼= R⊕ (m∩n). Since neither m nor
n is isomorphic to R as an R-module, KRS fails for finitely generated
R-modules.

Alternatively, let D be a Dedekind domain with a non-principal
ideal I. We have an isomorphism (see Exercise 1.20)

(1.1.1) R⊕R ∼= I ⊕ I−1 ,

and of course all of the summands in (1.1.1) are indecomposable.
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These examples indicate that KRS is likely to fail for modules over
rings that aren’t local. It can fail even for finitely generated modules
over local rings. An example due to Swan is in Evans’s paper [Eva73].
In Chapter 2 we will see just how badly it can fail. Azumaya [Azu48]
observed that the crucial property for guaranteeing KRS is that the en-
domorphism rings of the summands be local in the non-commutative
sense. To avoid a conflict of jargon, we define a ring Λ (not necessarily
commutative) to be nc-local provided Λ

/
J (Λ) is a division ring, where

J (−) denotes the Jacobson radical. Equivalently (cf. Exercise 1.21)
Λ 6= {0} and J (Λ) is exactly the set of non-units of Λ. It is clear from
Proposition 1.1 that any object with nc-local endomorphism ring must
be indecomposable.

We’ll model our proof of KRS after the proof of unique factorization
in the integers, by showing that an object with nc-local endomorphism
ring behaves like a prime element in an integral domain. We’ll even
use the same notation, writing “M | N”, for objects M and N, to indi-
cate that there is an object Z such that N ∼= M⊕Z. Our inductive proof
depends on direct-sum cancellation ((ii) below), analogous to the fact
that mz = my =⇒ z = y for non-zero elements m, z, y in an integral
domain. Later in the chapter (Corollary 1.16) we’ll prove cancellation
for arbitrary finitely generated modules over a local ring, but for now
we’ll prove only that objects with nc-local endomorphism rings can be
cancelled.

1.2. LEMMA. Let A be an additive category in which idempotents
split. Let M, X , Y , and Z be objects of A , let E =EndA (M), and assume
that E is nc-local.

(i) If M | X ⊕Y , then M | X or M |Y (“primelike”).
(ii) If M⊕Z ∼= M⊕Y , then Z ∼=Y (“cancellation”).

PROOF. We’ll prove (i) and (ii) simultaneously. In (i) we have an
object Z such that M ⊕ Z ∼= X ⊕Y . In the proof of (ii) we set X = M
and again get an isomorphism M⊕Z ∼= X ⊕Y . Put J =J (E), the set of
non-units of E.

Choose reciprocal isomorphisms ϕ : M ⊕ Z −→ X ⊕Y and ψ : X ⊕
Y −→ M⊕Z. Write

ϕ=
[
α β

γ δ

]
and ψ=

[
µ ν

σ τ

]
,

where α : M −→ X , β : Z −→ X , γ : M −→ Y , δ : Z −→ Y , µ : X −→ M,
ν : Y −→ M, σ : X −→ Z and τ : Y −→ Z. Since ψϕ= 1M⊕Z =

[
1M 0
0 1Z

]
, we

have µα+νγ = 1M . Therefore, as E is local, either µα or νγ must be
outside J and hence an automorphism of M. Assuming that µα is an
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automorphism, we will produce an object W and maps

M u−−→ X
p−−→ M W v−−→ X

q−−→W

satisfying pu = 1M , pv = 0, qv = 1W , qu = 0, and up+ vq = 1X . This
will show that X = M ⊕W . (Similarly, the assumption that νγ is an
isomorphism forces M to be a direct summand of Y .)

Letting u =α, p = (µα)−1µ and e = up ∈EndA (X ), we have pu = 1M
and e2 = e. By hypothesis, the idempotent 1− e splits, so we can write
1− e = vq, where X

q−−→W v−−→ X and qv = 1W . From e = up and 1− e =
vq, we get the equation up+ vq = 1X . Moreover, qu = (qv)(qu)(pu) =
q(vq)(up)u = q(1− e)eu = 0; similarly, pv = pupvqv = pe(1− e)v = 0.
We have verified all of the required equations, so X = M ⊕W . This
proves (i).

To prove (ii) we assume that X = M. Suppose first that α is a unit
of E. We use α to diagonalize ϕ:[

1 0
−γα−1 1

][
α β

γ δ

][
1 −α−1β

0 1

]
=

[
α 0
0 −γα−1β+δ

]
Since all the matrices on the left are invertible, so must be the one on
the right, and it follows that −γα−1β+δ : Z −→Y is an isomorphism.

Suppose, on the other hand, that α ∈ J. Then νγ ∉ J (as µα+νγ=
1M), and it follows that α+νγ ∉ J. We define a new map

ψ′ =
[
1M ν

σ τ

]
: M⊕Y −→ M⊕Z ,

which we claim is an isomorphism. Assuming the claim, we can diag-
onalize ψ′ as we did ϕ, obtaining, in the lower-right corner, an isomor-
phism from Y onto Z, and finishing the proof. To prove the claim, we
use the equation ψϕ= 1M⊕Z to get

ψ′ϕ=
[
α+νγ β+νγ

0 1Z

]
.

As α+νγ is an automorphism of M, ψ′ϕ is clearly an automorphism of
M⊕Z. Therefore ψ′ = (ψ′ϕ)ϕ−1 is an isomorphism. �

1.3. THEOREM (Krull-Remak-Schmidt). Let A be an additive cate-
gory in which every idempotent splits. Let M1, . . . , Mm and N1, . . . , Nn be
indecomposable objects of A , with M1⊕·· ·⊕Mm ∼= N1⊕·· ·⊕Nn. Assume
that EndA (Mi) is nc-local for each i. Then m = n and, after renumber-
ing, Mi ∼= Ni for each i.

PROOF. We use induction on m, the case m = 1 being trivial. As-
suming m > 2, we see that Mm | N1 ⊕ ·· · ⊕ Nn. By (i) of Lemma 1.2,
Mm | N j for some j; by renumbering, we may assume that Mm | Nn.
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Since Nn is indecomposable and Mm 6= 0, we must have Mm ∼= Nn.
Now (ii) of Lemma 1.2 implies that M1 ⊕ ·· ·⊕ Mm−1

∼= N1 ⊕ ·· ·⊕ Nn−1,
and the inductive hypothesis completes the proof. �

Azumaya actually proved the infinite version of Theorem 1.3: If⊕
i∈I Mi ∼=⊕

j∈J N j and the endomorphism ring of each Mi is nc-local,
and each N j is indecomposable, then there is a bijection σ : I −→ J
such that Mi ∼= Nσ(i) for each i. (Cf. [Azu48], or see [Fac98, Chapter
2].)

We want to find some situations where indecomposables automat-
ically have nc-local endomorphism rings. It is well known that idem-
potents lift modulo any nil ideal. A typical proof of this fact actually
yields the following stronger result, which we will use in the next sec-
tion.

1.4. PROPOSITION. Let I be a two-sided ideal of a (possibly non-
commutative) ring Λ, and let e be an idempotent of Λ/I. Given any
positive integer n, there is an element x ∈ Λ such that x+ I = e and
x ≡ x2 (mod In).

PROOF. Start with an arbitrary element u ∈Λ such that u+ I = e,
and let v = 1−u. In the binomial expansion of (u+ v)2n−1, let x be the
sum of the first n terms: x = u2n−1+·· ·+(2n−1

n−1

)
unvn−1. Putting y= 1−x

(the other half of the expansion), we see that x− x2 = xy ∈ Λ(uv)nΛ.
Since uv = u(1−u) ∈ I, we have x− x2 ∈ In. �

Here is an easy consequence, which will be needed in Chapter 3:

1.5. COROLLARY. Let M be an indecomposable object in an additive
category A . Assume that idempotents split in A . If E := EndA (M) is
left or right Artinian, then E is nc-local.

PROOF. Since M is indecomposable, E has no non-trivial idempo-
tents. Since J (E) is nilpotent, Proposition 1.4 implies that E

/
J (E)

has no idempotents either. It follows easily from the Wedderburn-
Artin Theorem [Lam91, (3.5)] that E

/
J (E) is a division ring, whence

nc-local. �

1.6. COROLLARY. Let R be a commutative Artinian ring. Then KRS
holds in the category of finitely generated R-modules.

PROOF. Let M be an indecomposable finitely generated R-module.
By Exercise 1.22 EndR(M) is finitely generated as an R-module and
therefore is a left (and right) Artinian ring. Now apply Corollary 1.5
and Theorem 1.3. �
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§2. KRS over Henselian rings

We now proceed to prove KRS for finitely generated modules over
complete and, more generally, Henselian local rings. Here we define a
local ring (R,m,k) to be Henselian provided, for every module-finite R-
algebra Λ (not necessarily commutative), each idempotent of Λ

/
J (Λ)

lifts to an idempotent of Λ. For the classical definition of “Henselian”
in terms of factorization of polynomials, and for other equivalent con-
ditions, see Theorem A.30.

1.7. LEMMA. Let R be a commutative ring and Λ a module-finite
R-algebra (not necessarily commutative). Then ΛJ (R)⊆J (Λ).

PROOF. Let f ∈ ΛJ (R). We want to show that Λ(1−λ f ) = Λ for
every λ ∈Λ. Clearly Λ(1−λ f )+ΛJ (R) =Λ, and now NAK completes
the proof. �

1.8. THEOREM. Let (R,m,k) be a Henselian local ring, and let M
be an indecomposable finitely generated R-module. Then EndR(M) is
nc-local. In particular, KRS holds for the category of finitely generated
modules over a Henselian local ring.

PROOF. Let E =EndR(M) and J =J (E). Since E is a module-finite
R-algebra (cf. Exercise 1.22), Lemma 1.7 implies that mE ⊆ J and
hence that E/J is a finite-dimensional k-algebra. It follows that E/J
is semisimple Artinian. Moreover, since E has no non-trivial idempo-
tents, neither does E/J. By the Wedderburn-Artin Theorem [Lam91,
(3.5)], E/J is a division ring. �

1.9. COROLLARY (Hensel’s Lemma). Let (R,m,k) be a complete lo-
cal ring. Then R is Henselian.

PROOF. Let Λ be a module-finite R-algebra, and put J = J (Λ).
Again, mΛ⊆ J, and J/mΛ is a nilpotent ideal of Λ/mΛ (since Λ/mΛ is
Artinian). By Proposition 1.4 we can lift each idempotent of Λ/J to an
idempotent of Λ/mΛ. Therefore it will suffice to show that every idem-
potent e of Λ/mΛ lifts to an idempotent of Λ. Using Proposition 1.4,
we can choose, for each positive integer n, an element xn ∈Λ such that
xn +mΛ = e and xn ≡ x2

n (mod mnΛ). (Of course mnΛ = (mΛ)n.) We
claim that (xn) is a Cauchy sequence for the mΛ-adic topology on Λ.
To see this, let n be an arbitrary positive integer. Given any m > n,
put z = xm + xn −2xmxn. Then z ≡ z2 (mod mnΛ). Also, since xm ≡ xn
(mod mΛ), we see that z ≡ 0 (mod mΛ), so 1− z is a unit of Λ. Since
z(1− z) ∈mnΛ, it follows that z ∈mnΛ. Thus we have

xm + xn ≡ 2xmxn, xm ≡ x2
m, xn ≡ x2

n (mod mnΛ) .
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Multiplying the first congruence, in turn, by xm and by xn, we learn
that xm ≡ xmxn ≡ xn (mod mnΛ). If, now, `> n and m> n, we see that
x` ≡ xm (mod mnΛ). This verifies the claim. Since Λ is mΛ-adically
complete (cf. Exercise 1.24), we let x be the limit of the sequence (xn)
and check that x is an idempotent lifting e. �

1.10. COROLLARY. KRS holds for finitely generated modules over
complete local rings. �

Henselian local rings are almost characterized as those having the
Krull-Remak-Schmidt property. Indeed, a theorem due to Evans states
that a local ring R is Henselian if and only if for every module-finite
commutative local R-algebra A the finitely generated A-modules sat-
isfy KRS [Eva73].

§3. R-modules vs. R̂-modules

A major theme in this book is the study of direct-sum decomposi-
tions over local rings that are not necessarily complete. Here we record
a few results that will allow us to use KRS over the completion R̂ to
understand R-modules.

We begin with a result due to Guralnick [Gur85, Theorem A] on
lifting homomorphisms modulo high powers of the maximal ideal of
a local ring. Given finitely generated modules M and N over a lo-
cal ring (R,m), we define a lifting number for the pair (M, N) to be a
non-negative integer e satisfying the following property: For each pos-
itive integer f and each R-homomorphism ξ : M/me+ f M −→ N/me+ f N,
there exists σ ∈HomR(M, N) such that σ and ξ induce the same homo-
morphism M/m f M −→ N/m f N. (Thus the outer and bottom squares in
the diagram below both commute, though the top square may not.)

M σ
//

��

N

��

M/me+ f M
ξ
//

��

N/me+ f N

��

M/m f M
ξ=σ

// N/m f N

For example, 0 is a lifting number for the pair (M, N) if M is free.

1.11. LEMMA. Every pair (M, N) of modules over a local ring (R,m)
has a lifting number.
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PROOF. Choose exact sequences

F1
α−−→ F0 −→ M −→ 0 ,

G1
β−−→G0 −→ N −→ 0 ,

where Fi and G i are finite-rank free R-modules. Define an R-ho-
momorphism Φ : HomR(F0,G0) × HomR(F1,G1) −→ HomR(F1,G0) by
Φ(µ,ν) = µα−βν. Applying the Artin-Rees Lemma to the submodule
im(Φ) of HomR(F1,G0), we get a positive integer e such that

(1.11.1) im(Φ)∩me+ f HomR(F1,G0)⊆m f im(Φ) for each f > 0 .

Suppose now that f > 0 and ξ : M/me+ f M −→ N/me+ f N is an R-
homomorphism. We can lift ξ to homomorphisms µ0 and ν0 making
the following diagram commute.

(1.11.2)

F1/me+ f F1
α
//

ν0
��

F0/me+ f F0 //

µ0
��

M/me+ f M //

ξ
��

0

G1/me+ f G1
β

// G0/me+ f G0 // N/me+ f N // 0

Now lift µ0 and ν0 to homomorphisms µ0 ∈ HomR(F0,G0) and ν0 ∈
HomR(F1,G1). The commutativity of (1.11.2) implies that the image
of Φ(µ0,ν0) : F1 −→ G0 lies in me+ f G0. Choosing bases for F1 and G0,
we see that the matrix representing Φ(µ0,ν0) has entries in me+ f , so
that Φ(µ0,ν0) ∈me+ f HomR(F1,G0). By (1.11.1), Φ(µ0,ν0) ∈m f im(Φ) =
Φ(m f (HomR(F0,G0)×HomR(F1,G1))). Choose a pair of maps (µ1,ν1) ∈
m f (HomR(F0,G0)×HomR(F1,G1)) such that Φ(µ1,ν1) =Φ(µ0,ν0), and
set (µ,ν) = (µ0,ν0) − (µ1,ν1). Then Φ(µ,ν) = 0, so µ induces an R-
homomorphism σ : M −→ N. Since µ and µ0 agree modulo m f , it fol-
lows that σ and ξ induce the same map M/m f M −→ N/m f N. �

1.12. LEMMA. If e is a lifting number for (M, N) and e′> e, then e′
is also a lifting number for (M, N).

PROOF. Let f ′ be a positive integer, and let

ξ : M/me′+ f ′M −→ N/me′+ f ′N

be an R-homomorphism. Put f = f ′+ e′− e. Since e′+ f ′ = e+ f and
e is a lifting number, there is a homomorphism σ : M −→ N such that
σ and ξ induce the same homomorphism M/m f M −→ N/m f N. Now
f > f ′, and it follows that σ and ξ induce the same homomorphism
M/m f ′M −→ N/m f ′N. �

We denote e(M, N) the smallest lifting number for the pair (M, N).
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1.13. THEOREM (Guralnick). Let (R,m) be a local ring, and let M
and N be finitely generated R-modules. If M/mr+1M | N/mr+1N for
some r>max {e(M, N), e(N, M)}, then M | N.

PROOF. Choose reciprocal homomorphisms

ξ : M/mr+1M −→ N/mr+1N and η : N/mr+1N −→ M/mr+1M

such that ηξ = 1M/mr+1M . Since r is a lifting number (Lemma 1.12),
there exist R-homomorphisms σ : M −→ N and τ : N −→ M such that σ
agrees with ξ and τ agrees with η modulo m. By NAK, τσ : M −→ M is
surjective and therefore, by Exercise 1.27, an automorphism. It follows
that M | N. �

1.14. COROLLARY. Let (R,m) be a local ring and M, N finitely gen-
erated R-modules. If M/mnM ∼= N/mnN for all n À 0, then M ∼= N.

PROOF. By Theorem 1.13, M | N and N | M. In particular, we have

surjections N α−−→ M and M
β−−→ N. Then βα is a surjective endomor-

phism of N and therefore is an automorphism (cf. Exercise 1.27). It
follows that α is one-to-one and therefore an isomorphism. �

1.15. COROLLARY. Let (R,m) be a local ring and (R̂,m̂) its m-adic
completion. Let M and N be finitely generated R-modules.

(i) If R̂⊗R M | R̂⊗R N, then M | N.
(ii) If R̂⊗R M ∼= R̂⊗R N , then M ∼= N. �

1.16. COROLLARY. Let M, N and P be finitely generated modules
over a local ring (R,m). If P ⊕M ∼= P ⊕N, then M ∼= N.

PROOF. We have (R̂⊗R P)⊕ (R̂⊗R M) ∼= (R̂⊗R P)⊕ (R̂⊗R N). Using
KRS for complete rings (Corollary 1.9) we see that R̂ ⊗R M ∼= R̂ ⊗R N.
Now apply Corollary 1.15. �

§4. Exercises

1.17. EXERCISE. Prove Proposition 1.1: For a non-zero object M
in an additive category A , and E = EndA (M), if 0 and 1 are the only
idempotents of E, then M is indecomposable. Conversely, suppose e =
e2 ∈ E, with e 6= 0,1. If both e and 1− e split, then M is decomposable.

1.18. EXERCISE. Let M be an object in an additive category. Show
that every direct-sum (i.e., coproduct) decomposition M = M1⊕M2 has
a biproduct structure.

1.19. EXERCISE. Let M be an object in an additive category.
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(i) Suppose that M has either the ascending chain condition or the
descending chain condition on direct summands. Prove that M
has an indecomposable direct summand.

(ii) Prove that M is a direct sum (biproduct) of finitely many inde-
composable objects.

1.20. EXERCISE. Prove Steinitz’s Theorem ([Ste11]): Let I and J
be non-zero fractional ideals of a Dedekind domain D. Then I ⊕ J ∼=
D⊕ IJ.

1.21. EXERCISE. Let Λ be a ring with 1 6= 0. Prove that the follow-
ing conditions are equivalent:

(i) Λ is nc-local.
(ii) J (Λ) is the set of non-units of Λ.

(iii) The set of non-units of Λ is closed under addition.
(Warning: In a non-commutative ring one can have non-units x and y
such that xy= 1.)

1.22. EXERCISE. Let M and N be finitely generated modules over
a commutative Noetherian ring R. Prove that HomR(M, N) is finitely
generated as an R-module.

1.23. EXERCISE. Let (R,m) be a Henselian local ring and X , Y ,
M finitely generated R-modules. Let α : X −→ M and β : Y −→ M be
homomorphisms which are not split surjections. Prove that [α β] : X ⊕
Y −→ M is not a split surjection.

1.24. EXERCISE. Let M be a finitely generated module over a com-
plete local ring (R,m). Show that M is complete for the topology de-
fined by the submodules mnM,n> 1.

1.25. EXERCISE. Prove Fitting’s Lemma: Let Λ be any ring and
M a Λ-module of finite length n. If f ∈ EndΛ(M), then M = ker( f n)⊕
f n(M). Conclude that if M is indecomposable then every non-invertible
element of EndΛ(M) is nilpotent.

1.26. EXERCISE. Use Exercise 1.21 and Fitting’s Lemma from the
exercise above to prove that the endomorphism ring of any indecom-
posable finite-length module is nc-local. Thus, over any ring R, KRS
holds for the category of left R-modules of finite length. (Be careful:
You’re in a non-commutative setting, where the sum of two nilpotents
might be a unit! If you get stuck, consult [Fac98, Lemma 2.21].)

1.27. EXERCISE. Let M be a Noetherian left Λ-module, and let
f ∈EndΛ(M).
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(i) If f is surjective, prove that f is an automorphism of M. (Con-
sider the ascending chain of submodules ker( f n).)

(ii) If f is surjective and f 2 = f , prove that f = 1M .





CHAPTER 2

Semigroups of Modules

In this chapter we analyze the different ways in which a finitely
generated module over a local ring can be decomposed as a direct sum
of indecomposable modules. Put another way, we are interested in
exactly how badly KRS uniqueness can fail.

Our main result depends on a technical lemma, which provides
indecomposable modules of varying ranks at the minimal prime ideals
of a certain one-dimensional local ring. The proof of this lemma is left
as an exercise, with hints directed at a similar argument in the next
chapter.

Given a ring A, choose a set V(A) of representatives for the isomor-
phism classes [M] of finitely generated left A-modules. We make V(A)
into an additive semigroup in the obvious way: [M]+ [N] = [M ⊕ N].
This monoid encodes information about the direct-sum decompositions
of finitely generated A-modules. (In what follows, we use the terms
“semigroup” and “monoid” interchangeably.)

2.1. DEFINITION. For a finitely generated left A-module M, we de-
note by add(M) or addA(M) the full subcategory of A-mod consisting
of finitely generated modules that are isomorphic to direct summands
of direct sums of copies of M. Also, +(M) is the subsemigroup of V(A)
consisting of representatives of the isomorphism classes in add(M).

In the special case where R is a complete local ring, it follows from
KRS (Corollary 1.9) that V(R) is a free monoid, that is, V (R) ∼= N(I)

0 ,
where N0 is the additive semigroup of non-negative integers and the
index set I is the set of atoms of V(R), that is, the set of representatives
for the indecomposable finitely generated R-modules. Furthermore, if
M is a finitely generated R-module, then +(M) is free as well.

For a general local ring R, the semigroup V(R) is naturally a sub-
semigroup of V(R̂) by Corollary 1.15, and similarly +(M) is a subsemi-
group of +(M̂) for an R-module M. This forces various structural re-
strictions on which semigroups can arise as V(R) for a local ring R, or
as +(M) for a finitely generated R-module M. In short, +(M) must be
a finitely generated semigroup. In §1 we detail these restrictions, and
in the rest of the chapter we prove two realization theorems, which

13
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show that every finitely generated Krull monoid can be realized in the
form +(M) for a suitable local ring R and MCM R-module M. Both
these theorems actually realize a semigroup Λ together with a given
embedding Λ⊆N(n)

0 . The first construction (Theorem 2.12) gives a one-
dimensional domain R and a finitely generated torsion-free module
M realizing an expanded subsemigroup Λ as +(M), while the second
(Theorem 2.17) gives a two-dimensional unique factorization domain
R and a finitely generated reflexive module M realizing Λ as +(M), as-
suming only that Λ is a full subsemigroup of N(t)

0 . (See Proposition 2.4
for the terminology.)

§1. Krull monoids

In this section, let (R,m,k) be a local ring with completion (R̂,m̂,k).
Let V(R) and V(R̂) denote the semigroups, with respect to direct sum,
of finitely generated modules over R and R̂, respectively. We write all
our semigroups additively, though we will keep the “multiplicative” no-
tation inspired by direct sums, x | y, meaning that there exists z such
that x+ z = y. We write 0 for the neutral element [0] corresponding to
the zero module.

There is a natural homomorphism of semigroups

j : V(R)−→V(R̂)

taking [M] to [R̂ ⊗R M]. This homomorphism is injective by Corol-
lary 1.15, so we consider V(R) as a subsemigroup of V(R). It follows
that V(R) is cancellative: if x+ z = y+ z for x, y, z ∈ V(R), then x = y.
Since in this chapter we will deal only with local rings, all of our semi-
groups will be tacitly assumed to be cancellative. We also see that V(R)
is reduced, i.e. x+ y= 0 implies x = y= 0.

The semigroup homomorphism j : V(R) −→ V(R̂) actually satisfies
a much stronger condition than injectivity. A divisor homomorphism
is a semigroup homomorphism j : Λ−→Λ′ such that j(x) | j(y) implies
x | y for all x and y in Λ. Corollary 1.15 says that j : V(R) −→ V(R̂)
is a divisor homomorphism. Similarly, if M is a finitely generated
R-module, the map +(M) ,→ +(M̂) is a divisor homomorphism. A re-
assuring consequence is that a finitely generated module over a local
ring has only finitely many direct-sum decompositions. (Cf. (1.1.1),
which shows that this fails over a Dedekind domain with infinite class
group.) To be precise, let us say that two direct-sum decompositions
M ∼= M1⊕·· ·⊕Mm and M ∼= N1⊕·· ·⊕Nn are equivalent provided m = n
and, after a permutation, Mi ∼= Ni for each i. (We do not require that
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the summands be indecomposable.) The next theorem appears as The-
orem 1.1 in [Wie99], with a slightly non-commutative proof. We will
give a commutative proof here.

2.2. THEOREM. Let (R,m) be a local ring, and let M be a finitely
generated R-module. Then there are only finitely many isomorphism
classes of indecomposable modules in addR(M). In particular, M has,
up to equivalence, only finitely many direct sum decompositions.

PROOF. Let R̂ be the m-adic completion of R, and write R̂ ⊗R M =
V (n1)

1 ⊕ ·· · ⊕V (nt)
t , where each Vi is an indecomposable R̂-module and

each ni > 0. If L ∈ add(M), then R̂ ⊗R L ∼= V (a1)
1 ⊕·· ·⊕V (at)

t for suitable
non-negative integers ai; moreover, the integers ai are uniquely deter-
mined by the isomorphism class [L], by Corollary 1.9. Thus we have a
well-defined map j : + (M) −→ Nt

0, taking [L] to (a1, . . . ,at). Moreover,
this map is one-to-one, by faithfully flat descent (Corollary 1.15).

If [L] ∈ +(M) and j([L]) is a minimal non-zero element of j(+(M)),
then L is clearly indecomposable. Conversely, if [L] ∈ add(M) and L
is indecomposable, we claim that j([L]) is a minimal non-zero element
of j(+(M)). For, suppose that j([X ]) < j([L]), where [X ] ∈ +(M) is non-
zero. Then R̂ ⊗R X | R̂ ⊗R L, so X | L by Corollary 1.15. But X 6= 0
and X 6∼= L (else j([X ]) = j([L])), and we have a contradiction to the
indecomposability of L.

By Dickson’s Lemma (Exercise 2.20), j(+(M)) contains only finitely
many minimal non-zero elements, and, by what we have just shown,
add(M) has only finitely many isomorphism classes of indecomposable
modules.

For the last statement, let n = µR(M), the number of elements in
a minimal generating set for M, and let {N1, . . . , Nt} be a complete set
of representatives for the isomorphism classes of direct summands of
M. Any direct summand of M is isomorphic to N(r1)

1 ⊕·· ·⊕N(r t)
t , where

each r i is non-negative and r1 +·· ·+ r t 6 n. It follows that there are,
up to isomorphism, only finitely many direct summands of M. Let
{L1, . . . ,Ls} be a set of representatives for the non-zero direct sum-
mands of M. Any direct-sum decomposition of M must have the form
M ∼= L(u1)

1 ⊕·· ·⊕L(us)
s , with u1+·· ·+us6 n, and it follows that there are

only finitely many such decompositions. �

We will see in Example 2.13 that add(M) may contain indecompos-
able modules that do not occur as direct summands of M.

2.3. DEFINITION. A Krull monoid is a monoid that admits a divisor
homomorphism into a free monoid.
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Every finitely generated Krull monoid admits a divisor homomor-
phism into N(t)

0 for some positive integer t. Conversely, it follows easily
from Dickson’s Lemma (Exercise 2.20) that a monoid admitting a divi-
sor homomorphism to N(t)

0 must be finitely generated.
Finitely generated Krull monoids are called positive normal affine

semigroups in [BH93]. From [BH93, 6.1.10], we obtain the following
characterization of these monoids:

2.4. PROPOSITION. The following conditions on a semigroup Λ are
equivalent:

(i) Λ is a finitely generated Krull monoid.
(ii) Λ∼= G ∩N(t)

0 for some positive integer t and some subgroup G of
Z(t). (That is, Λ is isomorphic to a full subsemigroup of N(t)

0 .)
(iii) Λ∼=W∩N(u)

0 for some positive integer u and some Q-subspace W
of Q(n). (That is, Λ is isomorphic to an expanded subsemigroup
of N(u)

0 .)
(iv) There exist positive integers m and n, and an m× n matrix α

over Z, such that Λ∼=N(n) ∩ker(α). �

Observe that the descriptors “full” and “expanded” refer specifically
to a given embedding of a semigroup into a free semigroup, while the
definition of a Krull monoid is intrinsic. In addition, note that the
group G and the vector space W are not mysterious; they are the group,
respectively vector space, generated by Λ.

It’s obvious that every expanded subsemigroup of N(t) is also a full
subsemigroup, but the converse can fail. For example, the subsemi-
group

Λ=
{[ x

y
] ∈N(2)

0

∣∣∣x ≡ ymod3
}

of N(2)
0 is not the restriction to N(2)

0 of the kernel of a matrix, so is not
expanded. However, Λ is isomorphic to

Λ′ =
{[ x

y
z

]
∈N(3)

0

∣∣∣ x+2y= 3z
}

.

As this example indicates, the number u of (iii) might be larger than
the number t of (ii).

Condition (iv) says that a finitely generated Krull monoid can be
regarded as the collection of non-negative integer solutions of a homo-
geneous system of linear equations. For this reason these monoids are
sometimes called Diophantine monoids.

The key to understanding the monoids V(R) and +(M) is knowing
which modules over the completion R̂ actually come from R-modules.
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Recall that if R −→ S is a ring homomorphism, we say that an S-
module N is extended (from R) provided there is an R-module M such
that N ∼= S⊗R M. In the two remaining sections, we will prove a pair of
criteria—one in dimension one, and one in dimension two—for identi-
fying which finitely generated modules over the completion R̂ of a local
ring R are extended. In both cases, a key ingredient is that modules of
finite length are always extended. We leave the proof of this fact as an
exercise.

2.5. LEMMA. Let R be a local ring with completion R̂, and let L
be an R̂-module of finite length. Then L also has finite length as an
R-module, and the natural map L −→ R̂⊗R L is an isomorphism. �

§2. Realization in dimension one

In the one-dimensional case, a beautiful result due to Levy and
Odenthal [LO96] tells us exactly which R̂-modules are extended from
R. See Corollary 2.8 below. First, we define for any one-dimensional lo-
cal ring (R,m,k) the Artinian localization K(R) by K(R)=U−1R, where
U is the complement of the union of the minimal prime ideals (the
prime ideals distinct from m). If R is Cohen-Macaulay, then K(R) is
just the total quotient ring {non-zerodivisors}−1R as in Chapter 4. If R
is not Cohen-Macaulay, then the natural map R −→ K(R) is not injec-
tive.

2.6. PROPOSITION. Let (R,m,k) be a one-dimensional local ring,
and let N be a finitely generated R̂-module. Then N is extended from
R if and only if K(R̂)⊗R̂ N is extended from K(R).

PROOF. To simplify notation, we set K =K(R) and L =K(R̂). (Keep
in mind, however, that these may not be fields.) If q is a minimal prime
ideal of R̂, then q∩R is a minimal prime ideal of R, since “going down”
holds for flat extensions [BH93, Lemma A.9]. Therefore the inclusion
R −→ R̂ induces a homomorphism K −→ L, and this homomorphism is
faithfully flat, since the map Spec(R̂) −→ Spec(R) is surjective [BH93,
Lemma A.10]. The “only if” direction is then clear from the identifica-
tion L⊗K K ⊗R M ∼= L⊗R̂ R̂⊗R M.

For the converse, let X be a finitely generated K-module such that
L⊗K X ∼= L⊗R̂ N. Since K is a localization of R, there is a finitely gener-
ated R-module M such that K⊗R M ∼= X . Since L⊗R̂ N ∼= L⊗R̂ (R̂⊗R M),
there is a homomorphism ϕ : N −→ R̂ ⊗R M inducing an isomorphism
from L⊗R̂ N to L⊗R̂ (R̂⊗R M). Then the kernel U and cokernel V of ϕ
have finite length and therefore are extended by Lemma 2.5. Now we
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break the exact sequence

0−→U −→ N −→ S⊗R M −→V −→ 0

into two short exact sequences:
0−→U −→ N −→W −→ 0

0−→W −→ R̂⊗R M −→V −→ 0 .

Applying (ii) of Lemma 2.7 below to the second short exact sequence,
we see that W is extended. Now we apply (i) of the lemma to the first
short exact sequence, to conclude that N is extended. �

2.7. LEMMA. Let (R,m) be a local ring with completion R̂, and let

0−→ X −→Y −→ Z −→ 0

be an exact sequence of finitely generated R̂-modules.
(i) Assume X and Z are extended. If Ext1

R̂
(Z, X ) has finite length as

an R-module (e.g. if Z is locally free on the punctured spectrum
of R̂), then Y is extended.

(ii) Assume Y and Z are extended. If HomR̂(Y , Z) has finite length
as an R-module (e.g. if Z has finite length), then X is extended.

(iii) Assume X and Y are extended. If HomR̂(X ,Y ) has finite length
as an R-module (e.g. if X has finite length), then Z is extended.

PROOF. For (i), write X = R̂⊗R X0 and Z = R̂⊗R Z0, where X0 and
Z0 are finitely generated R-modules. The natural map

R̂⊗R Ext1
R(Z0, X0)−→Ext1

R̂
(Z, X )

is an isomorphism since Z0 is finitely presented, and Ext1
R(Z0, X0) has

finite length by faithful flatness. Therefore the natural map

Ext1
R(Z0, X0)−→ R̂⊗R Ext1

R(Z0, X0)

is an isomorphism by Lemma 2.5. Combining the two isomorphisms,
we see that the given exact sequence, when regarded as an element
of Ext1

R̂
(Z, X ), comes from a short exact sequence 0 −→ X0 −→ Y0 −→

Z0 −→ 0. Clearly, then, R̂⊗R Y0
∼=Y .

To prove (ii), we write Y = R̂ ⊗R Y0 and Z = R̂ ⊗R Z0, where Y0
and Z0 are finitely generated R-modules. As in the proof of (i) we
see that the natural map HomR(Y0, Z0) −→ HomR̂(Y , Z) is an isomor-
phism. Therefore the given R̂-homomorphism β : Y −→ Z comes from
a homomorphism β0 : Y0 −→ Z0 in HomR(Y0, Z0). Clearly, then, X ∼=
R̂ ⊗R (kerβ0). The proof of (iii) is essentially the same: Write Y =
R̂ ⊗R Y0 and X = R̂ ⊗R X0; show that α : X −→ Y comes from some
α0 ∈HomR(X0,Y0), and deduce that Z ∼= R̂⊗R (cokα0). �
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2.8. COROLLARY (Levy-Odenthal). Let (R,m,k) be a local ring of
dimension one for which the completion R̂ is reduced, and let N be a
finitely generated R̂-module. Then N is extended from R if and only if

dimR̂p
(Np)= dimR̂q

(Nq)

whenever p and q are minimal prime ideals of R̂ lying over the same
prime ideal of R. In particular, if R is a domain, then N is extended if
and only if N has constant rank. �

This gives us a strategy for producing strange direct-sum behavior:

(i) Find a one-dimensional domain R whose completion is reduced
but has lots of minimal primes.

(ii) Build indecomposable modules with highly non-constant ranks
over R̂.

(iii) Put them together in different ways to get constant-rank mod-
ules.

Suppose, to illustrate, that R is a domain whose completion R̂ has two
minimal primes p and q. Suppose we can build indecomposable R̂-
modules U ,V ,W and X , with ranks (dimR̂p

(−),dimR̂q
(−))= (2,0), (0,2),

(2,1), and (1,2), respectively. Then U ⊕V has constant rank (2,2), so
is extended; say, U ⊕V ∼= M̂. Similarly, there are R-modules N, F and
G such that V ⊕W ⊕W ∼= N̂, W ⊕ X ∼= F̂, and U ⊕ X ⊕ X ∼= Ĝ. Using
KRS over R̂, we see easily that no non-zero proper direct summand
of any of the modules M̂, N̂, F̂, Ĝ has constant rank. It follows from
Corollary 2.8 that M, N, F, and G are indecomposable, and of course
no two of them are isomorphic since (again by KRS) their completions
are pairwise non-isomorphic. Finally, we see that M ⊕F ⊕F ∼= N ⊕G,
since the two modules have isomorphic completions. Thus we easily
obtain a mild violation of KRS uniqueness over R.

It’s easy to accomplish (i), getting a one-dimensional domain with
a lot of splitting but no ramification. In order to facilitate (ii), how-
ever, we want to ensure that each analytic branch has infinite Cohen-
Macaulay type. The following construction from [Wie01, (2.3)] does
the job nicely:

2.9. CONSTRUCTION (R. Wiegand). Fix a positive integer s, and let
k be any field with |k|> s. Choose distinct elements t1, . . . , ts ∈ k. Let
Σ be the complement of the union of the maximal ideals (x− ti)k[x],
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i = 1, . . . , s. We define R by the pullback diagram

(2.9.1)

R //

��

Σ−1k[x]

π
��

k //
Σ−1k[x]

(x− t1)4 · · · (x− ts)4 ,

where π is the natural quotient map. Then R is a one-dimensional lo-
cal domain, (2.9.1) is the conductor square for R (cf. Construction 4.1),
and R̂ is reduced with exactly s minimal prime ideals. Indeed, we can
rewrite the bottom line Rart as k,→D1 × ·· · ×Ds, where D i ∼= k[x]/(x4)
for each i. The conductor square for the completion is then

R̂ //

��

T1 ×·· ·×Ts

π

��

k // D1 ×·· ·×Ds ,

where each Ti is isomorphic to k[[x]]. (If char(k) 6= 2, 3, then R is the
ring of rational functions f ∈ k(T) such that f (t1) = ·· · = f (ts) 6=∞ and
the derivatives f ′, f ′′ and f ′′′ vanish at each ti.)

Let p1, . . . ,ps be the minimal prime ideals of R̂. Define the rank of
a finitely generated R̂-module N to be the s-tuple (r1, . . . , rs), where r i
is the dimension of Npi as a vector space over Rpi .

The next theorem [Wie01, (2.4)] says that even the case s = 2 of
this example yields the pathology discussed after Corollary 2.8.

2.10. THEOREM. Fix a positive integer s, and let R be the ring of
Construction 2.9. Let (r1, . . . , rs) be any sequence of non-negative inte-
gers with not all the r i equal to zero. Then R̂ has an indecomposable
torsion-free module N with rank(N)= (r1, . . . , rs).

PROOF. Set P = T(r1)
1 ×·· ·×T(rs)

s , a projective module over R̂ ∼= T1×
·· ·×Ts. Lemma 2.11 below, a jazzed-up version of Theorem 3.7, yields
an indecomposable R̂art-module V ,→W with W = D(r1)

1 ×·· ·D(rs)
s . Since

P/cP ∼= W , Construction 4.1 implies that there exists a torsion-free R̂-
module M, namely, the pullback of P and V over W , such that Mart =
(V ,→W). NAK implies that M is indecomposable, and the ranks of M
at the minimal primes are precisely (r1, . . . , rs). �

We leave the proof of the next lemma as a challenging exercise
(Exercise 2.23).
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2.11. LEMMA. Let k be a field. Fix an integer s> 1, set D i = k[x]/(x4)
for i = 1, . . . , s, and let D = D1 ×·· ·×Ds. Let (r1, . . . , rs) be an s-tuple of
non-negative integers with at least one positive entry, and assume that
r1> r i for every i. Then the Artinian pair k,→D has an indecomposable
module V ,→W , where W = D(r1)

1 ×·· ·×D(rs)
s . �

Recalling condition (iv) of Proposition 2.4, we say that the finitely
generated Krull monoid Λ can be defined by m equations provided
Λ ∼= N(n)

0 ∩ker(α) for some n and some m×n integer matrix α. Given
such an embedding of Λ in N(n)

0 , we say a column vector λ ∈Λ is strictly
positive provided each of its entries is a positive integer. By decreasing
n (and removing some columns from α) if necessary, we can harm-
lessly assume, without changing m, that Λ contains a strictly positive
element λ. Specifically, choose an element λ ∈Λ with the largest num-
ber of strictly positive coordinates, and throw away all the columns of
α corresponding to zero entries of λ. If any element λ′ ∈Λ had a non-
zero entry in one of the deleted position, then λ+λ′ would have more
positive entries than λ, a contradiction.

2.12. THEOREM. Fix a non-negative integer m, and consider the
ring R of Construction 2.9 with s = m+1. Let Λ be a finitely generated
Krull monoid defined by m equations and containing a strictly positive
element λ. Then there exist a torsion-free R-module M and a commu-
tative diagram

Λ �
�

//

ϕ

��

N
(n)
0

ψ

��

+(M)
j
// +(R̂⊗R M)

in which
(i) j is the natural map taking [N] to [R̂⊗R N],

(ii) ϕ and ψ are semigroup isomorphisms, and
(iii) ϕ(λ)= [M].

PROOF. We have Λ=N(n)
0 ∩ker(α), where α= [ai j] is an m×n ma-

trix over Z. Choose a positive integer h such that ai j+h> 0 for all i, j.
For j = 1, . . . ,n, choose, using Theorem 2.10, a torsion-free R̂-module
L j such that rank(L j)= (a1 j +h, . . . ,am j +h,h).

Given any column vector β= [b1,b2, . . . ,bn]tr ∈N(n)
0 , put Nβ = L(b1)

1 ⊕
·· ·⊕L(bn)

n . The rank of Nβ is(
n∑

j=1

(
a1 j +h

)
b j, . . . ,

n∑
j=1

(
am j +h

)
b j,

(
n∑

j=1
b j

)
h

)
.
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Since R is a domain, Corollary 2.8 implies that Nβ is in the image of
j : V(R) −→ V(R̂) if and only if

∑n
j=1(ai j +h)b j =

(∑n
j=1 b j

)
h for each i,

that is, if and only if β ∈N(n)
0 ∩ker(α)=Λ. To complete the proof, we let

M be the R-module (unique up to isomorphism) such that M̂ ∼= Nλ. �

This corollary makes it very easy to demonstrate spectacular fail-
ure of KRS uniqueness:

2.13. EXAMPLE. Let

Λ=
{[ x

y
z

]
∈N(3)

0

∣∣∣ 72x+ y= 73z
}

.

This has three atoms (minimal non-zero elements), namely

α=
1

1
1

 , β=
 0

73
1

 , γ=
73

0
72

 .

Note that 73α= β+γ. Taking s = 2 in Construction 2.9, we get a local
ring R and indecomposable R-modules A, B, C such that A(t) has only
the obvious direct-sum decompositions for t6 72, but A(73) ∼= B⊕C.

We define the splitting number spl(R) of a one-dimensional local
ring R by

spl(R)= ∣∣Spec(R̂)
∣∣−|Spec(R)| .

The splitting number of the ring R in Construction 2.9 is s−1. Corol-
lary 2.12 says that every finitely generated Krull monoid defined by m
equations can be realized as +(M) for some finitely generated module
over a one-dimensional local ring (in fact, a domain essentially of finite
type over Q) with splitting number m. This is the best possible:

2.14. PROPOSITION. Let M be a finitely generated module over a
one-dimensional local ring R with splitting number m. The embedding
+(M),→V(R̂) exhibits +(M) as an expanded subsemigroup of the free
semigroup +(R̂⊗R M). Moreover, +(M) is defined by m equations.

PROOF. Write R̂⊗R M =V (e1)
1 ⊕·· ·⊕V (en)

n , where the Vj are pairwise
non-isomorphic indecomposable R̂-modules and the e i are all positive.
We have an embedding +(M) ,→N

(n)
0 taking [N] to [b1, . . . ,bn]tr, where

R̂ ⊗R N ∼= V (b1)
1 ⊕ ·· ·⊕V (bn)

n , and we identify +(M) with its image Λ in
N

(n)
0 . Given a prime p ∈ Spec(R) with, say, t primes q1, . . . ,qt lying

over it, there are t−1 homogeneous linear equations on the b j that
say that N̂ has constant rank on the fiber over p (cf. Corollary 2.8).
Letting p vary over Spec(R), we obtain exactly m = spl(R) equations
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that must be satisfied by elements of Λ. Conversely, if the b j sat-
isfy these equations, then N := V (b1)

1 ⊕·· ·⊕V (bn)
n has constant rank on

each fiber of Spec(R̂) −→ Spec(R). By Corollary 2.8, N is extended
from an R-module, say N ∼= R̂ ⊗R L. Clearly R̂ ⊗R L | �M(u) if u is large
enough, and it follows from Proposition 2.19 that L ∈ +(M), whence
[b1, . . . ,bn]tr ∈Λ. �

In [Kat02] Kattchee showed that, for each m, there is a finitely
generated Krull monoid Λ that cannot be defined by m equations.
Thus no single one-dimensional local ring can realize every finitely
generated Krull monoid in the form +(M) for a finitely generated mod-
ule M.

§3. Realization in dimension two

Suppose we have a finitely generated Krull semigroup Λ and a full
embedding Λ ⊆ N(t)

0 , i.e. Λ is the intersection of N(t) with a subgroup
of Z(t). By Proposition 2.14, we cannot realize this embedding in the
form +(M) ,→+(R̂ ⊗R M) for a module M over a one-dimensional local
ring R unless Λ is actually an expanded subsemigroup of N(t)

0 , i.e. the
intersection of N(t) with a subspace of Q(t). If, however, we go to a two-
dimensional ring, then we can realize Λ as +(M), though the ring that
does the realizing is less tractable than the one-dimensional rings that
realize expanded subsemigroups.

As in the last section, we need a criterion for an R̂-module to be ex-
tended from R. For general two-dimensional rings, we know of no such
criterion, so we shall restrict to analytically normal domains. (A local
domain (R,m) is analytically normal provided its completion (R̂,m̂) is
also a normal domain.)

We recall two facts from Bourbaki [Bou98, Chapter VII]. Firstly,
over a Noetherian normal domain R one can assign to each finitely
generated R-module M a divisor class cl(M) ∈ Cl(R) in such a way
that

(i) Taking divisor classes cl(−) is additive on exact sequences, and
(ii) if J is a fractional ideal of R, then cl(J) is the isomorphism

class [J∗∗] of the divisorial (i.e. reflexive) ideal J∗∗, where −∗
denotes the dual HomR(−,R).

Secondly, each finitely generated torsion-free module M over a Noe-
therian normal domain R has a “Bourbaki sequence,” namely a short
exact sequence

(2.14.1) 0−→ F −→ M −→ J −→ 0
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wherein F is a free R-module and J is an ideal of R.
The following criterion for a module to be extended is Proposition

3 of [RWW99] (cf. also [Wes88, (1.5)]).

2.15. PROPOSITION. Let R be a two-dimensional local ring whose
m-adic completion R̂ is a normal domain. Let N be a finitely generated
torsion-free R̂-module. Then N is extended from R if and only if cl(N)
is in the image of the natural homomorphism Φ : Cl(R)−→Cl(R̂).

PROOF. Suppose N ∼= R̂ ⊗R M. Then M is finitely generated and
torsion-free, by faithfully flat descent. Choose a Bourbaki sequence of
the form (2.14.1) for M; tensoring with R̂ and using the additivity of
cl(−) on short exact sequences, we find

cl(N)= cl(R̂⊗R J)= [(R̂⊗R J)∗∗]=Φ(cl(J)) .

For the converse, choose a Bourbaki sequence

0−→G −→ N −→ L −→ 0

over R̂, so that G is a free R̂-module and L is an ideal of R̂. Then cl(L)=
cl(N), and since cl(N) is in the image of Φ there is a divisorial ideal I of
R such that R̂⊗R I ∼= L∗∗. Set V = L∗∗/L. Then V has finite length and
hence is extended by Lemma 2.5; it follows from Lemma 2.7(i) and the
short exact sequence 0 −→ L −→ L∗∗ −→ V −→ 0 that L is extended.
Moreover, R̂p is a discrete valuation ring for each height-one prime
ideal p, so that Ext1

R̂
(L,G) has finite length. Now Lemma 2.7(ii) says

that N is extended since G and L are. �

As in the last section, we need to guarantee that the complete ring
R̂ has a sufficiently rich supply of MCM modules. This is [Wie01,
Lemma 3.2].

2.16. LEMMA. Let s be any positive integer. There is a complete
local normal domain B, containing C, such that dim(B) = 2 and Cl(B)
contains a copy of (R/Z)(s).

PROOF. Choose a positive integer d such that (d−1)(d−2)> s, and
let V be a smooth projective plane curve of degree d over C. Let A be
the homogeneous coordinate ring of V for some embedding V ,→ P2

C
.

Then A is a two-dimensional normal domain, by [Har77, Chap. II,
Exercise 8.4(b)]. By [Har77, Appendix B, Sect. 5], Pic0(V ) ∼= D :=
(R/Z)2g, where g = 1

2 (d − 1)(d − 2), the genus of V . Here Pic0(V ) is
the kernel of the degree map Pic(V ) −→Z, so Cl(V ) = Pic(V ) = D⊕Zσ,
where σ is the class of a divisor of degree 1. There is a short exact
sequence

0−→Z−→Cl(V )−→Cl(A)−→ 0 ,
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in which 1 ∈ Z maps to the divisor class τ := [H ·V ], where H is a line
in P2

C
. (Cf. [Har77, Chap. II, Exercise 6.3].) Thus Cl(A) ∼= Cl(V )/Zτ.

Since τ has degree d, we see that τ−dσ ∈ D. Choose an element δ ∈ D
with dδ = τ− dσ. Recalling that Cl(V ) = Pic(V ) = D ⊕Zσ, we define
a surjection f : Cl(V ) −→ D ⊕Z/(d) by sending x ∈ D to (x,0) and σ to
(−δ,1+ (d)). Then ker( f )=Zτ, so Cl(A)∼= D⊕Z/dZ.

Let P be the irrelevant maximal ideal of A. By [Har77, Chap. II,
Exercise 6.3(d)], Cl(AP) ∼= Cl(A). The P-adic completion B of A is an
integrally closed domain, by [ZS75, Chap. VIII, Sect. 13]. Moreover
Cl(AP)−→Cl(B) is injective by faithfully flat descent, so Cl(B) contains
a copy of D = (R/Z)(d−1)(d−2), which, in turn, contains a copy of (R/Z)(s).

�

We now have everything we need to prove our realization theorem
for full subsemigroups of N(t)

0 .

2.17. THEOREM. Let t be a positive integer, and let Λ be a full sub-
semigroup of N(t)

0 . Assume that Λ contains a strictly positive element λ.
Then there exist a two-dimensional local unique factorization domain
R, a finitely generated reflexive (= MCM) R-module M, and a commu-
tative diagram of semigroups

Λ �
�

//

ϕ

��

N
(t)
0

ψ

��

+(M)
j
// +(R̂⊗R M)

in which

(i) j is the natural map taking [N] to [R̂⊗R N],
(ii) ϕ and ψ are isomorphisms, and

(iii) ϕ(λ)= [M].

PROOF. Let G be the subgroup of Z(t) generated by Λ, and write
Z(t)/G = C1 ⊕·· ·⊕Cs, where each Ci is a cyclic group. Then Z(t)/G can
be embedded in (R/Z)(s).

Let B be the complete local domain provided by Lemma 2.16. Since
Z(t)/G embeds in Cl(B), there is a group homomorphism $ : Z(t) −→
Cl(B) with ker($) = G. Let {e1, . . . , e t} be the standard basis of Z(t).
For each i 6 t, write $(e i) = [L i], where L i is a divisorial ideal of B
representing the divisor class of $(e i).

Next we use Heitmann’s amazing theorem [Hei93], which implies
that B is the completion of some local unique factorization domain R.
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For each element m = (m1, . . . ,mt) ∈ N(t)
0 , we let ψ(m) be the isomor-

phism class of the B-module L(m1)
1 ⊕·· ·⊕L(mt)

t . The divisor class of this
module is m1[L1]+ ·· · + mt[L t] = $(m1, . . . ,mt). By Proposition 2.15,
the module L(m1)

1 ⊕ ·· ·⊕L(mt)
t is the completion of an R-module if and

only if its divisor class is trivial, that is, if and only if m ∈ G ∩N(t)
0 .

But m ∈ G ∩N(t)
0 =Λ, since Λ is a full subsemigroup of N(t)

0 . Therefore
L(m1)

1 ⊕·· ·⊕L(mt)
t is the completion of an R-module if and only if m ∈Λ.

If m ∈ Λ, we let ϕ(m) be the isomorphism class of a module whose
completion is isomorphic to L(m1)

1 ⊕ ·· · ⊕L(mt)
t . In particular, choosing

a module M such that [M] = ϕ(λ), we get the desired commutative
diagram. �

§4. Flat local homomorphisms

Here we prove a generalization (Proposition 2.19) of the fact that
V(R) −→ V(R̂) is a divisor homomorphism. We begin with a general
result that does not even require the ring to be local [Wie98, Theorem
1.1].

2.18. PROPOSITION. Let A −→ B be a faithfully flat homomorphism
of commutative rings, and let U and V be finitely presented A-modules.
Then U ∈ addA V if and only if B⊗A U ∈ addB(B⊗A V ).

PROOF. The “only if” direction is clear. For the converse, we may
assume, by replacing V by a direct sum of copies of V , that B⊗A U |
B⊗A V . Choose B-homomorphisms B⊗A U α−−→ B⊗A V and B⊗A V

β−−→
B⊗AU such that βα= 1B⊗AU . Since V is finitely presented and B is flat
over A, the natural map B⊗A HomA(V ,U)−→HomB(B⊗A V ,B⊗AU) is
an isomorphism. Therefore we can write β= b1⊗σ1+·· ·+br⊗σr, with
bi ∈ B and σi ∈ HomA(V ,U) for each i. Put σ = [σ1 · · ·σr] : V (r) −→ U .
We will show that σ is a split surjection. Since

(1B ⊗σ)

b1
...

br

α = 1B⊗AU ,

we see that 1B⊗σ : B⊗A V (r) −→ B⊗A U is a split surjection. Therefore
the induced map (1B ⊗σ)∗ : HomB(B⊗A U ,B⊗A V (r)) −→ HomB(B⊗A
U ,B⊗A U) is surjective. Since U too is finitely presented, the vertical
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maps in the following commutative square are isomorphisms.
(2.18.1)

B⊗A HomA(U ,V (r))
1B⊗σ∗

//

∼=
��

B⊗A HomA(U ,U)

∼=
��

HomB(B⊗A U ,B⊗A V (r))
(1B⊗σ)∗

// HomB(B⊗A U ,B⊗A U)

Therefore 1B ⊗A σ∗ is surjective as well. By faithful flatness, σ∗ is
surjective, and hence σ is a split surjection. �

2.19. PROPOSITION ([HW09, Theorem 1.3]). Let R −→ S be a flat
local homomorphism of Noetherian local rings. Then the homomor-
phism j : V(R) −→ V(S) taking [M] to [S⊗R M] is a divisor homomor-
phism.

PROOF. Suppose M and N are finitely generated R-modules and
that S⊗R M | S⊗R N. We want to show that M | N. By Theorem 1.13 it
will be enough to show that M/mtM | N/mtN for all t> 1. By passing to
the flat local homomorphism R/mt −→ S/mtS, we may assume that R is
Artinian and hence, by Corollary 1.6, that finitely generated modules
satisfy KRS.

By Proposition 2.18, we know at least that M | N(r) for some r> 1.
By Corollary 1.9 (or Theorem 1.3 and Corollary 1.5) M is uniquely a
direct sum of indecomposable modules. If M itself is indecomposable,
KRS immediately implies that M | N. An easy induction argument
using direct-sum cancellation (Corollary 1.16) completes the proof (cf.
Exercise 2.24). �

§5. Exercises

2.20. EXERCISE. A subset C of a poset X is called a clutter (or an-
tichain) provided no two elements of C are comparable. Consider the
following property of a poset X : (†) X has the descending chain con-
dition, and every clutter in X is finite. Prove that if X and Y both
satisfy (†), then X ×Y (with the product partial ordering defined by
(x1, y1)6 (x2, y2) ⇐⇒ x1 6 x2 and y1 6 y2) satisfies (†). Deduce Dick-
son’s Lemma [Dic13]: Every clutter in N(t)

0 is finite.

2.21. EXERCISE. Prove the equivalence of conditions (i)–(iv) from
Proposition 2.4.

2.22. EXERCISE. Prove Lemma 2.5.

2.23. EXERCISE ([Wie01, Lemma 2.2]). Prove the existence of the
indecomposable R̂art-module V ,→W in Lemma 2.11, as follows. Let



28 2. SEMIGROUPS OF MODULES

C = k(r1), viewed as column vectors. Define the “truncated diagonal”
∂ : C −→ W = D(r1)

1 × ·· · ×D(rs)
s by sending an element [c1, . . . , cr1]tr to

the vector whose ith entry is [c1, . . . , cr i ]
tr. (Here we use r1> r i for all

i.) Let V be the k-subspace of W consisting of all elements{
∂(u)+ X∂(v)+ X3∂(Hv)

}
,

as u and v run over C, where X = (x,0, . . . ,0) and H is the nilpotent
Jordan block with 1 on the superdiagonal and 0 elsewhere.

(i) Prove that W is generated as a D-module by all elements of
the form ∂(u), u ∈ C, so that in particular DV = W . (Hint: it
suffices to consider elements w = (w1, . . . ,ws) with only one non-
zero entry wi, and such that wi ∈ D(r i)

i has only one non-zero
entry, which is equal to 1.)

(ii) Prove that V ,→W is indecomposable along the same lines as the
arguments in Chapter 4. (Hint: use the fact that {1, x, x2, x3} is
linearly independent over k. For additional inspiration, take a
peek at the descending induction argument in Case 3.16 of the
construction in the next chapter, with α= x, β= x3, and t = 0.)

2.24. EXERCISE. Complete the proof of Proposition 2.19.



CHAPTER 3

Dimension Zero

In this chapter we prove that the zero-dimensional commutative,
Noetherian rings of finite representation type are exactly the Artinian
principal ideal rings. We also introduce Artinian pairs, which will be
used in the next chapter to classify the one-dimensional rings of finite
Cohen-Macaulay type. The Drozd-Roı̆ter conditions (dr1) and (dr2) are
shown to be necessary for finite representation type in Theorem 3.7,
and in Theorem 3.23 we reduce the proof of their sufficiency to some
special cases, where we can appeal to the matrix calculations of Green
and Reiner.

Here are the main definitions of this book.

3.1. DEFINITION. Let (R,m) be a local ring of dimension d. A non-
zero finitely generated R-module is maximal Cohen-Macaulay (MCM)
if depth M = d. We say that R has finite Cohen-Macaulay (CM) type if
there are, up to isomorphism, only a finite number of indecomposable
maximal Cohen-Macaulay modules.

§1. Artinian rings with finite Cohen-Macaulay type

We’ll say that an Artinian ring (possibly not local) has finite CM
type provided it has only finitely many indecomposable finitely gen-
erated modules up to isomorphism. (Of course this causes no conflict
in the local case.) To see that this condition forces R to be a princi-
pal ideal ring, and in several other constructions of indecomposable
modules, we use the following result:

3.2. LEMMA. Let R be any commutative ring, n a positive integer
and H the nilpotent n×n Jordan block with 1’s on the superdiagonal
and 0’s elsewhere. If α is an n× n matrix over R and αH = Hα, then
α ∈ R[H], that is, there are constants r i ∈ R such that α = r0I + r1H +
·· ·+ rn−1Hn−1.

Note that α has r0 on the main diagonal, r1 on the first super-
diagonal, and so on. Such matrices are often called “striped” in the
literature.

29
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PROOF. Let α= [
ai j

]
. Left multiplication by H moves each row up

one step and kills the bottom row, while right multiplication shifts each
column to the right and kills the first column. The relation αH = Hα

therefore yields the equations ai, j−1 = ai+1, j for i, j = 1, . . . ,n, with the
convention that ak` = 0 if k = n+1 or `= 0. These equations show (a)
that each of the diagonals (of slope −1) is constant and (b) that a21 =
·· · = an1 = 0. Combining (a) and (b), we see that α is upper triangular.
Letting b j be the constant on the diagonal

[
a1, j+1 a2, j+2 . . . an− j,n

]
,

for 06 j6 n−1, we see that α=∑n−1
j=0 b jH j. �

When R is a field, there is a fancy proof: H is “cyclic” or “non-
derogatory”, that is, its characteristic and minimal polynomials coin-
cide. The centralizer of a non-derogatory matrix B is always just R[B]
(cf. [Jac75, Corollary, p. 107]).

3.3. THEOREM. Let R be a Noetherian ring. These are equivalent:
(i) R is an Artinian principal ideal ring.

(ii) R has only finitely many indecomposable finitely generated mod-
ules, up to isomorphism.

(iii) R is Artinian, and there is a bound on the number of generators
required for indecomposable finitely generated R-modules.

Under these conditions, the number of isomorphism classes of indecom-
posable finitely generated modules is exactly the length of R.

PROOF. Assuming (i), we will prove (ii) and verify the last state-
ment. Since R is a product of finitely many local rings, we may as-
sume that R is local, with maximal ideal m. As R is a principal ideal
ring, the length ` of R is the least integer t such that mt = 0. Since
every finitely generated R-module is a direct sum of cyclic modules,
the indecomposable modules are exactly the modules R/mt,16 t6 `.

To see that (ii)=⇒ (iii), suppose R is not Artinian. Choose a maxi-
mal ideal m of positive height. The ideals mt, t> 1, then form a strictly
descending chain of ideals (cf. Exercise 3.24). Therefore the R-modules
R/mt are indecomposable and, since they have different annihilators,
pairwise non-isomorphic, contradicting (ii).

To complete the proof, we show that (iii) =⇒ (i). Again, we may as-
sume that R is local with maximal ideal m. Supposing R is not a prin-
cipal ideal ring, we will build, for every n, an indecomposable finitely
generated R-module requiring exactly n generators. By passing to
R/m2, we may assume that m2 = 0, so that now m is a vector space
over k := R/m. Choose two k-linearly independent elements x, y ∈m.

Fix n> 1, let I be the n×n identity matrix, and let H be the n×
n nilpotent Jordan block of Lemma 3.2. Put Ψ = yI + xH and M =
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cok(Ψ). Since the entries of Ψ are in m, the R-module M needs exactly
n generators.

To show that M is indecomposable, let f = f 2 ∈ EndR(M), and as-
sume that f 6= 1M . We will show that f = 0. There exist n×n matrices
F and G over R making the following diagram commute.

R(n) Ψ
//

G
��

R(n) //

F
��

M //

f
��

0

R(n)
Ψ
// R(n) // M // 0

The equation FΨ =ΨG yields yF + xFH = yG + xHG. Since x and y
are linearly independent, we obtain, after reducing all entries of F, G
and H modulo m, that F = G and F H = H G. Therefore F and H
commute, and by Lemma 3.2 F is an upper-triangular matrix with
constant diagonal.

Now f is not surjective, by Exercise 1.27, and therefore neither is
F. By NAK, F is not surjective, so F must be strictly upper triangular.
But then F

n = 0, and it follows that im( f ) = im( f n) ⊆mM. Now NAK
implies that 1− f is surjective. Since 1− f is idempotent, Exercise 1.27
implies that f = 0. �

This construction is far from new. See, for example, the papers of
Higman [Hig54], Heller and Reiner [HR61], and Warfield [War70].
A similar construction arises in the classification of pairs of matrices
up to simultaneous equivalence (see Dieudonné’s discussion [Die46]
of the work of Kronecker [Kro74] and Weierstrass [Wei68]). Essen-
tially the same construction shows that certain higher-dimensional
rings have unbounded CM type:

3.4. PROPOSITION. Let (S,n,k) be a CM local ring of dimension at
least two, and let z be an indeterminate. Set R = S[z]/(z2). Then R has
indecomposable MCM modules of arbitrarily large rank.

PROOF. Fix n> 2, and let W be a free S-module of rank 2n. Let I
be the n×n identity matrix and H the n×n nilpotent Jordan block with
1 on the superdiagonal and 0 elsewhere. Let {x, y} be part of a minimal
generating set for the maximal ideal n of S, and put Ψ = yI + xH.
Finally, put Φ = [

0 Ψ
0 0

]
. Noting that Φ2 = 0, we make W into an R-

module by letting z act as Φ : W −→ W . Then W is a MCM R-module,
and one shows as in the proof of Theorem 3.3 that W is indecomposable
over R. �
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§2. Artinian pairs

Here we introduce the main computational tool for building inde-
composable MCM modules over one-dimensional rings.

3.5. DEFINITION. An Artinian pair is a module-finite extension of
commutative Artinian rings (A ,→ B). Given an Artinian pair A= (A ,→
B), an A-module is a pair (V ,→ W), where W is a finitely generated
projective B-module and V is an A-submodule of W with the property
that BV = W . A morphism (V1 ,→ W1) −→ (V2 ,→ W2) of A-modules is a
B-homomorphism from W1 to W2 that carries V1 into V2. We say that
the A-module (V ,→W) has constant rank n provided W ∼= B(n).

With biproducts (direct sums) defined in the obvious way, we get
an additive category A-mod. To see that Theorem 1.3 applies in this
context, we note first that the endomorphism ring of every A-module is
a module-finite A-algebra and therefore is left Artinian. Next, suppose
ε is an idempotent endomorphism of an A-module X= (V ,→W). Then
Y = (ε(V ) ,→ ε(W)) is also an A-module. The projection p : X −→ Y
and inclusion u : Y ,→ X give a factorization ε = up, with pu = 1Y.
Thus idempotents split in A-mod. Combining Theorem 1.3 and Corol-
lary 1.5, we obtain the following:

3.6. THEOREM. Let A be an Artinian pair, and let M1, . . . ,Ms and
N1, . . . ,Nt be indecomposable A-modules such that M1⊕·· ·⊕Ms ∼=N1 ⊕
·· ·⊕Nt. Then s = t, and, after renumbering, Mi ∼=Ni for each i. �

We say A has finite representation type provided there are, up to
isomorphism, only finitely many indecomposable A-modules.

Our main result in this chapter is Theorem 3.7, which gives neces-
sary conditions for an Artinian pair to have finite representation type.
As we will see in the next chapter, these conditions are actually suf-
ficient for finite representation type. The conditions were introduced
by Drozd and Roı̆ter [DR67] in 1966, and we will refer to them as the
Drozd-Roı̆ter conditions. (See the historical remarks in Section §2 of
Chapter 4.)

3.7. THEOREM. Let A = (A ,→ B) be an Artinian pair in which A is
local, with maximal ideal m and residue field k. Assume that at least
one of the following conditions fails:

(dr1) dimk (B/mB)6 3

(dr2) dimk

(
mB+ A
m2B+ A

)
6 1.

Let n be an arbitrary positive integer. Then there is an indecomposable
A-module of constant rank n. Moreover, if |k| is infinite, there are at
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least |k| pairwise non-isomorphic indecomposable A-modules of rank
n.

3.8. REMARK. If the field k is infinite then the number of isomor-
phism classes of A-modules is at most |k|. To see this, note that there
are, up to isomorphism, only countably many finitely generated pro-
jective B-modules W . Also, since any such W has finite length as an
A-module, we see that |W |6 |k| and hence that W has at most |k| A-
submodules V . It follows that the number of possibilities for (V ,→W)
is bounded by ℵ0|k| = |k|.

The proof of Theorem 3.7 involves a basic construction and a dreary
analysis of the many cases that must be considered in order to imple-
ment the construction.

3.9. ASSUMPTIONS. Throughout the rest of this chapter, A= (A ,→
B) is an Artinian pair in which A is local, with maximal ideal m and
residue field k.

The next three results will allow us to pass to a more manage-
able Artinian pair k ,→ D, where D is a suitable finite-dimensional
k-algebra. The proofs of the first two lemmas are exercises.

3.10. LEMMA. Let C be a subring of B containing A. The functor
(V ,→W) (V ,→ B⊗CW) from (A ,→ C)-mod to (A ,→ B)-mod is faithful
and full. The functor is injective on isomorphism classes and preserves
indecomposability. �

3.11. LEMMA. Let I be a nilpotent ideal of B and set E= ( A+I
I ,→ B

I
)
.

The functor (V ,→W) 
(V+IW

IW ,→ W
IW

)
, from A-mod to E-mod, is surjec-

tive on isomorphism classes and reflects indecomposable objects. �

3.12. PROPOSITION. Let A ,→ B be an Artinian pair for which either
(dr1) or (dr2) fails. There is a ring C between A and B such that, with
D = C/mC, we have either

(i) dimk(D)> 4, or
(ii) D contains elements α and β such that {1,α,β} is linearly inde-

pendent over k and α2 =αβ=β2 = 0.

PROOF. If (dr1) fails, we take C = B. Otherwise (dr2) fails, and
we put C = A +mB. Since dimk

(
mB+A
m2B+A

)
> 2, we can choose elements

x, y ∈mB such that the images of x and y in mB+A
m2B+A are linearly inde-

pendent. Since D := C/mC maps onto mB+A
m2B+A , the images α,β ∈ D of

x, y are linearly independent, and they obviously satisfy the required
equations. �
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Now let’s begin the proof of Theorem 3.7. We have an Artinian pair
A ,→ B, where (A,m,k) is local and either (dr1) or (dr2) fails. We want
to build indecomposable A-modules V ,→ W , with W = B(n). By Lem-
mas 3.10 and 3.11, we can pass to the Artinian pair k ,→ D provided
by Proposition 3.12. We fix a positive integer n. Our goal is to build
an indecomposable (k ,→ D)-module (V ,→ D(n)) and, if k is infinite,
a family {(Vt ,→ D(n))}t∈T of pairwise non-isomorphic indecomposable
(k ,→ D)-modules, with |T| = |k|.

3.13. CONSTRUCTION. We describe a general construction, a mod-
ification of constructions found in [DR67, Wie89, ÇWW95]. Let n be
a fixed positive integer, and suppose we have chosen α,β ∈ D with
{1,α,β} linearly independent over k. Let I be the n×n identity matrix,
and let H the n× n nilpotent Jordan block in Lemma 3.2. For t ∈ k,
we consider the n×2n matrix Ψt =

[
I

∣∣ αI +β(tI +H)
]
. Put W = D(n),

viewed as columns, and let Vt be the k-subspace of W spanned by the
columns of Ψt.

Suppose we have a morphism (Vt ,→ W) −→ (Vu ,→ W), given by an
n×n matrix ϕ over D. The requirement that ϕ(V ) ⊆ V says there is a
2n×2n matrix θ over k such that

(3.13.1) ϕΨt =Ψuθ .

Write θ = [ A B
P Q

]
, where A,B,P,Q are n×n blocks. Then (3.13.1) gives

the following two equations:

(3.13.2)
ϕ= A+αP +β(uI +H)P

αϕ+βϕ(tI +H)= B+αQ+β(uI +H)Q .

Substituting the first equation into the second and combining terms,
we get a mess:

(3.13.3) −B+α(A−Q)+β(tA−uQ+ AH−HQ)+ (α+ tβ)(α+uβ)P

+αβ(HP +PH)+β2(HPH+ tHP +uPH)= 0 .

3.14. CASE. D satisfies (ii). (There exist α,β ∈ D such that {1,α,β}
is linearly independent and α2 =αβ=β2 = 0.)

From (3.13.3) and the linear independence of {1,α,β}, we get the
equations

(3.14.1) B = 0, A =Q, A((t−u)I +H)= HA .

If ϕ is an isomorphism, we see from (3.13.2) that A has to be invertible.
If, in addition, t 6= u, the third equation in (3.14.1) gives a contradic-
tion, since the left side is invertible and the right side is not. Thus
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(Vt ,→W) 6∼= (Vu ,→W) if t 6= u. To see that (Vt ,→W) is indecomposable,
we take u = t and suppose that ϕ, as above, is idempotent. Squar-
ing the first equation in (3.13.2), and comparing “1" and “A" terms,
we see that A2 = A and P = AP +P A. But equation (3.14.1) says that
AH = HA, and it follows that A is in k[H], which is a local ring. There-
fore A = 0 or I, and either possibility forces P = 0. Thus ϕ= 0 or 1, as
desired. Thus we may take T = k in this case. �

3.15. ASSUMPTIONS. Having dealt with the case (ii), we assume
from now on that (i) holds, that is, dimk(D)> 4.

3.16. CASE. D has an element α such that {1,α,α2} is linearly inde-
pendent.

Choose any element β ∈ D such that {1,α,β,α2} is linearly indepen-
dent. We let E be the set of elements t ∈ k for which {1,α,β, (α+ tβ)2} is
linearly independent. Then E is non-empty (since it contains 0). Also,
E is open in the Zariski topology on k and therefore is cofinite in k.
Moreover, if t ∈ E, the set

E t =
{
u ∈ E

∣∣ {1,α,β, (α+ tβ)(α+uβ)} is linearly independent
}

is non-empty and cofinite in E. We will show that (Vt ,→W) is indecom-
posable for each t ∈ E, and that (Vt ,→W) 6∼= (Vu ,→W) if t and u are dis-
tinct elements of E with u ∈ E t. Assuming this has been done we can
complete the proof in this case as follows: Define an equivalence rela-
tion ∼ on E by declaring that t ∼ u if and only if (Vu ,→ D) ∼= (Vt ,→ D),
and let T be a set of representatives. Then T 6= ;, and (Vt ,→W) is in-
decomposable for each t ∈ T. Moreover, each equivalence class is finite
and E is cofinite in k. Therefore, if k is infinite, it follows that |T| = |k|.

Suppose t ∈ E and u ∈ E t (possibly with t = u), and let ϕ : (Vt ,→
W) −→ (Vu ,→ W) be a homomorphism. With the notation of (3.13.1)–
(3.13.3), one can show, by descending induction on i and j, that for all
i, j = 0, . . . ,n we have H iPH j = 0. (Cf. Exercise 3.30.) Therefore P = 0,
and we again obtain equations (3.14.1). The rest of the proof proceeds
exactly as in Case 3.14. �

The following lemma, whose proof is left as an exercise, is useful
in treating the remaining case, when every element of D satisfies a
monic quadratic equation over k:

3.17. LEMMA. Let ` be a field, and let A be a finite-dimensional `-
algebra with dim`(A)> 3. Assume that {1,α,α2} is linearly dependent
over ` for every α ∈ A. Write A = A1 ×·· ·× As, where each A i is local,
with maximal ideal mi. Let N=m1 ×·· ·×ms, the nilradical of A.

(i) If x ∈N, then x2 = 0.
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(ii) There are at least |`| distinct rings between ` and A.
(iii) If s> 2, then A i/mi = ` for each i.
(iv) If s> 3 then |`| = 2. �

3.18. ASSUMPTIONS. From now on, we assume that {1,α,α2} is lin-
early dependent over k for each α ∈ D (and that dimk(D)> 4). We write
D = D1×·· ·×Ds, where each D i is local, with maximal ideal mi; we let
N=m1 ×·· ·×mt, the nilradical of D.

3.19. CASE. dimk(N)> 2.

Choose α,β ∈N so that {1,α,β} is linearly independent. Then α2 =
β2 = 0 by Lemma 3.17. If {1,α,β,αβ} is linearly independent, we can
use the mess (3.13.3) to complete the proof. Otherwise, we can write
αβ = a+ bα+ cβ with a,b, c ∈ k. Multiplying this equation first by α

and then by β, we learn that αβ= 0, and we are in Case 3.14. �

3.20. ASSUMPTION. We assume from now on that dimk(N)6 1.

From Lemma 3.17 we see that s (the number of components) cannot
be 2. Also, if s = 3, then, after renumbering if necessary, we have
N = m1 × 0× 0 with m1 6= 0. Now put α = (x,1,0), where x is a non-
zero element of m1, and check that {1,α,α2} is linearly independent,
contradicting Assumption 3.18. We have proved that either s = 1 or
s> 4.

3.21. CASE. s = 1 (D is local).

By Assumptions 3.15 and 3.20, K := D/N must have degree at least
three over k. On the other hand, Assumption 3.18 implies that each
element of K has degree at most 2 over k. Therefore K /k is not sep-
arable, char(k) = 2, α2 ∈ k for each α ∈ K , and [K : k]> 4. Now choose
two elements α,β ∈ K such that [k(α,β) : k]= 4. By Lemma 3.11 we can
safely pass to the Artinian pair (k,K) and build our modules there; for
compatibility with the notation in Construction 3.13, we rename K and
call it D. Now we have α,β ∈ D such that {1,α,β,αβ} is linearly inde-
pendent and both α2 and β2 are in k. If, now, ϕ : (Vt ,→W)−→ (Vu ,→W)
is a morphism, the mess (3.13.3) provides the following equations:

B = (α2 + tuβ2)P +β2(HPH+ tHP +uPH), A =Q,
A((t−u)I +H)=HA, (t+u)P +HP +PH = 0 .

(3.21.1)

Suppose t 6= u. Then t+u 6= 0 (characteristic 2), and the fourth equation
shows, via a descending induction argument as in Case 3.16, that P =
0. (Cf. Exercise 3.30.) Now the third equation shows, as in Case 3.14,
that ϕ is not an isomorphism.
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Now suppose t = u and ϕ2 = ϕ. Using the third and fourth equa-
tions of (3.21.1), the fact that char(k)= 2, and Lemma 3.2, we see that
both A and P are in k[H]. In particular, A, P and H commute, and,
since we are in characteristic two, we can square both sides of (3.13.2)
painlessly. Equating ϕ and ϕ2, we see that P = 0 and A = A2. Since
k[H] is local, A = 0 or I. �

One case remains:

3.22. CASE. s> 4.

By Lemma 3.17, |k| = 2 and D i/mi = k for each i. By Lemma 3.11 we
can forget about the radical and assume that D = k×·· ·× k (at least 4
components). Alas, this case does not yield to our general construction,
but Dade’s construction [Dad63] saves the day. (Dade works in greater
generality, but the main idea is visible in the computation that follows.
The key issue is that D has at least 4 components.)

Put W = D(n), and let V be the k-subspace of W consisting of all
elements (x, y, x+ y, x+H y, x, . . . , x), where x and y range over k(n).
(Again, H is the nilpotent Jordan block with 1’s on the superdiago-
nal.) Clearly DW = V . To see that (V ,→ W) is indecomposable, sup-
pose ϕ is an endomorphism of (V ,→ W), that is, a D-endomorphism
of W carrying V into V . We write ϕ = (α,β,γ,δ,ε5, . . . ,εs), where each
component is an n× n matrix over k. Since ϕ((x,0, x, x, x, . . . , x)) and
ϕ((0, y, y,H y,0, . . . ,0)) are in V , there are matrices σ,τ,ξ,η satisfying
the following two equations for all x ∈ k(n):

(αx, 0, γx, δx, ε5x, . . . , εsx)= (σx, τx, (σ+τ)x, (σ+Hτ)x, σx, . . . , σx)
(0, βy, γy, δH y, 0, . . . , 0)= (ξy, ηy, (ξ+η)y, (ξ+Hη)y, ξy, . . . , ξy)

The first equation shows that ϕ = (α, α, . . . , α), and the second then
shows that αH = Hα. By Lemma 3.2 α ∈ k[H] ∼= k[x]/(xn), which is
a local ring. If, now, ϕ2 = ϕ, then α2 = α, and hence α = 0 or In. This
shows that (V ,→W) is indecomposable and completes the proof of The-
orem 3.7. �

We close the chapter with the following partial converse to The-
orem 3.7. This statement, the sufficiency of the Drozd-Roı̆ter condi-
tions, is due to Drozd-Roı̆ter [DR67] and Green-Reiner [GR78] in the
special case where the residue field A/m is finite. In this case they re-
duced to the situation where where A/m−→ B/n is an isomorphism for
each maximal ideal n of B. In this situation they showed, via explicit
matrix decompositions, that conditions (dr1) and (dr2) imply that A
has finite representation type. These matrix decompositions depend
only on the fact that the residue fields of B are all equal to k, and not
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on the fact that k is finite. The generalization stated here is due to R.
Wiegand [Wie89] and depends crucially on the matrix decompositions
in [GR78].

3.23. THEOREM. Let A = (A ,→ B) be an Artinian pair in which A
is local, with maximal ideal m and residue field k. Assume that B is a
principal ideal ring and either

(i) the field extension k ,→ B/n is separable for every maximal ideal
n of B, or

(ii) B is reduced (hence a direct product of fields).
If A satisfies (dr1) and (dr2), then A has finite representation type.

PROOF. As in [GR78] we will reduce to the case where the residue
fields of B are all equal to k. By (dr1) B has at most three maximal
ideals, and at most one of these has a residue field ` properly extending
k. Moreover, [` : k]6 3. Assuming ` 6= k, we choose a primitive element
θ for `/k, let f ∈ A[T] be a monic polynomial reducing to the minimal
polynomial for θ over k, and pass to the Artinian pair A′ = (A′ ,→ B′),
where A′ = A[T]/( f ) and B′ = B⊗A A′ = B[T]/( f ). Each of the condi-
tions (i), (ii) guarantees that B′ is a principal ideal ring.

One checks that the Drozd-Roı̆ter conditions ascend to A′, and fi-
nite representation type descends. (This is not difficult; the details
are worked out in [Wie89].) If k(θ)/k is a separable, non-Galois exten-
sion of degree 3, then B′ has a residue field that is separable of degree
2 over k, and we simply repeat the construction. Thus it suffices to
prove the theorem in the case where each residue field of B is equal to
k. For this case, we appeal to the matrix decompositions in [GR78],
which work perfectly well over any field. �

§3. Exercises

3.24. EXERCISE. Let m be a maximal ideal of a Noetherian ring R,
and assume that m is not a minimal prime ideal of R. Then

{
mt ∣∣ t> 1

}
is an infinite strictly descending chain of ideals.

3.25. EXERCISE. Let (R,m,k) be a commutative local Artinian ring,
and assume k is infinite.

(i) If G is a set of pairwise non-isomorphic finitely generated R-
modules, prove that |G |6 |k|.

(ii) Suppose R is not a principal ideal ring. Modify the proof of
Theorem 3.3 to show that for each n> 1 there is a family Gn of
pairwise non-isomorphic indecomposable modules, all requir-
ing exactly n generators, with |Gn| = |k|. (Hint: Given a unit t
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of R, letΨt = (y+tx)I+xH. Show that an isomorphism between
cok(Ψt) and cok(Ψu) forces t and u to be congruent modulo m.)

3.26. EXERCISE. Prove Lemmas 3.10 and 3.11.

3.27. EXERCISE. Prove Lemma 3.17. (For the second assertion,
suppose there are fewer than |`| intermediate rings. Mimic the proof
of the primitive element theorem to show that D = k[α] for some α.)

3.28. EXERCISE. With E and E t as in 3.16, prove that |k−E|6 1
and that |E−E t|6 1.

3.29. EXERCISE. Let A = (A ,→ B) be an Artinian pair, and let C1
and C2 be distinct rings between A and B. Prove that the A-modules
(C1 ,→ B) and (C2 ,→ B) are not isomorphic.

3.30. EXERCISE. Work out the details of the descending induction
arguments in Case 3.16 and Case 3.21. (In Case 3.16, assuming that
H i+1γH j = 0 and H iγH j+1 = 0, multiply the mess (3.13.3) by H i on
the left and H j on the right. In Case 3.21, use the fourth equation
in (3.21.1) and do the same thing.)





CHAPTER 4

Dimension One

In this chapter we give necessary and sufficient conditions for a
one-dimensional local ring to have finite Cohen-Macaulay type. In the
main case of interest, where the completion R̂ is reduced, these con-
ditions are simply the liftings of the Drozd-Roı̆ter conditions (dr1) and
(dr2) of Chapter 3. Necessity of these conditions follows easily from
Theorem 3.7. To prove that they are sufficient, we will reduce the
problem to consideration of some special cases, where we can appeal
to the matrix decompositions of Green and Reiner [GR78] and, in char-
acteristic two, Çimen [Çim94, Çim98].

Throughout this chapter (R,m,k) is a one-dimensional local ring
(with maximal ideal m and residue field k). Let K denote the total
quotient ring {non-zerodivisors}−1R and R the integral closure of R in
K . If R is reduced (hence CM), then R = R/p1 ×·· ·×R/ps, where the pi
are the minimal prime ideals of R, and each ring R/pi is a semilocal
principal ideal domain.

When R is CM, a finitely generated R-module M is MCM if and
only if it is torsion-free, that is, the torsion submodule is zero.

The main result in this chapter is Theorem 4.10, which states that
a one-dimensional local ring (R,m,k), with reduced completion, has
finite CM type if and only if R satisfies the following two conditions:

(DR1) µR(R)6 3, and
(DR2) mR+R

R is a cyclic R-module.

The first condition just says that the multiplicity of R is at most
three (cf. Theorem A.29). When the multiplicity is three we have
to consider the second condition. One can check, for example, that
k[[t3, t5]] satisfies (DR2) but that k[[t3, t7]] does not.

The case where the completion is not reduced is dealt with sepa-
rately, in Theorem 4.16. In particular, we find (Corollary 4.17) that a
one-dimensional local ring R has finite CM type if and only if its com-
pletion does. The analogous statement fails badly in higher dimension
without some additional assumptions; cf. Chapter 10. Furthermore,

41
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Proposition 4.15 shows that if a one-dimensional CM local ring has fi-
nite CM type, then its completion is reduced; in particular R is an iso-
lated singularity, which property will appear again in Chapter 7. We
also treat the case of multiplicity two directly, without any reduced-
ness assumption.

As a look ahead to later chapters, in §3 we discuss the alternative
classification of finite CM type in dimension one due to Greuel and
Knörrer in terms of the ADE hypersurface singularities.

§1. Necessity of the Drozd-Roı̆ter conditions

Looking ahead to Chapter 17, we work in a somewhat more general
context than is strictly required for Theorem 4.10. In particular, we
will not assume that R is reduced, and R will be replaced by a more
general extension ring S. By a finite birational extension of R we mean
a ring S between R and its total quotient ring K such that S is finitely
generated as an R-module.

4.1. CONSTRUCTION. Let (R,m,k) be a CM local ring of dimension
one, and let S be a finite birational extension of R. Put c = (R :R S),
the conductor of S into R. This is the largest common ideal of R and
S. Set A = R/c and B = S/c. Then the conductor square of R,→S

(4.1.1)

R �
�

//

����

S

π
����

A �
�

// B

is a pullback diagram, that is, R = π−1(A). Since S is a module-finite
extension of R contained in the total quotient ring K , the conductor
contains a non-zerodivisor (clear denominators), so that the bottom
line A= (A,→B) is an Artinian pair in the sense of Chapter 3.

Suppose that M is a MCM R-module. Then M is torsion-free,
so the natural map M −→ K ⊗R M is injective. Let SM be the S-
submodule of K⊗R M generated by the image of M; equivalently, SM =
(S⊗R M)/torsion. If we furthermore assume that SM is a projective S-
module, then the inclusion M/cM,→SM/cM gives a module over the
Artinian pair A,→B.

In the special case where S is the integral closure R, the situa-
tion clarifies. Since R is a direct product of semilocal principal ideal
domains, and RM is torsion-free for any MCM R-module M, it fol-
lows that RM is R-projective. Thus M/cM,→RM/cM is automatically
a module over the Artinian pair R/c,→R/c. We dignify this special case
with the notation Rart = (R/c,→R/c) and Mart = (M/cM,→RM/cM).
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Now return to the case of an arbitrary finite birational extension
R,→S, and let V ,→W be a module over the associated Artinian pair
A= (A,→B)= (R/c,→S/c). Assume that there exists a finitely generated
projective S-module P such that W ∼= P/cP. (This is a real restriction;
see the comments below.) We can then define an R-module M by a
similar pullback diagram

(4.1.2)

M �
�

//

����

P

τ
����

V �
�

// W

so that M = τ−1(V ). Using the fact that BV = W , one can check that
SM = P, so that in particular M is a MCM R-module. Moreover,
M/cM = V and SM/cM = W , so that two non-isomorphic A-modules
that are both liftable have non-isomorphic liftings.

If in particular V ,→W is an A-module of constant rank, so that
W ∼= B(n) for some n, then there is clearly a projective S-module P
such that P/cP ∼= W , namely P = S(n). Furthermore, in this case M
has constant rank n over R (see Definition A.27). It follows that every
A-module of constant rank lifts to a MCM R-module of constant rank.
Moreover, every A-module is a direct summand of one of constant rank,
so is a direct summand of a module extended from R.

By analogy with the terminology “weakly liftable” of [ADS93], we
say that a module V ,→W over the Artinian pair A= R/c,→S/c is weakly
extended (from R) if there exists a MCM R-module M such that V ,→W
is a direct summand of the A-module M/cM,→SM/cM. The discussion
above shows that every A-module is weakly extended from R.

Now we lift the Drozd-Roı̆ter conditions up to the finite birational
extension R,→S.

4.2. THEOREM. Let (R,m,k) be a local ring of dimension one, and
let S be a finite birational extension of R. Assume that either

(i) µR(S)> 4, or
(ii) µR

(
mS+R

R
)
> 2.

Then R has infinite Cohen-Macaulay type. Moreover, given an arbitrary
positive integer n, there is an indecomposable MCM R-module M of
constant rank n; if k is infinite, there are |k| pairwise non-isomorphic
indecomposable MCM R-modules of constant rank n.

PROOF. The hypotheses imply that either (dr1) or (dr2) of Theo-
rem 3.7 fails for the Artinian pair A = (R/c,→S/c). Therefore there
exist indecomposable A-modules of arbitrary constant rank n, in fact,
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|k| of them if k is infinite. Each of these pulls back to R, so that there
exist the same number of MCM R-modules of constant rank n for each
n> 1. Furthermore these MCM modules are pairwise non-isomorphic.
Finally, we must show that if V ,→W is indecomposable and M is a
lifting to R, then M is indecomposable as well. Suppose M ∼= X ⊕Y .
Then SM = SX ⊕SY , and it follows that (V ,→W) is the direct sum of
the A-modules (X /cX ,→SX /cX ) and (Y /cY ,→SY /cY ). Therefore either
X /cX = 0 or Y /cY = 0. By NAK, either X = 0 or Y = 0. �

The requisite extension S of Theorem 4.2 always exists if R is CM
of multiplicity at least 4, as we now show.

4.3. PROPOSITION. Let (R,m) be a one-dimensional CM local ring
and set e = e(R), the multiplicity of R. (See Appendix A §2.) Then R has
a finite birational extension S requiring e generators as an R-module.

PROOF. Let K again be the total quotient ring of R. Let Sn = (mn :K
mn) for n > 1, and put S = ⋃

n Sn. To see that this works, we may
harmlessly assume that k is infinite. (This is relatively standard, but
see Theorem 10.14 for the details on extending the residue field.) Let
R f ⊆m be a minimal reduction of m. Choose n so large that

(a) mi+1 = fmi for i> n, and
(b) µR(mi)= e(R) for i> n.

Since f is a non-zerodivisor (as R is CM), it follows from (a) that S =
Sn. We claim that S f n = mn. We have S f n = Sn f n ⊆ mn. For the
reverse inclusion, let α ∈ mn. Then α

f nmn ⊆ 1
f nm2n = 1

f n f nmn = mn.
This shows that α

f n ∈ Sn, and the claim follows. Therefore S ∼=mn (as
R-modules), and now (b) implies that µ(S)= e(R). �

4.4. REMARK. Observe that the proof of the proposition above gives
more than is claimed: for any one-dimensional CM local ring R and
any ideal I of R containing a non-zerodivisor, there exists some n> 1
such that In is projective as a module over its endomorphism ring S =
EndR(In), which is a finite birational extension of R. (Ideals projective
over their endomorphism ring are called stable in [Lip71] and [SV74].)
Since S is semilocal, In is isomorphic to S as an S-module, whence as
an R-module. Furthermore, n may be taken to be the least integer
such that µR(In) achieves its stable value. Sally and Vasconcelos show
in [SV74, Theorem 2.5] that this n is at most max{1,e(R)−1}, where
e(R) is the multiplicity of R. This will be useful in Theorem 4.18 below.

4.5. REMARK. With R as in Theorem 4.2 and with k infinite, there
are at most |k| isomorphism classes of R-modules of constant rank.
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To see this, we note that there are at most |k| isomorphism classes of
finite-length modules and that every module of finite length has cardi-
nality at most |k|. Given an arbitrary MCM R-module M of constant
rank n, one can build an exact sequence

0−→ T −→ M −→ R(n) −→U −→ 0 ,

in which both T and U have finite length. Let W be the kernel of
R(n) −→U (and the cokernel of T −→ M). Since |U |6 |k|, we see that
|HomR(R(n),U)|6 |k|. Since there are at most |k| possibilities for U ,
we see that there are at most |k|2 = |k| possibilities for W . Since there
are at most |k| possibilities for T, and since

∣∣Ext1
R(W ,T)

∣∣6 |k|, we see
that there are at most |k| possibilities for M.

§2. Sufficiency of the Drozd-Roı̆ter conditions

In this section we will prove, modulo the matrix calculations of
Green and Reiner [GR78] and Çimen [Çim94, Çim98], that the Drozd-
Roı̆ter conditions imply finite CM type. Recall that a local ring (R,m)
is said to be analytically unramified provided its completion R̂ is re-
duced. The next result gives an equivalent condition [Kru30, Nag58]
for one-dimensional CM local rings, namely finiteness of the integral
closure.

4.6. THEOREM. Let (R,m) be a local ring, and let R be the integral
closure of R in its total quotient ring.

(i) If R is analytically unramified, then R is finitely generated as
an R-module.

(ii) Suppose R is one-dimensional and CM. If R is finitely generated
as an R-module then R is analytically unramified.

PROOF. See [Mat89, p. 263] or [HS06, 4.6.2] for a proof of (i). With
the assumptions in (ii), we’ll show first that R is reduced. Suppose x is
a non-zero nilpotent element of R and t a non-zerodivisor in m. Then

R
x
t
⊂ R

x
t2 ⊂ R

x
t3 ⊂ ·· ·

is an infinite strictly ascending chain of R-submodules of R, contra-
dicting finiteness of R. Now assume that R is reduced and let p1 . . . ,ps
be the minimal prime ideals of R. There are inclusions

R ,→ R/p1 ×·· ·×R/ps ,→ R/p1 ×·· ·×R/ps = R .

Each of the rings R/pi is a semilocal principal ideal domain. Since R is
a finitely generated R-module, the m-adic completion of R is the prod-
uct of the completions of the localizations of the R/pi at their maximal
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ideals. In particular, the m-adic completion of R is a direct product of
discrete valuation rings. The flatness of R̂ implies that R̂ is contained
in the m-adic completion of R, hence is reduced. �

In the proof of part (ii) of the following proposition we encounter the
subtlety mentioned in Construction 4.1: not every projective module
over B is of the form P/cP for a projective S-module. This is because R
might not be a direct product of local rings. For example, the integral
closure R of the ring R =C[x, y](x,y)/(y2−x3−x2) has two maximal ideals
(see Exercise 4.22), and so R/c is a direct product B1 ×B2 of two local
rings. Obviously B1 ×0 does not come from a projective R-module and
hence cannot be the second component of an Rart-module of the form
Mart. The reader may recognize that exactly the same phenomenon
gives rise to modules over the completion R̂ that don’t come from R-
modules, as we saw in Chapter 2.

Recall that we use the notation M1 | M2, introduced in Chapter 1,
to indicate that M1 is isomorphic to a direct summand of M2.

4.7. PROPOSITION. Let (R,m,k) be an analytically unramified local
ring of dimension one, and assume R 6= R. Let Rart be the Artinian pair
R/c,→R/c.

(i) The functor M  Mart = (M/cM,→RM/cM), for M a MCM R-
module, is injective on isomorphism classes.

(ii) If M1 and M2 are MCM R-modules, then M1 | M2 if and only if
(M1)art | (M2)art.

(iii) The ring R has finite CM type if and only if the Artinian pair
Rart has finite representation type.

PROOF. (i) First observe that M  Mart is indeed well-defined:
since R is a direct product of principal ideal rings, RM is a projec-
tive R-module, so RM/cM is a projective R/c-module. Thus Mart is a
module over Rart. Let M1 and M2 be MCM R-modules, and suppose
that (M1)art

∼= (M2)art. Write (Mi)art = (Vi ,→Wi), and choose an isomor-
phism ϕ : W1 −→ W2 such that ϕ(V1) = V2. Since RM1 is R-projective,
we can lift ϕ to an R-homomorphism ψ : RM1 −→ RM2 carrying M1
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into M2.
M2 //

����

RM2

����

M1 //

����

aa

RM1

����

ψ
;;

M1
cM1

//

��

RM1
cM1

ϕ

!!

M2
cM2

// RM2
cM2

Since c⊆m, the induced R-homomorphism M1 −→ M2 is surjective, by
NAK. (Here we need the assumption that R 6= R.) Similarly, M2 maps
onto M1, and it follows that M1

∼= M2 (see Exercise 4.25).
(ii) The “only if” direction is clear. For the converse, suppose there

is an Rart-module X = (V ,→ W) such that (M1)art ⊕X ∼= (M2)art. Write
R = D1 ×·· ·×Ds, where each D i is a semilocal principal ideal domain.
Put Bi = D i/cD i, so that R/c = B1 ×·· ·×Bs. Since RM1, and RM2 are
projective R-modules, there are non-negative integers e i, f i such that
RM1

∼= ∏
i D(e i)

i and RM2
∼= ∏

i D( f i)
i . Then RM1/cM1

∼= ∏
i B(e i)

i , simi-
larly RM2/cM2

∼= ∏
i B( f i)

i , and W = ∏
i B( f i−e i)

i . Letting P = ∏
i D( f i−e i)

i ,
we see that W ∼= P/cP. As discussed in Construction 4.1, it follows that
there is a MCM R-module N such that Nart

∼=X. We see from (i) that
M1 ⊕N ∼= M2.

(iii) Suppose Rart has finite representation type, and let X1, . . . ,Xt
be a full set of representatives for the non-isomorphic indecomposable
Rart-modules. Given a MCM R-module M, write Mart

∼=X(n1)
1 ⊕·· ·⊕X(nt)

t ,
and put j([M])= (n1, . . . ,nt). By KRS (Theorem 3.6), j is a well-defined
function from the set of isomorphism classes of MCM R-modules to
N

(t)
0 , where N0 is the set of non-negative integers. Moreover, j is injec-

tive, by (i). Letting Σ be the image of j, we see, using (ii), that M is
indecomposable if and only if j[M] is a minimal non-zero element of Σ
with respect to the product ordering. Dickson’s Lemma (Exercise 2.20)
says that every antichain (clutter) in N(t)

0 is finite. In particular, Σ has
only finitely many minimal elements, and R has finite CM type.

We leave the proof of the converse (which will not be needed here)
as an exercise. �

4.8. REMARK. It’s worth observing that the proof of Proposition 4.7
uses KRS only over Rart, not over R (which is not assumed to be
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Henselian). In fact, since the completion R̂ is reduced, (R̂)art = Rart.
Indeed, the bottom row R/c,→R/c of the conductor square for R is un-
affected by completion since R/c has finite length. Therefore the m-adic
completion of the conductor square for R is

(4.8.1)

R̂ �
�

//

��

R̂⊗R R

π̂
��

R/c �
�

// R/c
which is still a pullback diagram by flatness of the completion. Note
that R̂ ⊗R R is the integral closure of R̂. No non-zero ideal of R/c is
contained in R/c, so ker π̂ is the largest ideal of R̂⊗R R contained in R̂.
Since also ker π̂ contains a non-zerodivisor, ker π̂ is the conductor for R̂
and (4.8.1) is the conductor square for R̂.

In particular, this shows that an analytically unramified local ring
R of dimension one has finite CM type if and only if R̂ does. This is
true as well in the case where R̂ is not reduced; see Corollary 4.17
below.

Returning now to sufficiency of the Drozd-Roı̆ter conditions, we will
need the following observation from Bass’s “ubiquity” paper [Bas63,
(7.2)]:

4.9. LEMMA (Bass). Let (R,m) be a one-dimensional Gorenstein lo-
cal ring. Let M be a MCM R-module with no non-zero free direct sum-
mand. Let E = EndR(m). Then E (viewed as multiplications) is a sub-
ring of R which contains R properly, and M has an E-module structure
that extends the action of R on M.

PROOF. The natural inclusion HomR(M,m) −→ HomR(M,R) is bi-
jective, since a surjective homomorphism M −→ R would produce a
non-trivial free summand of M. Now HomR(M,m) is an E-module
via the action of E on m by endomorphisms, and hence so is M∗ =
HomR(M,R). Therefore M∗∗ is also an E-module, and since the canon-
ical map M −→ M∗∗ is bijective (as R is Gorenstein and M is MCM),
M is an E-module. The other assertions regarding E are left to the
reader. (See Exercise 4.28. Note that the existence of the module M
prevents R from being a discrete valuation ring.) �

Now we are ready for the main theorem of this chapter. We will
not give a self-contained proof that the Drozd-Roı̆ter conditions im-
ply finite CM type. Instead, we will reduce to a few special situations
where the matrix decompositions of Green and Reiner [GR78] and Çi-
men [Çim94, Çim98] apply.



§2. SUFFICIENCY OF THE DROZD-ROĬTER CONDITIONS 49

Note that the final statement of Theorem 4.10 verifies the second
Brauer-Thrall conjecture (see Conjecture 15.1) for analytically unram-
ified one-dimensional rings.

4.10. THEOREM. Let (R,m,k) be an analytically unramified local
ring of dimension one. These are equivalent:

(i) R has finite CM type.
(ii) R satisfies both (DR1) and (DR2).

Let n be an arbitrary positive integer. If either (DR1) or (DR2) fails,
there is an indecomposable MCM R-module of constant rank n; more-
over, if |k| is infinite, there are |k| pairwise non-isomorphic indecompos-
able MCM R-modules of constant rank n.

PROOF. By Theorem 4.6, R is a finite birational extension of R.
The last statement of the theorem and the fact that (i) =⇒ (ii) now
follow immediately from Theorem 4.2 with S = R.

Assume now that (DR1) and (DR2) hold. Let A = R/c and B = R/c,
so that Rart = (A ,→ B). Then Rart satisfies (dr1) and (dr2). By Proposi-
tion 4.7 it will suffice to prove that Rart has finite representation type.
If every residue field of B is separable over k, then Rart has finite rep-
resentation type by Theorem 3.23.

Now suppose that B has a residue field `= B/n that is not separable
over k. By (dr1), `/k has degree 2 or 3, and ` is the only residue field
of B that is not equal to k.

4.11. CASE. `/k is purely inseparable of degree 3.

If B is reduced (that is, R is seminormal), we can appeal to Theo-
rem 3.23. Suppose now that B is not reduced. A careful computation
of lengths (see Exercise 4.27) shows that R is Gorenstein, with exactly
one ring S (the seminormalization of R) strictly between R and R.
By Lemma 4.9, E := EndR(m) ⊇ S, and every non-free indecomposable
MCM R-module is naturally an S-module. The Drozd-Roı̆ter condi-
tions clearly pass to the seminormal ring S, which therefore has finite
CM type. It follows that R itself has finite CM type.

4.12. CASE. `/k is purely inseparable of degree 2.

In this case, we appeal to Çimen’s tour de force [Çim94, Çim98],
where he shows, by explicit matrix decompositions, that Rart has finite
representation type. �

Let’s insert here a few historical remarks. The conditions (DR1)
and (DR2) were introduced by Drozd and Roı̆ter in a remarkable 1967
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paper [DR67], where they classified the module-finite Z-algebras hav-
ing only finitely many indecomposable finitely generated torsion-free
modules. Jacobinski [Jac67] obtained similar results at about the
same time. The theorems of Drozd-Roı̆ter and Jacobinski imply the
equivalence of (i) and (ii) in Theorem 4.10 for rings essentially module-
finite over Z. In the same paper they asserted the equivalence of (i)
and (ii) in general. In 1978 Green and Reiner [GR78] verified the
classification theorem of Drozd and Roı̆ter, giving more explicit details
of the matrix decompositions needed to verify finite CM type. Their
proof, like that of Drozd and Roı̆ter, depended crucially on arithmetic
properties of algebraic number fields and thus did not provide immedi-
ate insight into the general problem. An important point here is that
the matrix reductions of Green and Reiner work in arbitrary charac-
teristics, as long as the integral closure R has no residue field properly
extending that of R.

In 1989 R. Wiegand [Wie89] proved necessity of the Drozd-Roı̆ter
conditions (DR1) and (DR2) for a general one-dimensional local ring
(R,m,k) and, via the separable descent argument in the proof of Theo-
rem 3.23, sufficiency under the assumption that every residue field of
the integral closure R is separable over k. By (DR1), this left only the
case where k is imperfect of characteristic two or three. In [Wie94], he
used the seminormality argument above to handle the case of charac-
teristic three. Finally, in his 1994 Ph.D. dissertation [Çim94], Çimen
solved the remaining case—characteristic two—by difficult matrix re-
ductions. It is worth noting that Çimen’s matrix decompositions work
in all characteristics and therefore confirm the computations done by
Green and Reiner in 1978. The existence of |k| indecomposables of con-
stant rank k, when |k| is infinite and (DR) fails, was proved by Karr
and Wiegand [KW09] in 2009.

§3. ADE singularities

Of course we have not really proved sufficiency of the Drozd-Roı̆ter
conditions, since we have not presented the difficult matrix calcula-
tions of Green and Reiner [GR78] and Çimen [Çim94, Çim98]. If R
contains the field of rational numbers, there is an alternate approach
that uses the classification, which we present in Chapter 6, of the
two-dimensional hypersurface singularities of finite Cohen-Macaulay
type. First we recall the 1985 classification, by Greuel and Knörrer
[GK85], of the complete, equicharacteristic-zero curve singularities of
finite Cohen-Macaulay type. Suppose k is an algebraically closed field
of characteristic different from 2,3 or 5. The complete ADE (or simple)
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plane curve singularities over k are the rings k[[x, y]]/( f ), where f is
one of the following polynomials:

(An): x2 + yn+1 , n> 1
(Dn): x2 y+ yn−1 , n> 4
(E6): x3 + y4

(E7): x3 + xy3

(E8): x3 + y5

We will encounter these singularities again in Chapter 6. Here we
will discuss briefly their role in the classification of one-dimensional
rings of finite CM type. Greuel and Knörrer [GK85] proved that the
ADE singularities are exactly the complete plane curve singularities
of finite CM type in equicharacteristic zero. In fact, they showed much
more, obtaining, essentially, the conclusion of Theorem 4.2 in this con-
text:

4.13. THEOREM (Greuel-Knörrer). Let (R,m,k) be a reduced com-
plete local ring of dimension one containing Q. Assume that k is alge-
braically closed.

(i) R satisfies the Drozd-Roı̆ter conditions if and only if R is a finite
birational extension of an ADE hypersurface singularity.

(ii) Suppose that R has infinite CM type.
(a) There are infinitely many rings between R and its integral

closure.
(b) For each n> 1 there are infinitely many isomorphism classes

of indecomposable MCM R-modules of constant rank n. �

Greuel and Knörrer used Jacobinski’s computations in [Jac67] to
prove that ADE singularities have finite CM type. The fact that fi-
nite CM type passes to finite birational extensions (in dimension one!)
is recorded in Proposition 4.14 below. We note that (iia) can fail for
infinite fields that are not algebraically closed. Suppose, for exam-

ple, that `/k is a separable field extension of degree d > 3. Put R =
k+ x`[[x]]. Then R = `[[x]] is minimally generated, as an R-module,
by {1, x, . . . , xd−1}. Theorem 4.10 implies that R has infinite CM type.
There are, however, only finitely many rings between R and R. In-
deed, the conductor square (4.1.1) shows that the intermediate rings
correspond bijectively to the intermediate fields between k and `.

In Chapter 8 we will use the classification of the two-dimensional
complete hypersurface rings of finite CM type to show that the one-
dimensional ADE singularities have finite CM type (even in character-
istic p, as long as p> 7). Then, in Chapter 10, we will deduce that the
Drozd-Roı̆ter conditions imply finite CM type for any one-dimensional
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local ring CM ring (R,m,k) containing a field, provided k is perfect
and of characteristic 6= 2,3,5. Together with Greuel and Knörrer’s re-
sult and the next proposition, this will give a different, slightly round-
about, proof that the Drozd-Roı̆ter conditions are sufficient for finite
CM type in dimension one.

4.14. PROPOSITION. Let R and S be one-dimensional local rings,
and suppose S is a finite birational extension of R.

(i) For MCM S-modules M and N, we have equality HomR(M, N)=
HomS(M, N).

(ii) Every MCM S-module is a MCM R-module.
(iii) An MCM S-module M is indecomposable over S if and only if

M is indecomposable over R.
(iv) If R has finite CM type, so has S.

PROOF. We may assume that R is CM, else R = S and everything
is boring.

(i) We need only verify that any R-homomorphism is S-linear. Let
ϕ : M −→ N be an R-homomorphism. Given any s ∈ S, write s = r/t,
where r ∈ R and t is a non-zerodivisor of R. Then, for any x ∈ M, we
have tϕ(sx) = ϕ(rx) = rϕ(x) = tsϕ(x). Since N is torsion-free, we have
ϕ(sx)= sϕ(x). Thus ϕ is S-linear.

(ii) If M is a MCM S-module, then M is finitely generated and
torsion-free, hence MCM, over R.

(iii) is clear from (i) and the fact that SM is indecomposable if and
only if HomS(M, M) contains no idempotents. Finally, (iv) is clear from
(iii), (ii) and the fact that by (i) non-isomorphic MCM S-modules are
non-isomorphic over R. �

§4. The analytically ramified case

Let (R,m) be a local Noetherian ring of dimension one, let K be the
total quotient ring {non-zerodivisors}−1R, and let R be the integral clo-
sure of R in K . Suppose R is not finitely generated over R. Then, since
algebra-finite integral extensions are module-finite, no finite subset
of R generates R as an R-algebra, and we can build an infinite as-
cending chain of finitely generated R-subalgebras of R. Each algebra
in the chain is a maximal Cohen-Macaulay R-module, and it is easy
to see (Exercise 4.30) that no two of the algebras are isomorphic as
R-modules. Moreover, each of these algebras is isomorphic, as an R-
module, to a faithful ideal of R. Therefore R has an infinite family of
pairwise non-isomorphic faithful ideals. It follows (Exercise 4.31) that
R has infinite CM type. Now Theorem 4.6 implies the following result:
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4.15. PROPOSITION. Let (R,m,k) be a one-dimensional CM local
ring with finite Cohen-Macaulay type. Then R is analytically unrami-
fied. �

In particular, this proposition shows that R itself is reduced; equiv-
alently, R is an isolated singularity: Rp is a regular local ring (a field!)
for every non-maximal prime ideal p. See Theorem 7.12.

What if R is not Cohen-Macaulay? The next theorem ([Wie94,
Theorem 1]) and Theorem 4.10 provide the full classification of one-
dimensional local rings of finite Cohen-Macaulay type. We will leave
the proof as an exercise.

4.16. THEOREM. Let (R,m) be a local ring of dimension one, and
let N be the nilradical of R. Then R has finite Cohen-Macaulay type if
and only if

(i) R/N has finite Cohen-Macaulay type, and
(ii) mi ∩N = (0) for i À 0. �

For example, k[[x, y]]/(x2, xy) has finite Cohen-Macaulay type, since
(x) is the nilradical and (x, y)2 ∩ (x) = (0). However k[[x, y]]/(x3, x2 y)
has infinite CM type: For each i > 1, xyi−1 is a non-zero element of
(x, y)i ∩ (x).

4.17. COROLLARY. Let (R,m) be a local ring of dimension one. Then
R has finite CM type if and only if the m-adic completion R̂ has finite
CM type. �

PROOF. Suppose first that R is analytically unramified. Since the
bottom lines of the conductor squares for R and for R̂ are identical
(Remark 4.8), it follows from (iii) of Proposition 4.7 that R has finite
CM type if and only if R̂ has finite CM type.

For the general case, let N be the nilradical of R. Suppose R has
finite CM type. The CM ring R/N then has finite CM type by Theo-
rem 4.16 and hence is analytically unramified by Proposition 4.15. It
follows that N̂ is the nilradical of R̂. By the first paragraph, R̂/N̂ has
finite CM type; moreover, m̂i ∩ N̂ = (0) for i À 0. Therefore R̂ has fi-
nite CM type. For the converse, assume that R̂ has finite CM type.
Since every MCM R̂/N̂-module is also a MCM R̂-module, we see that�R/N = R̂/N̂ has finite CM type. Since R/N is CM, so is �R/N, and now
Theorem 4.15 implies that �R/N is reduced. By the first paragraph,
R/N has finite CM type. Now N̂ is contained in the nilradical of R̂,
so Theorem 4.16 implies that m̂i ∩ N̂ = (0) for i À 0. It follows that
mi ∩N = (0) for i À 0, and hence that R has finite CM type. �
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We shall see in Chapter 10 that finite CM type always descends
from the completion, even in higher dimensions, but that there are
counterexamples to ascent of finite CM type. It is interesting to note
that the proof of the corollary does not depend on the characteriza-
tion (Theorem 4.10) of the one-dimensional analytically unramified
local rings of finite CM type. We remark that in higher dimensions
finite CM type does not always ascend to the completion (see Exam-
ple 10.12).

§5. Multiplicity two

Suppose (R,m) is an analytically unramified one-dimensional local
ring and that dimk(R/mR)= 2. One can show (cf. Exercise 4.29) that R
automatically satisfies (DR2) and therefore has finite CM type. Here
we will give a direct proof of finite CM type in multiplicity two, using
some results in Bass’s “ubiquity” paper [Bas63]. We don’t assume that
R is a finitely generated R-module.

We refer the reader to Appendix A, §2 for basic stuff on multiplicity,
particularly for one-dimensional rings.

4.18. THEOREM. Let (R,m,k) be a Cohen-Macaulay local ring of
dimension one, with e(R)= 2.

(i) Every ideal of R is generated by at most two elements.
(ii) Every ring S with R ⊆ S ( R and finitely generated over R is

local and Gorenstein. In particular R itself is Gorenstein.
(iii) Every MCM R-module is isomorphic to a direct sum of ideals

of R. In particular, every indecomposable MCM R-module has
multiplicity at most 2 and is generated by at most 2 elements.

(iv) The ring R has finite CM type if and only if R is analytically
unramified.

PROOF. For (i) we quote Theorem A.29 (ii).
(ii) Let S be a module-finite R-algebra properly contained in R.

Then S has a maximal ideal n such that Sn is not a DVR. We claim that
S is local. For this, we may assume, by passing to the faithfully flat
extension (R[x])mR[x], that k is infinite. Choose a principal reduction
(t) of m (see Theorem A.20). Suppose n′ is another maximal ideal of
S, and note that t ∈ n∩n′. Now `R(S/tS)= eR(S)6 2 by Theorem A.23
and the fact that S is isomorphic to an ideal of R (clear denominators).
It follows that n∩n′ = St. Localizing at n, we see that nSn is principal,
a contradiction. Now that we know S is local we return to the general
situation, where k is allowed to be finite. Every ideal I of S is iso-
morphic to an ideal of R and hence is two-generated as an R-module;
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therefore I is generated by two elements as an ideal of S. Since the
maximal ideal of S is two-generated, Exercise 4.33 guarantees that S
is Gorenstein.

(iii) Let M first be a faithful MCM R-module. As M is torsion-
free, the map j : M −→ K ⊗R M is injective. Let H = {t ∈ K | t j(M) ⊆
j(M)}; then M is naturally an H-module. Since M is faithful, H ,→
HomR(M, M), and thus H is a module-finite extension of R contained
in R. Suppose first that H = R. Then R is reduced by Lemma 4.6, and
hence R is a principal ideal ring. It follows from the structure theory
for modules over a principal ideal ring that M has a copy of H as a
direct summand, and of course H is isomorphic to an ideal of R. If H
is properly contained in R, then, since H/R has finite length, we can
apply Lemma 4.9 repeatedly, eventually getting a copy of some subring
of H as a direct summand of M. In either case, we see that M has a
faithful ideal of R as a direct summand.

Suppose, now, that M is an arbitrary MCM R-module, and let
I = Ann(M). Then R/I embeds in a direct product of copies of M (one
copy for each generator); therefore R/I has depth 1 and hence is a one-
dimensional CM ring. Of course e(R/I)6 2, and, since M is a faithful
MCM R/I-module, M has a non-zero ideal of R/I as a direct summand.
To complete the proof, it will suffice to show that R/I is isomorphic
to an ideal of R. Dualizing over R, we have (R/I)∗ ∼= Ann(I), an ideal
of height 0 (since I 6= 0). Therefore R/Ann(I) has positive multiplicity
and hence, by Theorem A.29 (iii), Ann(I) is a principal ideal. There-
fore (R/I)∗ is a cyclic R-module. Choosing a surjection R� (R/I)∗, we
get an injection (R/I)∗∗ ,→ R. But R/I, being a MCM module over a
Gorenstein ring, is reflexive (Theorem 11.5), and we have R/I ,→ R.

(iv) The “only if” implication is Proposition 4.15. For the converse,
we assume that R is analytically unramified, so that R is a finitely
generated R-module by Theorem 4.6. It will suffice, by item (iii), to
show that R has only finitely many ideals up to isomorphism. We first
observe that every submodule of R/R is cyclic. Indeed, if H is an R-
submodule of R and H ⊇ R, then H is isomorphic to an ideal of R,
whence is generated by two elements, one of which can be chosen to be
1R . Since R/R in particular is cyclic, it follows that R/R ∼= R/(R :R R)=
R/c. Thus every submodule of R/c is cyclic; but then R/c is an Artinian
principal ideal ring and hence R/c has only finitely many ideals. Since
R/R ∼= R/c, we see that there are only finitely many R-modules between
R and R.

Given a faithful ideal I of R, put E = (I :R I), the endomorphism
ring of I. Then I is a projective E-module by Remark 4.4. Since E
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is semilocal, I is isomorphic to E as an E-module and therefore as an
R-module. In particular, R has only finitely many faithful ideals up to
R-isomorphism.

Suppose now that J is a non-zero unfaithful ideal; then R is not
a domain. Notice that if R had more than two minimal primes pi,
the direct product of the R/pi would be an R-submodule of R requir-
ing more than two generators. Therefore R has exactly two minimal
prime ideals p and q. Exercise 4.34 implies that J is a faithful ideal
of either R/p or R/q. Now R/p and R/q are discrete valuation rings:
if, say, R/p were properly contained in R/p, then R/p×R/q would need
at least three generators as an R-module. Therefore there are, up to
isomorphism, only two possibilities for J. �

§6. Ranks of indecomposable MCM modules

Suppose (R,m,k) is a reduced local ring of dimension one, and let
p1, . . . ,ps be the minimal prime ideals of R. Recall that the rank of a
finitely generated R-module M is the s-tuple rankR(M) = (r1, . . . , rs),
where r i is the dimension of Mpi as a vector space over the field Rpi .
If R has finite CM type, it follows from (DR1) and Theorem A.29 that
s6 e(R)6 3. There are universal bounds on the ranks of the indecom-
posable MCM R-modules, as R varies over one-dimensional reduced
local rings with finite CM type. The precise ranks that occur have
recently been worked out by Baeth and Luckas [BL10].

4.19. THEOREM. Let (R,m) be a one-dimensional, analytically un-
ramified local ring with finite CM type. Let s 6 3 be the number of
minimal prime ideals of R.

(i) If R is a domain, then every indecomposable finitely generated
torsion-free R-module has rank 1, 2, or 3.

(ii) If s = 2, then the rank of every indecomposable finitely gener-
ated torsion-free R-module is among the following possibilities:
(0,1), (1,0), (1,1), (1,2), (2,1), or (2,2).

(iii) If s = 3, then one can choose a fixed ordering of the minimal
prime ideals so that the rank of every indecomposable finitely
generated torsion-free R-module is among the following possi-
bilities: (0,0,1), (0,1,0), (1,0,0), (0,1,1), (1,0,1), (1,1,0), (1,1,1),
or (2,1,1).

Moreover, there are examples showing that each of these possibilities
actually occurs. �

The lack of symmetry in the last possibility is significant: One can-
not have, for example, both an indecomposable of rank (2,1,1) and one



§7. EXERCISES 57

of rank (1,2,1). An interesting consequence of the theorem is a uni-
versal bound on modules of constant rank, even in the non-local case.
First we note the following local-global theorem [WW94]:

4.20. THEOREM (Wiegand and Wiegand). Let R be a reduced ring
of dimension one with finitely generated integral closure, let M be a
finitely generated torsion-free R-module, and let r be a positive integer.
If, for each maximal ideal m of R, the Rm-module Mm has a direct
summand of constant rank r, then M has a direct summand of constant
rank r. �

4.21. COROLLARY. Let R be a one-dimensional reduced ring with
finitely generated integral closure. Assume that Rm has finite Cohen-
Macaulay type for each maximal ideal m of R. Then every indecom-
posable finitely generated torsion-free R-module of constant rank has
rank 1, 2, 3, 4, 5 or 6. �

Theorem 4.19 and Corollary 4.21 correct an error in a 1994 paper
of R. and S. Wiegand [WW94] where it was claimed that the sharp
universal bounds were 4 in the local case and 12 in general.

If one allows non-constant ranks, there is no universal bound, even
if one assumes that all localizations have multiplicity two [Wie88].
An interesting phenomenon is that in order to achieve rank (r1, . . . , rs)
with all of the r i large, one must have the ranks sufficiently spread
out. For example [BL10, Theorem 5.5], if R has finite CM type locally
and n > 8, every finitely generated torsion-free R module with local
ranks between n and 2n−8 has a direct summand of constant rank 6.

§7. Exercises

4.22. EXERCISE. Let R = C[x, y](x,y)/(y2 − x3 − x2). Prove that the
integral closure R is R

[ y
x
]

and that R has two maximal ideals. Prove
that the completion R̂ = C[[x, y]]/(y2 − x2 − x3) has two minimal prime
ideals. Show that the conductor square for R is

R �
�

//

����

k[t]U
π
����

k �
�

∆
// k×k

where ∆ is the diagonal embedding, U is a certain multiplicatively
closed set, and the right-hand vertical map sends t to (1,−1).

4.23. EXERCISE. Let R be a one-dimensional CM local ring with
integral closure R, and let M be a torsion-free R-module. Show that
R⊗R M is torsion-free over R if and only if M is free.
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4.24. EXERCISE. Let c1, . . . , cn be distinct real numbers, and let S
be the subring of R[t] consisting of real polynomial functions f satisfy-
ing

f (c1)= ·· · = f (cn) and f (k)(ci)= 0
for all i = 1, . . . ,n and k = 1, . . . ,3, where f (k) denotes the kth derivative.
Let S′ be the semilocalization of S at the union of prime ideals (t−c1)∪
·· ·∪ (t− cn). Let m= { f ∈ S | f (c1)= 0}, and set R = Sm. Show that m is
a maximal ideal of S and that

R �
�

//

����

S′

π
����

k �
�

// k[t1]/(t4
1)×·· ·×k[tn]/(t4

n)

is the conductor square for R.

4.25. EXERCISE. Let Λ be a ring (not necessarily commutative),
and let M1 and M2 be Noetherian left Λ-modules. Suppose there ex-
ist surjective Λ-homomorphisms M1�M2 and M2�M1. Prove that
M1

∼= M2. (Cf. Exercise 1.27.)

4.26. EXERCISE. Prove the “only if” direction of (iii) in Proposi-
tion 4.7. (Hint: Use the fact that any indecomposable Rart-module is
weakly extended from R, and use KRS (Theorem 3.6). See Proposi-
tion 10.4 if you get stuck.)

4.27. EXERCISE ([Wie94, Lemma 4]). Let (R,m,k) be a reduced
local ring of dimension one satisfying (DR1) and (DR2). Assume that R
has a maximal ideal n such that `= R/n has degree 3 over k. Further,
assume that R is not seminormal (equivalently, R/c is not reduced).
Prove the following:

(i) R is local and mR = n.
(ii) There is exactly one ring strictly between R and R, namely S =

R+n.
(iii) R is Gorenstein.
(iv) S is seminormal.

4.28. EXERCISE. Let (R,m) be a one-dimensional CM local ring
which is not a discrete valuation ring. Let R be the integral closure
of R in its total quotient ring K . Identify E = {c ∈ K | cm⊆m} with
EndR(m) via the isomorphism taking c to multiplication by c. Prove
that E ⊆ R and that E contains R properly.

4.29. EXERCISE. Let (R,m,k) be a one-dimensional reduced local
ring for which R is generated by two elements as an R-module. Prove
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that R satisfies the second Drozd-Roı̆ter condition (DR2). (Hint: Pass
to R/c and count lengths carefully.)

4.30. EXERCISE. Let R be a commutative ring with total quotient
ring K = {non-zerodivisors}−1R.

(i) Let M be an R-submodule of K . Assume that M contains a
non-zerodivisor of R. Prove that EndR(M) is naturally identi-
fied with {α ∈ K | αM ⊆ M}, so that every endomorphism of M
is given by multiplication by an element of K .

(ii) ([Wie94, Lemma 1]) Suppose A and B are subrings of K with
R ⊆ A∩B. Prove that if A and B are isomorphic as R-modules
then A = B.

4.31. EXERCISE. Let R be a reduced one-dimensional local ring.
Suppose R has an infinite family of ideals {I i} that are pairwise non-
isomorphic as R-modules. Prove that R has infinite CM type. (Hint:
the Goldie dimension of R is the least integer s such that every ideal
of R is a direct sum of at most s indecomposable ideals. Prove that
s <∞.)

4.32. EXERCISE. Prove Theorem 4.16.

4.33. EXERCISE ([Bas63, Theorem 6.4]). Let (R,m) be a CM local
ring of dimension one, and suppose m can be generated by two ele-
ments. Prove that R is Gorenstein.

4.34. EXERCISE. Let (R,m) be a reduced local ring of dimension
one, and let M be a MCM R-module. Prove that (0 :R M) is the inter-
section of the minimal prime ideals p for which Mp 6= 0.





CHAPTER 5

Invariant Theory

In this chapter we describe an abundant source of MCM modules
coming from invariant theory. We consider finite subgroups G of the
general linear group GL(n,k) with |G| invertible in the field k, acting
by linear changes of variable on the power series ring S = k[[x1, . . . , xn]].
The invariant subring R = SG is a complete local CM normal domain
of dimension n, and comes equipped with a natural MCM module,
namely the ring S considered as an R-module. The main goal of this
chapter is a collection of one-one correspondences between:

(i) the indecomposable R-direct summands of S;
(ii) the indecomposable projective modules over the endomorphism

ring EndR(S);
(iii) the indecomposable projective modules over the skew group

ring S#G; and
(iv) the irreducible k-representations of G.
We also introduce two directed graphs (quivers), the McKay quiver

and the Gabriel quiver, associated with these data, and show that they
are isomorphic.

In the next chapter we will specialize to the case n = 2, and show
that in fact every indecomposable MCM R-module is a direct sum-
mand of S, so that the correspondences above classify all the MCM
R-modules.

§1. The skew group ring

We begin with a little general invariant theory of arbitrary comm-
utative rings, focusing on a central object: the skew group ring.

5.1. NOTATION. Fix the following notation for this section. Let S
be an arbitrary commutative ring and G ⊆ Aut(S) a finite group of
automorphisms of S. We always assume that |G| is a unit in S. Let
R = SG be the ring of invariants, so s ∈ R if and only if σ(s) = s for
every σ ∈G.

5.2. EXAMPLE. Two central examples are given by linear actions
on polynomial and power series rings. Let k be a field and V a k-vector

61
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space of dimension n, with basis x1, . . . , xn. Let G be a finite subgroup
of GL(V ) ∼= GL(n,k), acting naturally by linear changes of coordinates
on V . We extend this action to monomials xa1

1 · · ·xan
n multiplicatively,

and then to all polynomials in x1, . . . , xn by linearity. This defines an
action of G on the polynomial ring k[x1, . . . , xn]. Extending the action
of G to infinite sums in the obvious way, we obtain also an action on
the power series ring k[[x1, . . . , xn]]. In either case we say that G acts
on S via linear changes of variables.

It is an old result of Cartan [Car57] that when S is either the
polynomial or the power series ring, we may assume that the action
of an arbitrary subgroup G ⊆ Autk(S) is in fact linear. This is the first
instance where the assumption that |G| be invertible in S will be used;
it will be essential throughout.

5.3. LEMMA (Cartan). Let k be a field and let S be either the poly-
nomial ring k[x1, . . . , xn] or the power series ring k[[x1, . . . , xn]]. Let
G ⊆ Autk(S) a finite group of k-algebra automorphisms of S with |G|
invertible in k. Then there exists a finite group G′ ⊆GL(n,k), acting on
S via linear changes of variables, such that SG′ ∼= SG .

PROOF. Let V = (x1, . . . , xn)
/

(x1, . . . , xn)2 be the vector space of lin-
ear forms of S. Then G acts on V , giving a group homomorphism
ϕ : G −→ GL(V ). Set G′ =ϕ(G), and extend the action of G′ linearly to
all of S by linear changes of variables as in Example 5.2.

Define a ring homomorphism θ : S −→ S by the rule

θ(s)= 1
|G|

∑
σ∈G

ϕ(σ)−1σ(s) .

Since θ restricts to the identity on V , it is an automorphism of S. For
an element τ ∈G, we have ϕ(τ)◦θ = θ◦τ as automorphisms of S. Hence
the actions of G and G′ are conjugate, and it follows that SG′ ∼= SG . �

Let S, G, and R be as in 5.1. The fact that |G| is invertible allows
us to define the Reynolds operator ρ : S −→ R by sending s ∈ S to the
average of its orbit:

ρ(s)= 1
|G|

∑
σ∈G

σ(s) .

Then ρ is R-linear, and it splits the inclusion R ⊆ S, thereby making
R an R-direct summand of S. It follows (Exercise 5.27) that IS∩R =
I for every ideal I of R, whence R is Noetherian, respectively local,
respectively complete, if S is.



§1. THE SKEW GROUP RING 63

The extension R −→ S is integral. Indeed, every element s ∈ S is a
root of the monic polynomial

∏
σ∈G (x−σ(s)), whose coefficients are el-

ementary symmetric polynomials in the conjugates {σ(s)}, so are in R.
In particular it follows that R and S have the same Krull dimension.

Suppose that S is a domain with quotient field K , and let F be the
quotient field of R. Then G acts naturally on K , and by Exercise 5.28
the fixed field is F, so that K /F is a Galois extension with Galois group
G.

If S is a Noetherian domain, then S is a finitely generated R-
module. Since this fact seems not to be well-known in this generality,
we give a proof here. We learned this argument from [BD08]. For the
classical result that finite generation holds if S is a finitely generated
algebra over a field, see Exercise 5.29.

5.4. PROPOSITION. Let S be a Noetherian integral domain and let
G ⊆Aut(S) be a finite group with |G| invertible in S. Set R = SG . Then
S is a finitely generated R-module of rank equal to |G|.

PROOF. Let F and K be the quotient fields of R and S, respectively.
The Reynolds operator ρ : S −→ R extends to an operator ρ : K −→ F
defined by the same rule. (In fact ρ is nothing but a constant multiple
of the usual trace from K to F.)

Fix a basis α1, . . . ,αn for K over F. We may assume that αi ∈ S for
each i. Indeed, if s/t ∈ K with s and t in S, we may multiply numerator
and denominator by product of the distinct images of t under G to
assume t ∈ R, then replace s/t by s without affecting the F-span.

By [Lan02, Corollary VI.5.3], there is a dual basis α′
1, . . . ,α′

n such
that ρ(αiα

′
j) = δi j. Let M denote the R-module span of

{
α′

1, . . . ,α′
n
}

in K . We claim that S ⊆ M, so that S is a submodule of a finitely
generated R-module, hence is finitely generated.

Let s ∈ S, and write s = ∑
i f iα

′
i with f1, . . . , fn ∈ F. It suffices to

prove that f j ∈ R for each j. Note that since α j ∈ S for each j, we have
ρ(sα j) ∈ R for j = 1, . . . ,n. But

ρ(sα j)=
∑

i
f iαiα

′
j = f j

so that S ⊆ M, as claimed. The statement about the rank of S over R
is immediate. �

If in addition S is a normal domain then the same is true of R.
Indeed, any element α ∈ F which is integral over R is also integral
over S. Since S is integrally closed in K , we have α ∈ S∩F = R.

Finally, if S and R are local rings, then we have by Exercise 5.30
that depthR > depthS. In particular R is CM if S is, and in this case
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S is a MCM R-module. (This statement, for example, is quite false if
|G| is divisible by char(k) [Fog81].)

We now introduce the skew, or twisted, group ring.

5.5. DEFINITION. Let S be a ring and G ⊆ Aut(S) a finite group of
automorphisms with order invertible in S. Let S#G denote the skew
group ring of S and G. As an S-module, S#G =⊕

σ∈G S ·σ is free on the
elements of G; the product of two elements s ·σ and t ·τ is

(s ·σ)(t ·τ)= sσ(t) ·στ .

Thus moving σ past t “twists” the ring element.

5.6. REMARKS. In the notation of Definition 5.5, a left S#G-module
M is nothing but an S-module with a compatible action of G, in the
sense that σ(sm) = σ(s)σ(m) for all σ ∈ G, s ∈ S, m ∈ M. We have
σ(st)=σ(s)σ(t) for all s and t in S, and so S itself is a left S#G-module.
Of course S#G is also a left module over itself.

Similarly, an S#G-linear map between left S#G-modules is an S-
module homomorphism f : M −→ N respecting the action of G, so that
f (σ(m)) = σ( f (m)). This allows us to define a left S#G-module struc-
ture on HomS(M, N), when M and N are S#G-modules, by σ( f )(m) =
σ( f (σ−1(m))). It follows that an S-linear map f : M −→ N between
S#G-modules is S#G-linear if and only if it is invariant under the G-
action. Indeed, if σ( f ) = f for all σ ∈ G, then f (m) = σ( f (σ−1(m))), so
that σ−1( f (m))= f (σ−1(m)) for all σ ∈G. Concisely,

(5.6.1) HomS#G(M, N)=HomS(M, N)G .

Since the order of G is invertible in S, taking G-invariants of an
S#G-modules is an exact functor (Exercise 5.32). In particular, −G

commutes with taking cohomology, so (5.6.1) extends to higher Exts:

(5.6.2) Exti
S#G(M, N)=Exti

S(M, N)G

for all S#G-modules M and N and all i > 0. This has the following
wonderful consequence, the easy proof of which we leave as an exer-
cise.

5.7. PROPOSITION. An S#G-module M is projective if and only if it
is projective as an S-module. �

5.8. COROLLARY. If S is a polynomial or power series ring in n
variables, then the skew group ring S#G has global dimension equal to
n. �

We leave the proof of the corollary to the reader as well; the next
example will no doubt be useful.
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5.9. EXAMPLE. Set S be either the polynomial ring k[x1, . . . , xn]
or the power series ring k[[x1, . . . , xn]], with G ⊆ GL(n,k) acting by
linear changes of variables as in Example 5.2. The Koszul complex
K• on the variables x = x1, . . . , xn is a minimal S#G-linear resolution
of the residue field k of S (with trivial action of G). In detail, let
V = (x1, . . . , xn)

/
(x1, . . . , xn)2 be the k-vector space with basis x1, . . . , xn,

and

Kp = Kp(x,S)= S⊗k

p∧
V

for p> 0. The differential ∂p : Kp −→ Kp−1 is given by

∂p(xi1 ∧·· ·∧ xi p )=
p∑

j=1
(−1) j+1xi j (xi1 ∧·· ·∧ x̂i j ∧·· ·∧ xi p ) ,

where {xi1 ∧ ·· · ∧ xi p }, 1 6 i1 < i2 < ·· · < i p 6 n, are the natural basis
vectors for

∧p V . Since the xi form an S-regular sequence, K• is acyclic,
minimally resolving k.

The exterior powers
∧p V carry a natural action of G, by σ(xi1 ∧

·· ·∧ xi p )=σ(xi1)∧·· ·∧σ(xi p ), and it’s easy to see that the differentials
∂p are S#G-linear for this action. Since the modules appearing in K•
are free S-modules, they are projective over S#G, so we see that K•
resolves the trivial module k over S#G. Since every projective over
S#G is free over S, the Depth Lemma then shows that pdS#G k cannot
be any smaller than n.

5.10. REMARK. Let S and G be as in 5.1. The ring S sits inside
S#G naturally via S = S · 1G . However, it also sits in a more sym-
metric fashion via a modified version of the Reynolds operator. Define
ρ̂ : S −→ S#G by

ρ̂(s)= 1
|G|

∑
σ∈G

σ(s) ·σ .

One checks easily that ρ̂ is an injective ring homomorphism, and that
the image of ρ̂ is equal to (S#G)G , the fixed points of S#G under the
left action of G. In particular, ρ̂(1) is an idempotent of S#G.

§2. The endomorphism algebra

The “twisted” multiplication on the skew group ring S#G is cooked
up precisely so that the homomorphism

γ : S#G −→EndR(S) , γ(s ·σ)(t)= sσ(t) ,

is a ring homomorphism extending the group homomorphism G −→
EndR(S) that defines the action of G on S. In words, γ simply considers
an element of S#G as an endomorphism of S.
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In general, γ is neither injective nor surjective, even when S is a
polynomial or power series ring. Under an additional assumption on
the extension R −→ S, however, it is both, by a theorem due to Aus-
lander [Aus62, Prop. 3.4]. We turn now to this additional assumption,
explaining which will necessitate a brief detour through ramification
theory. See Appendix B for the details.

Recall (Definition B.1) that a local homomorphism of local rings
(A,m,k) −→ (B,n,`) which is essentially of finite type is said to be un-
ramified provided mB = n and the induced homomorphism A/m −→
B/mB is a finite separable field extension. Equivalently, the exact se-
quence

(5.10.1) 0 //J //B⊗A B
µ
//B //0 ,

where µ : B⊗A B −→ B is the diagonal map defined by µ(b⊗ b′) = bb′
and J is the ideal of B ⊗A B generated by all elements of the form
b⊗1−1⊗b, splits as B⊗A B-modules (this is Proposition B.9). We say
that a ring homomorphism A −→ B which is essentially of finite type
is unramified in codimension one if the induced local homomorphism
Aq∩A −→ Bq is unramified for every prime ideal q of height one in B. If
A −→ B is module-finite, then it is equivalent to quantify over height-
one primes in A.

In order to leverage codimension-one information to give a global
conclusion, we will use a general lemma about normal domains due to
Auslander and Buchsbaum [AB59], which will reappear repeatedly in
other contexts.

5.11. LEMMA. Let A be a normal domain and let f : M −→ N be a
homomorphism of finitely generated A-modules such that M satisfies
the condition (S2) and N satisfies (S1). If fp is an isomorphism for
every prime ideal p of codimension 1 in A, then f is an isomorphism.

PROOF. Set K = ker f and C = cok f , so that we have the exact
sequence

(5.11.1) 0 //K //M
f
//N //C //0 .

Since f(0) is an isomorphism, K(0) = 0, which means that K is annihi-
lated by a non-zero element of A. But M is torsion-free, so K = 0. As
for C, suppose that C 6= 0 and choose p ∈ AssC. Then p has height at
least 2. Localize (5.11.1) at p:

0 //Mp
//Np

//Cp
//0 .



§2. THE ENDOMORPHISM ALGEBRA 67

As M is reflexive, it satisfies (S2), so Mp has depth at least 2. On
the other end, however, Cp has depth 0, which contradicts the Depth
Lemma. �

5.12. THEOREM (Auslander). Let (S,n) be a normal domain and
let G be a finite subgroup of Aut(S) with order invertible in S. Set
R = SG . If R −→ S is unramified in codimension one, then the ring
homomorphism γ : S#G −→ EndR(S) defined by γ(s ·σ)(t) = sσ(t) is an
isomorphism.

PROOF. Since S#G is isomorphic to a direct sum of copies of S as
an S-module, it satisfies (S2) over R. The endomorphism ring EndR(S)
has depth at least min{2,depthS} over each localization of R by Exer-
cise 5.37, so satisfies (S1). Thus by Lemma 5.11 it suffices to prove
that γ is an isomorphism in height one. At height one primes, the ex-
tension is unramified, so we may assume for the proof that R −→ S is
unramified.

The strategy of the proof is to define a right splitting EndR(S) −→
S#G for γ : S#G −→EndR(S) based on the diagram below.

(5.12.1)

S#G
γ

// EndR(S)

f 7→ f⊗ρ̂
��

S⊗R (S#G)

µ̃

OO

HomS(S⊗R S,S⊗R (S#G))evε
oo

We now define each of the arrows in (5.12.1) in turn. Recall from
Remark 5.10 that the homomorphism

ρ̂ : S −→ S#G, ρ̂(s)= 1
|G|

∑
σ∈G

σ(s) ·σ

embeds S as the fixed points (S#G)G of S#G. Thus −⊗ ρ̂ defines the
right-hand vertical arrow in (5.12.1).

Since we assume R −→ S is unramified, the short exact sequence

(5.12.2) 0 //J //S⊗R S
µ
//S //0

splits as S⊗R S-modules, where again µ : S⊗R S −→ S is the diagonal
map and J is generated by all elements of the form s⊗1−1⊗s for s ∈ S.
Tensoring (5.12.2) on the right with S#G thus gives another split exact
sequence

(5.12.3) 0 //J ⊗S (S#G) //S⊗R (S#G)
µ̃
//S#G //0

with µ̃(t ⊗ s ·σ) = ts ·σ ∈ S#G defining the left-hand vertical arrow
in (5.12.1).
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Let j : S −→ S⊗R S be a splitting for (5.12.2), and set ε= j(1). Then
µ(ε)= 1 and

(5.12.4) (1⊗ s− s⊗1)ε= 0

for all s ∈ S. Evaluation at ε ∈ S⊗R S defines

evε : HomS(S⊗R S,S⊗R (S#G))−→ S⊗R (S#G) ,

the bottom row of the diagram. Now we show that for an arbitrary
f ∈EndR(S), we have

γ
(
µ̃

(
evε

(
f ⊗ ρ̂)))= 1

|G| f .

Write ε=∑
i xi ⊗ yi for some elements xi, yi ∈ S. We claim first that∑

i
xiσ(yi)=

{
1 if σ= 1G , and
0 otherwise.

To see this, note that

(s⊗1)

(∑
i

xi ⊗ yi

)
= (1⊗ s)

(∑
i

xi ⊗ yi

)
for every s ∈ S by (5.12.4). Apply the endomorphism 1⊗σ to both sides,
obtaining ∑

i
sxi ⊗σ(yi)=

∑
i

xi ⊗σ(s)σ(yi) .

Collapse the tensor products with µ : S⊗R S −→ S, and factor each side,
getting

s

(∑
i

xiσ(yi)

)
=σ(s)

(∑
i

xiσ(yi)

)
.

This holds for every s ∈ S, so that either σ= 1G or
∑

i xiσ(yi)= 0, prov-
ing the claim.

Now fix f ∈ EndR(S) and s ∈ S. Unravelling all the definitions, we
find

γ
[
µ̃

[
( f ⊗ ρ̂)(ε)

]]
(s)= γ[

µ̃
[
( f ⊗ ρ̂)

(∑
ixi ⊗ yi

)]]
(s)

= γ[
µ̃

(∑
i f (xi)⊗ ρ̂(yi)

)]
(s)

= γ[(∑
i f (xi)ρ̂(yi)

)]
(s)

= γ
[(∑

i f (xi)
(

1
|G|

∑
σ
σ(yi) ·σ

))]
(s)

= 1
|G|

∑
i f (xi)

(∑
σ
σ(yi)σ(s)

)
.



§2. THE ENDOMORPHISM ALGEBRA 69

Now, since the sum over σ is fixed by G, it lives in R, so

= 1
|G| f

(∑
ixi

(∑
σ
σ(yi)σ(s)

))
= 1

|G| f
(∑

σ

(∑
ixiσ(yi)

)
σ(s)

)
= 1

|G| f
(∑

ixi yis
)

by the claim. By the definition of ε = ∑
xi ⊗ yi, this last expression

is equal to 1
|G| f (s), as desired. Therefore γ : S#G −→ EndR(S) is a

split surjection. Since both source and target of γ are torsion-free R-
modules of rank equal to |G|2, this forces γ to be an isomorphism. �

When S is a polynomial or power series ring and G ⊆GL(n,k) acts
linearly, the ramification of R −→ S is explained by the presence of
pseudo-reflections in G.

5.13. DEFINITION. Let k be a field. An element σ ∈GL(n,k) of finite
order is called a pseudo-reflection provided the fixed subspace Vσ ={
v ∈ k(n)

∣∣σ(v)= v
}

has codimension one in k(n). Equivalently, σ− In
has rank 1. We say a subgroup G ⊆ GL(n,k) is small if it contains no
pseudo-reflections.

If a pseudo-reflection σ is diagonalizable, then σ is similar to a
diagonal matrix with diagonal entries 1, . . . ,1,λ with λ 6= 1 a root of
unity. In fact, one can show (Exercise 5.38) that a pseudo-reflection
with order prime to char(k) is necessarily diagonalizable.

The importance of pseudo-reflections in invariant theory is high-
lighted by the foundational theorem of Chevalley-Shephard-Todd (The-
orem B.27), which says that, in the case S = k[[x1, . . . , xn]], the invari-
ant ring R = SG is a regular local ring if and only if G is generated by
pseudo-reflections. More relevant for our purposes, pseudo-reflections
control the “large ramification” of invariant rings. We banish the proof
of this fact to the Appendix (Theorem B.29).

5.14. THEOREM. Let k be a field and let G ⊆ GL(n,k) be a finite
group with order invertible in k. Let S be either the polynomial ring
k[x1, . . . , xn] or the power series ring k[[x1, . . . , xn]], with G acting by lin-
ear changes of variables. Set R = SG . Then the extension R −→ S is
unramified in codimension one if and only if G is small. �

In fact, by a theorem of Prill, we could always assume that G is
small. Specifically, we may replace S and G by another power series
ring S′ (possibly with fewer variables) and finite group G′, respectively,
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so that G′ is small and S′G′ ∼= SG . See Proposition B.30 for this, which
we will not use in this chapter.

In view of Theorem 5.14, we can restate Theorem 5.12 as follows
for linear actions.

5.15. THEOREM. Let k be a field and let G ⊆ GL(n,k) be a finite
group with order invertible in k. Let S be either the polynomial ring
k[x1, . . . , xn] or the power series ring k[[x1, . . . , xn]], with G acting by
linear changes of variables. Set R = SG . If G contains no pseudo-
reflections, then the natural homomorphism γ : S#G −→ EndR(S) is an
isomorphism.

5.16. COROLLARY. With notation as in Theorem 5.15, assume that
G contains no pseudo-reflections. Then we have ring isomorphisms

S#G ι
// (S#G)op ν

// EndS#G(S#G) res
// EndR(S)

where ι(s ·σ)=σ−1(s)·σ−1, ν(s ·σ)(t ·τ)= (t ·τ)(s ·σ), and res is restriction
to the subring ρ̂(S) = (S#G)G . The composition of these maps is the
isomorphism γ. These isomorphisms induce one-one correspondences
between

(i) the indecomposable direct summands of S as an R-module;
(ii) the indecomposable direct summands of EndR(S) as a (left)

EndR(S)-module; and
(iii) the indecomposable direct summands of S#G as a (left) S#G-

module.

Explicitly, if P0, . . . ,Pd are the indecomposable summands of S#G, then
PG

j , for j = 0, . . . ,d, are the direct summands of S as an R-module. They
are in particular MCM R-modules.

PROOF. It’s easy to check that ι and ν are isomorphisms, and that
the composition res◦ν ◦ ι is equal to γ. The primitive idempotents of
EndR(S) correspond both to the indecomposable R-direct summands
of S and to the indecomposable EndR(S)-projectives, while those of
EndS#G(S#G) correspond to the indecomposable S#G-projective mod-
ules. The fact that (S#G)G = S implies the penultimate statement, and
the fact that S is MCM over R was observed already. �

We have not yet shown that the indecomposable direct summands
of S#G as an S#G-module are all the indecomposable projective S#G-
modules. This will follow from the first result of the next section,
where we prove that projective modules over S#G (and hence over
EndR(S)) satisfy KRS when S is complete.
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§3. Group representations and the McKay-Gabriel quiver

The module theory of the skew group ring S#G, where G ⊆GL(n,k)
acts linearly on the power series ring S, faithfully reflects the repre-
sentation theory of G. In this section we make this assertion precise.

Throughout the section, we consider linear group actions on power
series rings, so that G ⊆ GL(n,k) is a finite group of order relatively
prime to the characteristic of k, acting on S = k[[x1, . . . , xn]] by linear
changes of variables, with invariant ring R = SG . Let S#G be the
skew group ring.

5.17. DEFINITION. Let M be an S#G-module and W a k-represen-
tation of G, that is, a module over the group algebra kG. Define an
S#G-module structure on M⊗k W by the diagonal action

sσ(m⊗w)= sσ(m)⊗σ(w) .

Define a functor F from the category of finite-dimensional k-rep-
resentations W of G to that of finitely generated S#G-modules by

F (W)= S⊗k W

and similarly for homomorphisms. For any W , F (W) is obviously a
free S-module and thus a projective S#G-module.

In the opposite direction, let P be a finitely generated projective
S#G-module. Then P/nP is a finite-dimensional k-vector space with
an action of G, that is, a k-representation of G. Define a functor G

from projective S#G-modules to k-representations of G by

G (P)= P/nP

and correspondingly on homomorphisms.

5.18. PROPOSITION. The functors F and G form an adjoint pair,
that is,

HomkG(G (P),W)=HomS#G(P,F (W)) ,

and are inverses of each other on objects. Concretely, for a projective
S#G-module P and a k-representation W of G, we have

S⊗k P/nP ∼= P

and
(S⊗k W)/n(S⊗k W)∼=W .

In particular, there is a one-one correspondence between isomorphism
classes of indecomposable projective S#G-modules and irreducible k-
representations of G.
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PROOF. It is clear that G (F (W))∼=W , since

(S⊗k W)/n(S⊗k W)∼= S/n⊗k W ∼=W .

To show that the other composition is also the identity, let P be a pro-
jective S#G-module. Then F (G (P)) = S ⊗k P/nP is a projective S#G-
module, with a natural projection onto P/nP. Of course, the original
projective P also maps onto P/nP. This latter is in fact a projective
cover of P/nP (since idempotents in kG lift to S#G via the retraction
kG −→ S#G −→ kG). There is thus a lifting S⊗k P/nP −→ P, which is
surjective modulo nP. NAK then implies that the lifting is surjective,
so split, as P is projective. Comparing ranks over S, we must have
S⊗k P/nP ∼= P. �

5.19. COROLLARY. Let V0, . . . ,Vd be a complete set of pairwise non-
isomorphic irreducible kG-modules. Then

S⊗k V0, . . . ,S⊗k Vd

is a complete set of non-isomorphic indecomposable finitely generated
projective S#G-modules. Furthermore, the category of finitely generated
projective S#G-modules satisfies the KRS property, i.e. each finitely gen-
erated projective P is isomorphic to a unique direct sum

⊕d
i=0(S ⊗k

Vi)(ni). �

Putting together the one-one correspondences obtained so far, we
have

5.20. COROLLARY. Let k be a field, let S = k[[x1, . . . , xn]], and let
G ⊆ GL(n,k) be a finite group acting linearly on S without pseudo-
reflections and such that |G| is invertible in k. Then there are one-one
correspondences between

(i) the indecomposable direct summands of S as an R-module;
(ii) the indecomposable finitely generated projective (left) EndR(S)-

modules;
(iii) the indecomposable finitely generated projective (left) S#G-mod-

ules; and
(iv) the irreducible kG-modules.

The correspondence between the first and last items is induced by the
equivalence of categories between k-representations of G and addR(S)
defined by W 7→ (S⊗k W)G .

Explicitly, if V0, . . . ,Vd are the non-isomorphic irreducible represen-
tations of G over k, then the modules of covariants

M j = (S⊗k Vj)G , j = 0, . . . ,d
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are the indecomposable R-direct summands of S. They are in particu-
lar MCM R-modules. Furthermore, we have rankR M j = dimk Vj. �

The one-one correspondence between projectives, representations,
and certain MCM modules obtained so far extends to an isomorphism
of two graphs naturally associated to these data, as we now explain.
We will meet a third incarnation of these graphs in Chapter 13.

We keep all the notation established so far in this section, and ad-
ditionally let V0, . . . ,Vd be a complete set of non-isomorphic irreducible
k-representations of G, with V0 the trivial representation k. The given
linear action of G on S is induced from an n-dimensional representa-
tion of G on the space V = n/n2 of linear forms.

5.21. DEFINITION. The McKay quiver of G ⊆GL(V ) has

• vertices V0, . . . ,Vd, and
• mi j arrows Vi −→ Vj if the multiplicity of Vi in an irreducible

decomposition of V ⊗k Vj is equal to mi j.

In case k is algebraically closed, the multiplicities mi j in the McKay
quiver can also be computed from the characters χ,χ0, . . . ,χd for the
representations V ,V0, . . . ,Vd; see [FH91, 2.10]:

mi j = 〈χi,χχ j〉 = 1
|G|

∑
σ∈G

χi(σ)χ(σ−1)χ j(σ−1) .

For each i = 0, . . . ,d, we set Pi = S⊗kVi, the corresponding indecom-
posable projective S#G-module. Then in particular P0 = S ⊗k V0 = S,
and {P0, . . . ,Pd} is a complete set of non-isomorphic indecomposable
projective S#G-modules by Proposition 5.18. The Vj are simple S#G-
modules via the surjection S#G −→ kG, with minimal projective cover
P j. Since pdS#G Vj 6 n by Proposition 5.7, the minimal projective reso-
lution of Vj over S#G thus has the form

0−→Q j,n −→Q j,n−1 −→ ·· · −→Q j,1 −→ P j −→Vj −→ 0

with projective S#G-modules Q j,i for i = 1, . . . ,n and j = 0, . . . ,d.

5.22. DEFINITION. The Gabriel quiver of G ⊆GL(V ) has

• vertices P0, . . . ,Pd, and
• mi j arrows Pi −→ P j if the multiplicity of Pi in Q j,1 is equal to

mi j.

5.23. THEOREM (Auslander). The McKay quiver and the Gabriel
quiver of R are isomorphic directed graphs.
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PROOF. First consider the trivial module V0 = k. The minimal
S#G-resolution of k was computed in Example 5.9; it is the Koszul
complex

K• : 0−→ S⊗k

n∧
V −→ ·· · −→ S⊗k V −→ S −→ 0 .

To obtain the minimal S#G-resolution of Vj, we simply tensor the
Koszul complex with Vj over k, obtaining

0−→ S⊗k

( n∧
V ⊗k Vj

)
−→ ·· · −→ S⊗k

(
V ⊗k Vj

)−→ S⊗k Vj −→ 0 .

This displays Q j,1 = S⊗k
(
V ⊗k Vj

)
, so that the multiplicity of Pi in Q j,1

is equal to that of Vi in V ⊗k Vj. �

5.24. EXAMPLE. Take n = 3, and write S = k[[x, y, z]]. Let G =Z/2Z,
with the generator acting on V = kx⊕ky⊕kz by negating each variable.
Then R = SG = k[[x2, xy, xz, y2, yz, z2]]. There are only two irreducible
representations of G, namely the trivial representation k and its neg-
ative, which is isomorphic to the inverse determinant representation
V1 = det(V )−1 =∧3 V∗. The Koszul complex

0−→ S⊗
3∧

V −→ S⊗k

2∧
V −→ S⊗k V −→ S −→ 0

resolves k, while the tensor product

0 // S⊗ (∧3 V ⊗k
∧3 V∗)

// S⊗k
(∧2 V ⊗k

∧3 V∗)
//

S⊗k
(
V ⊗k

∧3 V∗)
// S⊗k

∧3 V∗ // 0

is canonically isomorphic to

0−→ S −→ S⊗k V∗ −→ S⊗k

2∧
V∗ −→ S⊗k

3∧
V∗ −→ 0 .

Since the given representation V = (∧3 V∗)(3) is just 3 copies of V1, we
obtain the McKay quiver

V0
++
++
++

V1kk
kk
kk

or the Gabriel quiver

S⊗k V0
--
--
--

S⊗k V1mm
mm
mm

.

Taking fixed points as specified in Corollary 5.20, we find MCM
modules

M0
∼= R and M1 = (S⊗k V1)G .
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Since V1 is the negative of the trivial representation, the fixed points
of S ⊗k V1, with the diagonal action, are generated over R by those
elements f ⊗α such that σ( f )=− f . These are generated by the linear
forms of S, so that M1 is the submodule of S generated by (x, y, z). This
is isomorphic to the ideal (x2, xy, xz) of R. In particular we recover the
obvious R-direct sum decomposition S = R⊕R(x, y, z) of S.

Observe that M0 and M1 are not the only indecomposable MCM
R-modules, even though it turns out that R does have finite CM type;
see Example 16.4.

From now on, we draw the McKay quiver for a group G, and refer
to it as the McKay-Gabriel quiver.

5.25. EXAMPLE. Let n = 2 now, and write S = k[[u,v]]. Let r> 2 be
an integer not divisible by char(k), and choose 0< q < r with (q, r)= 1.
Take G = 〈g〉 ∼=Z/rZ to be the cyclic group of order r generated by

g =
(
ζr 0
0 ζ

q
r

)
∈GL(2,k) ,

where ζr is a primitive rth root of unity. Let R = k[[u,v]]G be the corre-
sponding ring of invariants, so that R is generated by the monomials
uavb satisfying a+bq ≡ 0mod r.

As G is Abelian, it has exactly r irreducible representations, each
of which is one-dimensional. We label them V0, . . . ,Vr−1, where the
generator g is sent to ζi

r in Vi. The given representation V of G is
isomorphic to V1 ⊕Vq, so that for any j we have

V ⊗k Vj ∼=Vj+1 ⊕Vj+q ,

where the indices are of course to be taken modulo r. The corre-
sponding MCM R-modules are M j = (S ⊗k Vj)G , each of which is an
R-submodule of S:

M j = R
(
uavb

∣∣∣ a+ qb ≡− j mod r
)

.

The general picture is a bit chaotic, so here are a few particular exam-
ples.
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Take r = 5 and q = 3. Then R = k[[u5,u2v,uv3,v5]]. The McKay-
Gabriel quiver takes the following shape.

V0

%%

		

V4

99

((

V1oo

��

V3

[[
66

V2oo

UU

The corresponding indecomposable MCM R-modules appearing as R-
direct summands of S are the ideals

M0 = R

M1 = R(u4,uv,v3)∼= (u5,u2v,uv3)

M2 = R(u3,v)∼= (u5,u2v)

M3 = R(u2,uv2,v4)∼= (u5,u4v2,u3v4)

M4 = R(u,v2)∼= (u5,u4v2) .

For another example, take r = 8 and q = 5, so that we obtain R =
k[[u8,u3v,uv3,v8]]. The McKay-Gabriel quiver looks like

V0 //

��

V1

  

~~

V7

>>

  

V2oo

��

V6

OO

// V3

~~

``

V5

``

>>

V4oo

OO
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and the indecomposable MCM R-modules arising as direct summands
of S are

M0 = R

M1 = R(u7,u2v,v3)∼= (u8,u3v,uv3)

M2 = R(u6,uv,v6)∼= (u8,u3v,u2v6)

M3 = R(u5,v)∼= (u8,u3v)

M4 = R(u4,u2v2,v4)∼= (u8,u6v2,u4v4)

M5 = R(u3,uv2,v7)∼= (u8,u6v2,u5v7)

M6 = R(u2,u5v,v2)∼= (u2v6,u5v7,v8)

M7 = R(u,v5)∼= (uv3,v8) .

Finally, take r = n+1 arbitrary, and q = n. Then

R = k[[un+1,uv,vn+1]]∼= k[[x, y, z]]/(xz− yn+1)

is isomorphic to an (An) hypersurface singularity (see the next chap-
ter). There are n+ 1 irreducible representations V0, . . . ,Vn, and the
McKay-Gabriel quiver looks like the one below.

V0

((
ww

V1

77

// V2
oo

// · · ·oo
// Vn−1

oo
// Vn

oo

hh

The non-free indecomposable MCM R-modules take the form

M j = R
(
uavb

∣∣∣ b−a ≡ j modn+1
)

for j = 1, . . . ,n. They have presentation matrices over k[[un+1uv,vn+1]]

ϕ j =
(
(uv)n+1− j −un+1

−vn+1 (uv) j

)
or over k[[x, y, z]]/(xz− yn+1)

ϕ j =
(
yn+1− j −x
−z y j

)
.

§4. Exercises

5.26. EXERCISE. Let k be the field with two elements, and define
σ : k[[x]]−→ k[[x]] by x 7→ x

x+1 = x+x2+x3+·· · . What is the fixed ring of
σ?
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5.27. EXERCISE. Let R ⊆ S be an extension of rings with an algebra
retraction, that is, a ring homomorphism S −→ R that restricts to the
identity on R. Prove that IS∩R = I for every ideal I of R. Conclude
that if S is Noetherian, or local, or complete, then the same holds for
R. (Hint for completeness: If {xi} is a Cauchy sequence in R converging
to x ∈ S, apply the Krull Intersection Theorem to σ(x)− xi.)

5.28. EXERCISE. Let S be an integral domain with an action of a
group G ⊆ Aut(S), and set R = SG . Let F and K be the quotient fields
of R and S, respectively. Prove that any element of K can be written
as a fraction with denominator in R, and conclude that KG = F.

5.29. EXERCISE. Suppose that S is a finitely generated algebra
over a field k, let G ⊆Autk(S) be a finite group, and set R = SG . Prove
that S is finitely generated as an R-module, and is finitely generated
over k. (Hint: Let A ⊆ S be the k-subalgebra generated by the coeffi-
cients of the monic polynomials satisfied by the generators of S, and
prove that S is finitely generated over A. This argument goes back to
Noether [Noe15].)

5.30. EXERCISE. Let S be a local ring, G ⊆ Aut(S) a finite group
with order invertible in S, and R = SG .

(i) If I ⊆ S is a G-stable ideal, prove that (S/I)G = R/(I ∩R).
(ii) For an element s ∈ S, define the norm of s by N(s) =∏

σ∈Gσ(s).
Notice that N(s) ∈ R. If s is a non-zerodivisor in S, show that
N(s)S∩R = N(s)R.

(iii) Use part (ii) to prove by induction on depthS that depthR >
depthS.

5.31. EXERCISE. Find an example of a non-CM local ring S and
finite group acting such that the fixed ring R is CM. (There is an
example with S one-dimensional complete local and R regular.)

5.32. EXERCISE. Let S and G be as in 5.1. Show that the fixed-
point functor −G on S#G-modules is exact. (Hint: left-exactness is
easy. For right-exactness, take the average of the orbit of any preim-
age.)

5.33. EXERCISE. Let S be as in 5.1 and let M be an S-module.
For each σ ∈ G, let σM be the S-module with the same underlying
Abelian group as M, and structure given by s ·m = σ(s)m. Prove that
S#G⊗S M ∼=⊕

σ∈G
σM.
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5.34. EXERCISE. Prove that in the situation of Proposition 5.7, a
finitely generated S#G-module M is projective if and only if it is pro-
jective as an S-module. Conclude that if S is regular of dimension d,
then S#G has global dimension d.

5.35. EXERCISE. Set R = k[[x, y, z]]/(xy), the two-dimensional (A∞)
complete hypersurface singularity and let Z/rZ act on R by letting the
generator take (x, y, z) to (x,ζr y,ζr z), where ζr is a primitive rth root of
unity. Give a presentation for the ring of invariants RG . (Cf. Exam-
ple 14.25.)

5.36. EXERCISE. Set R = k[[x, y, z]]/(x2 y− z2), the two-dimensional
(D∞) complete hypersurface singularity. Let r = 2m+1 be an odd inte-
ger and let Z/rZ act on R by (x, y, z) 7→ (ζ2

r x,ζ−1
r y,ζm+2

r z), where ζr is a
primitive rth root of unity. Find presentations for the ring of invariants
RG in the cases m = 1 and m = 2. Try to do m = 4. (Cf. Example 14.26.)

5.37. EXERCISE. Let A be a local ring and M, N two finitely gen-
erated A-modules. Then depthHomA(M, N)>min{2,depth N}.

5.38. EXERCISE. Let σ ∈GL(n,k) be a pseudo-reflection on V = k(n).
(1) Suppose v ∈V spans the image of σ−1V . Prove that σ is diag-

onalizable if and only if v is not fixed by σ.
(2) Use Maschke’s Theorem to prove that if |σ| is relatively prime

to char(k), then V has a decomposition as kG-modules Vσ⊕kv
and so σ is diagonalizable.

5.39. EXERCISE. If k = R, show that any pseudo-reflection has or-
der 2 (so is a reflection).





CHAPTER 6

Kleinian Singularities and Finite CM Type

In the previous chapter we saw that when S = k[[x1, . . . , xn]] is a
power series ring endowed with a linear action of a finite group G
whose order is invertible in k, and R = SG is the invariant subring,
then the R-direct summands of S are MCM R-modules and are closely
linked to the representation theory of G. In dimension two, we shall
see in this chapter that every indecomposable MCM R-modules is a
direct summand of S. This is due to Herzog [Her78b]. Thus in par-
ticular two-dimensional rings of invariants under finite non-modular
group actions have finite CM type. In the next chapter we shall prove
that in fact every two-dimensional complete normal domain containing
C and having finite CM type arises in this way.

In the present chapter, we first recall some basic facts on reflexive
modules over normal domains, then prove the theorem of Herzog men-
tioned above. Next we discuss the two-dimensional invariant rings
k[[u,v]]G that are Gorenstein; by a result of Watanabe [Wat74] these
are the ones for which G ⊆ SL(2,k). The finite subgroups of SL(2,C)
are well-known, their classification going back to Klein, so here we
call the resulting invariant rings Kleinian singularities, and we derive
their defining equations following [Kle93]. It turns out that the re-
sulting equations are precisely the three-variable versions of the ADE
hypersurface rings from Chapter 4 §3. This section owes many debts
to previous expositions, particularly [Slo83].

In the last two sections, we describe two incarnations of the McKay
correspondence: first, the identification of the McKay-Gabriel quiver
of G ⊆ SL(2,C) with the corresponding ADE Coxeter-Dynkin diagram,
and then the original observation of McKay that both these are the
same as the desingularization graph of Speck[[u,v]]G .

§1. Invariant rings in dimension two

In the last chapter we considered invariant rings of the form R =
k[[x1, . . . , xn]]G , where G is a finite group with order invertible in k act-
ing linearly on the power series ring S = k[[x1, . . . , xn]]. In general, the
direct summands of S as an R-module are MCM modules. Here we

81
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prove that in dimension two, every indecomposable MCM module is
among the R-direct summands of S.

First we recall some background on reflexive modules over normal
domains. See Chapter 14 for some extensions to the non-normal case.

6.1. REMARKS. Recall (from, for example, Appendix A) that for a
normal domain R, if a finitely generated R-module M is MCM then it
is reflexive, that is the natural map

σM : M −→ M∗∗ =HomR(HomR(M,R),R) ,

defined by σM(m)( f )= f (m), is an isomorphism. If moreover dim(R)=
2, then the converse holds as well, so that M is MCM if and only if it
is reflexive.

The first assertion of the next proposition is due to Herzog, and will
imply that two-dimensional rings of invariants have finite CM type.

6.2. PROPOSITION. Let R −→ S be a module-finite extension of two-
dimensional complete local rings which satisfy (S2) and are Gorenstein
in codimension one. Assume that R is a direct summand of S as an
R-module. Then every finitely generated reflexive R-module is a direct
summand of a finitely generated reflexive S-module. If in particular R
is complete and S has finite CM type, then R has finite CM type as well.

PROOF. Let M be a reflexive R-module and set M∗ =HomR(M,R).
Then the split monomorphism R −→ S induces a split monomorphism
M = HomR(M∗,R) −→ HomR(M∗,S). Now HomR(M∗,S) is naturally
an S-module via the action on the codomain, and Exercise 5.37 shows
that it satisfies (S2) as an R-module, hence as an S-module, so is re-
flexive over S by Corollary A.13.

Let N1, . . . , Nn be representatives for the isomorphism classes of
indecomposable MCM S-modules. Then each Ni is a MCM R-module
as well, so we write Ni = Mi,1 ⊕ ·· · ⊕ Mi,mi for indecomposable MCM
R-modules Mi, j. By the first statement of the Proposition, every in-
decomposable MCM R-module is a direct summand of a direct sum of
copies of the Ni, so is among the Mi, j by KRS over complete local rings
(Theorem 1.9). �

6.3. THEOREM (Herzog). Let S = k[[u,v]] be a power series ring in
two variables over a field, G a finite subgroup of GL(2,k) acting linearly
on S, and R = SG . Assume that R is a direct summand of S as an
R-module. Then every indecomposable finitely generated reflexive R-
module is a direct summand of S as an R-module. In particular, R has
finite CM type.
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PROOF. Note that S is module-finite over R, by Proposition 5.4.
Let M be an indecomposable finitely generated reflexive R-module. By
Proposition 6.2 M is an R-summand of a reflexive S-module N. But S
is regular, so in fact N is free over S. Since R is complete, KRS implies
that M is a direct summand of S. �

The one-one correspondences listed in Corollary 5.20 can thus be
extended in dimension two.

6.4. COROLLARY. Let k be a field, S = k[[x, y]], and G ⊆ GL(2,k)
a finite group, with |G| invertible in k, acting linearly on S without
pseudo-reflections. Put R = SG . Then there are one-one correspondences
between

• the indecomposable reflexive (MCM) R-modules;
• the indecomposable direct summands of S as an R-module;
• the indecomposable projective EndR(S)-modules;
• the indecomposable projective S#G-modules; and
• the irreducible kG-modules. �

Observe that while we need the assumption that |G| be invertible
in k for Corollary 6.4, Proposition 6.2 requires only the weaker as-
sumption that R be a direct summand of S as an R-module. We will
make use of this in Remark 6.22 below.

§2. Kleinian singularities

Having seen the privileged position that dimension two holds in
the story so far, we are ready to define and study the two-dimensional
hypersurface rings of finite CM type. These turn out to coincide with a
class of rings ubiquitous throughout algebra and geometry, variously
called Kleinian singularities, Du Val singularities, two-dimensional ra-
tional double points, and other names. Even more, they are the two-
dimensional analogs of the ADE hypersurfaces seen in the previous
chapter.

For historical reasons, we introduce the Kleinian singularities in
a slightly opaque fashion. The rest of the section will clarify matters.
For the first part of this chapter, we work over C for ease of exposi-
tion. We will in the end define the complete Kleinian singularities
over any algebraically closed field of characteristic not 2, 3, or 5 (see
Definition 6.21).

6.5. DEFINITION. A complete complex Kleinian singularity is a ring
of the form C[[u,v]]G , where G is a finite subgroup of SL(2,C).
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The reason behind the restriction to SL(2,C) rather than GL(2,C)
as in the previous chapter is the fact, due to Watanabe [Wat74], that
R = SG is Gorenstein when G ⊆ SL(n,k), and the converse holds if
G is small. Thus the complete Kleinian singularities are the two-
dimensional complete Gorenstein rings of invariants of finite group
actions.

In order to make sense of this definition, we recall the fact that the
finite subgroups of SL(2,C) are the “binary polyhedral” groups, which
are double covers of the rotational symmetry groups of the Platonic
solids, together with two degenerate cases.

The classification of the Platonic solids goes back to Theaetetus
around 400 BCE, and is at the center of Plato’s Timaeus; the final
book of Euclid’s Elements is devoted to their properties. According
to Bourbaki [Bou02], the determination of the finite groups of rota-
tions in R3 goes back to Hessel, Bravais, and Möbius in the early 19th

century, though they did not yet have the language of group theory.
Jordan [Jor77] was the first to explicitly classify the finite groups of
rotations of R3. Recall that SO(3) denotes the special orthogonal group,
that is, the group of rotations of R3.

6.6. THEOREM. The finite subgroups of SO(3) are up to conjugacy
the following rotational symmetry groups.

Cn+1: The cyclic group of order n+1 for n> 0, the symmetry group
of a pyramid with (n+1)-gonal base.

Dn−2: The dihedral group of order 2(n−2) for n> 4, the symmetry
group of a beach ball (“hosohedron”).

T: The symmetry group of a tetrahedron, which is isomorphic
to the alternating group A4 of order 12.

O: the symmetry group of the octahedron, which is isomorphic
to the symmetric group S4 of order 24.

I: The symmetry group of the icosahedron, which is isomorphic
to the alternating group A5 of order 60. �

In order to leverage this classification into a description of the finite
subgroups of SL(2,C), we recall some basics of classical group theory.
Recall first that the unitary group U(n) is the subgroup of GL(n,C) con-
sisting of unitary transformations, i.e. those preserving the standard
Hermitian inner product on Cn. The special unitary group SU(n) is
SL(n,C)∩U(n). We first observe that to classify the finite subgroups of
SL(n,C), it suffices to classify those of SU(n).

6.7. LEMMA. Every finite subgroup of GL(n,C), respectively SL(n,C)
is conjugate to a subgroup of U(n), respectively SU(n).
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PROOF. Let G be a finite subgroup of GL(n,C). Denote the usual
Hermitian inner product on Cn by 〈 , 〉. It suffices to define a new
inner product { , } on Cn such that {σu, σv} = {u, v} for every σ ∈ G
and u, v ∈ Cn. Indeed, if we find such an inner product, let B be an
orthonormal basis for { , }, and let ρ : Cn −→Cn be the change-of-basis
operator taking B to the standard basis. Then ρGρ−1 ⊆U(n), as〈

ρσρ−1u, ρσρ−1v
〉= {

σρ−1u, σρ−1v
}

= {
ρ−1u, ρ−1v

}
= 〈u, v〉

for every σ ∈G and u,v ∈Cn. Define the desired new product by

{u,v}= 1
|G|

∑
σ∈G

〈σ(u), σ(v)〉 .

Then it is easy to check that { , } is again an inner product on Cn, and
that {σu, σv}= {u, v} for every σ, u, v. �

The special unitary group SU(2) acts on the complex projective line
P1
C

by fractional linear transformations (Möbius transformations):(
α −β
β α

)
[z : w]=

[
αz−βw :βz+αw

]
.

Since the matrices ±I act trivially, the action factors through PSU(2)=
SU(2)/{±I}. We claim now that PSU(2) ∼= SO(3), the group of symme-
tries of the 2-sphere S2. Position S2 with its south pole at the origin,
and consider the stereographic projection onto the equatorial plane,
which we identify with C. Extend this to an isomorphism S2 −→ P1

C

by sending the north pole to the point at infinity. This isomorphism
identifies the conformal transformations of P1

C
with the rotations of

the sphere, and gives a double cover of SO(3).

6.8. PROPOSITION. There exists a surjective group homomorphism
π : SU(2)−→SO(3) with kernel {±I}. �

6.9. LEMMA. The only element of order 2 in SU(2) is −I.

PROOF. This is a direct calculation using the general form
(
α −β
β α

)
of an arbitrary element of SU(2). �

6.10. LEMMA. Let Γ be a finite subgroup of SU(2). Then either Γ is
cyclic of odd order, or |Γ| is even and Γ= π−1(π(Γ)) is the preimage of a
finite subgroup G of SO(3).
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PROOF. If Γ has odd order, then −I ∉ Γ, so Γ∩kerπ = {I}, and the
restriction of π to Γ is an isomorphism of Γ onto its image. By the
classification of finite subgroups of SO(3), we see that the only ones of
odd order are the cyclic groups Cn+1 with n+1 odd. If |Γ| is even, then
by Cauchy’s Theorem there is an element of order 2 in Γ, which must
be −I. Thus kerπ⊆Γ and Γ=π−1(π(Γ)). �

6.11. THEOREM. The finite non-trivial subgroups of SL(2,C), up to
conjugacy, are the following groups, called binary polyhedral groups.
Let ζr denote a primitive rth root of unity in C.

Cm: The cyclic group of order m for m> 2, generated by(
ζm

ζ−1
m

)
.

Dm: The binary dihedral group of order 4m for m> 1, gener-
ated by C2m and (

i
i

)
.

T : The binary tetrahedral group of order 24, generated by D2
and

1p
2

(
ζ8 ζ3

8
ζ8 ζ7

8

)
.

O : The binary octahedral group of order 48, generated by T

and (
ζ3

8
ζ5

8

)
.

I : The binary icosahedral group of order 120, generated by
1p
5

(
ζ4

5 −ζ5 ζ2
5 −ζ3

5
ζ2

5 −ζ3
5 ζ5 −ζ4

5

)
and

1p
5

(
ζ2

5 −ζ4
5 ζ4

5 −1
1−ζ5 ζ3

5 −ζ5

)
.

�

As abstract groups, the binary polyhedral groups can be presented
in a uniform way: they are all generated by three elements a, b, and
c subject to the relation ap = bq = cr = abc, where p 6 q 6 r consti-
tute an integer solution to 1

p + 1
q + 1

r > 1, namely one of (1, q, r), (2,2, r),
(2,3,3), (2,3,4), and (2,3,5). (The integers p, q, r are not mysterious;
they are just the orders of the stabilizers of a face, an edge, and a ver-
tex of the corresponding Platonic solid.) The concrete presentations
above are more useful for our purposes.

6.12. THEOREM. The complete complex Kleinian singularities are
the rings of invariants of the groups above acting linearly on the power
series ring S =C[[u,v]]. We name them as follows:
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Singularity Name Group Name
An Cn+1, cyclic (n> 1)
Dn Dn−2, binary dihedral (n> 4)
E6 T , binary tetrahedral
E7 O , binary octahedral
E8 I , binary icosahedral

�

At this point the naming system is utterly mysterious, but we con-
tinue anyway.

It is a classical fact from invariant theory that the Kleinian sin-
gularities “embed in codimension one,” that is, are defined by a single
equation.1 We can make this explicit by writing down a set of gen-
erating invariants for each of the binary polyhedral groups. These
calculations go back to Klein [Kle93], and are also found in Du Val’s
book [DV64]; for a more modern treatment see [Lam86]. We like the
concreteness of having actual invariants in hand, so we present them
here. The details of the derivations are quite involved, so we only
sketch them.

6.13 (An). In this case, the only monomials fixed by the generator
(u,v) 7→ (ζn+1u,ζ−1

n+1v) are uv,un+1, and vn+1. Thus we set

XC (u,v)= un+1 +vn+1 , YC (u,v)= uv ,

and
ZC (u,v)= un+1 −vn+1 .

These generate all the invariants, and satisfy the relation

Z2
C = X2

C −4Y n+1
C .

6.14 (Dn). The cyclic subgroup C2(n−2) of Dn−2 has invariants a =
u2(n−2) + v2(n−2), b = uv, and c = u2(n−2) − v2(n−2) as in the case above.
The additional generator (u,v) 7→ (iv, iu) changes the sign of b, multi-
plies a by (−1)n, and sends c to −(−1)nc. Now we have two cases to
consider depending on the parity of n. If n is even, then c, a2, ab, and
b2 are all fixed, but we can throw out b2 since b2 = c2 −4(a2)n−2. In

1Abstractly, we can see this from the connection with Platonic solids as fol-
lows [McK01, Dic59]: drawing a sphere around the platonic solid, we project from
the north pole to the equatorial plane, which we interpret as C. Thus the projection of
each vertex v gives a complex number zv, and we form the homogeneous polynomial
V (x, y)=∏

v(x− zv y). Similarly, the center of each edge e gives a complex number ze,
and the center of each face f a corresponding z f , which we compile into the polyno-
mials E(x, y)=∏

e(x− ze y) and F(x, y)=∏
f (x− z f y). These are three functions in two

variables, and so there must be a relation f (V ,E,F)= 0.
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the other case, when n is odd, similar considerations imply that the
invariants are generated by b, a2, and ac. Thus in this case we set

XD(u,v)= u2(n−2) + (−1)nv2(n−2), YD(u,v)= u2v2

ZD(u,v)= uv
(
u2(n−2) − (−1)nv2(n−2)

)
.

For these generating invariants we have the relation

Z2
D =YD X2

D +4(−YD)n−1 .

6.15 (E6). The invariants (D4) of the subgroup D2 are

u4 +v4 , u2v2 , and uv
(
u4 −v4) .

The third of these is invariant under the whole group T , so we set

YT (u,v)= uv
(
u4 −v4) .

Searching for an invariant (or coinvariant) of the form P(u,v) = XD +
tYD = u4 + tu2v2 +v4, we find that if t =p−12, and we set

P(u,v)= u4+
p
−12 u2v2+v4 and P(u,v)= u4−

p
−12 u2v2+v4 ,

then
XT (u,v)= P(u,v) P(u,v)= u8 +14u4v4 +v8

is invariant.
Furthermore,

[1
4 (t−2)

]3 = 1, so that every linear combination of P3

and P
3
, such as

ZT (u,v)= 1
2

[
P3 +P

3]
= u12 −33u8v4 −33u4v8 +v12 ,

is invariant. These three invariants generate all others, and satisfy
the relation

Z2
T = X3

T +108Y 4
T .

6.16 (E7). Begin with the above invariants for T . The additional
generator for O leaves XT fixed but changes the signs of YT and ZT .
We therefore obtain generating invariants

XO (u,v)=YT (u,v)2 = (
u5v−uv5)2

YO (u,v)= XT (u,v)= u8 +14v4v4 +v8

ZO (u,v)=YT (u,v)ZT (u,v)= uv
(
u4 −v4)(u12 −33u8v4 −33u4v8 +v12)

(of degrees 8, 12, and 18, respectively). These satisfy

Z2
O =−XO

(
108X2

O −Y 3
O

)
.
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6.17 (E8). From the geometry of the 12 vertices of the icosahedron,
Klein derives an invariant of degree 12:

YI (u,v)= uv(u5 +ϕ5v5)(u5 −ϕ−5v5)

= uv(u10 +11u5v5 +v10) ,

where ϕ = (1+p
5)/2 is the golden ratio. The Hessian of this form is

also invariant, and takes the form −121XI (u,v), where

XI (u,v)=
∣∣∣∣ ∂2/∂u2 ∂2/∂v∂u
∂2/∂u∂v ∂2/∂v2

∣∣∣∣
= (

u20 +v20)−228
(
u15v5 −u5v15)+494u10v10 .

The Jacobian of these two forms (i.e. the determinant of the 2×2 matrix
of partial derivatives) is invariant as well:

ZI (u,v)= (
u30 +v30)+522

(
u25v5 −u5v25)−10005

(
u20v10 +u10v20) .

Now one checks that2

Z2
I = X3

I +1728Y 5
I .

It’s interesting to note that in each case above, we have deg X ·
degY = 2 |G|, namely 2(n+1), 8(n−2), 48, 96, 240. Since the defin-
ing equation in each case is obtained as a relation among homoge-
neous polynomials, we see that each equation is quasi-homogeneous,
that is, there exist weights for the variables making the relation ho-
mogeneous. Specifically, the weights are the degrees of the generating
invariants.

Adjusting the polynomials by certain nth roots (n6 5), one obtains
the following normal forms for the Kleinian singularities.

6.18. THEOREM. The complete complex Kleinian singularities are
the hypersurface rings defined by the following polynomials.

(An): x2 + yn+1 + z2, n> 1
(Dn): x2 y+ yn−1 + z2, n> 4
(E6): x3 + y4 + z2

(E7): x3 + xy3 + z2

(E8): x3 + y5 + z2 �

We summarize the information we have on the Kleinian singulari-
ties so far in Table 6.19.

2tempting one to call E8 the great gross singularity (1728 = 12×144, a dozen
gross, aka a great gross).
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TABLE 6.19. Complete Kleinian Singularities

Name f (x, y, z) G |G| (p, q, r)

(An), n> 1 x2 + yn+1 + z2 Cn+1, cyclic n+1 (1,1,n)

(Dn), n> 4 x2 y+ yn−1 + z2 Dn−2, b. dihedral 4(n−2) (2,2,n−2)

(E6) x3 + y4 + z2 T , b. tetrahedral 24 (2,3,3)

(E7) x3 + xy3 + z2 O , b. octahedral 48 (2,3,4)

(E8) x3 + y5 + z2 I , b. icosahedral 120 (2,3,5)

6.20. REMARK. Now we relax our requirement that we work over
C. Assume from now on only that k is an algebraically closed field of
characteristic different from 2, 3, and 5.

With this restriction on the characteristic, the groups defined by
generators in Theorem 6.11 exist equally well in SL(2,k), with two ex-
ceptions: Cn and Dn are not defined if chark divides n. Therefore, in
positive characteristics (6= 2, 3, 5), we simply define the (An−1) and
(Dn+2) singularities using the elements X , Y , and Z listed in 6.13
and 6.14 and derive the normal forms listed in Theorem 6.18.

6.21. DEFINITION. Let k be an algebraically closed field of char-
acteristic not equal to 2, 3, or 5. The complete Kleinian singularities
over k are the hypersurface rings k[[x, y, z]]/( f ), where f is one of the
polynomials listed in Theorem 6.18.

6.22. REMARK. There is one further technicality to address. In the
cases Cn and Dn where n is divisible by the characteristic of k, we lose
the ability to define the Reynolds operator. However, in each case we
can verify that the Kleinian singularity is a direct summand of the
regular ring k[[u,v]] by using the generating invariants X , Y , and Z.

The case (An−1) was mentioned in passing already in Example 5.25.
Set R = k[[un,uv,vn]]. Then k[[u,v]] is isomorphic as an R-module to⊕n−1

j=0 M j, where M j is the R-span of the monomials uavb such that
b−a ≡ j modn. In particular, R is a direct summand of k[[u,v]] in any
characteristic.

For the case (Dn+2), we have R = k[[u2n + v2n,u2v2,uv
(
u2n −v2n)

]].
Then R is a direct summand of A = k[[u2n,uv,v2n]]: observe that A =
R⊕R

(
uv,u2n −v2n)

and that the second summand is generated by el-
ements negated by τ : (u,v) 7→ (v,−u). As A is an (A2n−1) singularity, it
is a direct summand of k[[u,v]] by the previous case.

Combined with Herzog’s Theorem 6.3, these observations prove the
following theorem.
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6.23. THEOREM. Let k be an algebraically closed field of character-
istic not equal to 2, 3, or 5, and let R be a complete Kleinian singularity
over k. Then R has finite CM type. �

§3. McKay-Gabriel quivers of the Kleinian singularities

In this section we compute the McKay-Gabriel quivers (defined in
Chapter 5) for the complete complex Kleinian singularities. We will
recover McKay’s observation that the underlying graphs of the quiv-
ers are exactly the extended (also affine, or Euclidean) Coxeter-Dynkin
diagrams Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8, corresponding to the name of the singu-
larity from Table 6.19.

For background on the Coxeter-Dynkin diagrams An, Dn, E6, E7,
E8, and their extended counterparts Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8, we recom-
mend Reiten’s survey article in the Notices [Rei97]. They have deep
connections with more areas of mathematics than we can enumerate.
Beyond the connections we will make explicitly in this and the next
section, we will content ourselves with the following brief description.
The extended ADE diagrams are the finite connected graphs with no
loops (a loop is a single edge with both ends at the same vertex) bear-
ing an additive function, i.e. a function f from the vertices {1, . . . ,n} to
N satisfying 2 f (i) = ∑

j f ( j) for every i, where the sum is taken over
all neighbors j of i. Similarly, the (non-extended) ADE diagrams are
the graphs bearing a sub-additive but not additive function, that is,
one satisfying 2 f (i) >

∑
j f ( j) for each i, with strict inequality for at

least one i. The non-extended diagrams are obtained by removing a
single distinguished vertex and its incident edges from the extended
ADE diagrams.

They’re all listed in Table 6.24, with their (sub-)additive functions
labeling the vertices. The distinguished vertex to be removed in ob-
taining the ordinary diagrams from the extended ones is circled. We
shall see that, furthermore, the ranks of the irreducible representa-
tions (that is, indecomposable MCM modules) attached to each vertex
of the quiver gives the (sub-)additive function on the diagram.

Recall from Definition 5.21 that the McKay-Gabriel quiver of a two-
dimensional representation G ,→GL(V ) has for vertices the irreducible
representations V0, . . . ,Vd of the group G, with an arrow Vi −→ Vj for
each copy of Vi in the direct-sum decomposition of V⊗kVj. The number
of arrows Vi −→Vj will (temporarily) be denoted mi j. Recall that when
k is algebraically closed

mi j = 〈χi,χχ j〉 = 1
|G|

∑
σ∈G

χi(σ)χ(σ−1)χ j(σ−1) ,
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TABLE 6.24. ADE and Extended ADE Diagrams

(An)
1

1 1 · · · 1 1

(Ãn)

(Dn)

1 1

2 2 · · · 2 2

1 1

(D̃n)

(E6)

1

2

1 2 3 2 1

(Ẽ6)

(E7)

2

1 2 3 4 3 2 1 (Ẽ7)

(E8)

2

2 3 4 5 4 3 2 1
(Ẽ8)

where χ,χ0, . . . ,χd are the characters of V ,V0, . . . ,Vd.

6.25. LEMMA. Let G be a finite subgroup of SL(2,C) other than the
two-element cyclic group. Then mi j ∈ {0,1} and mi j = m ji for all i, j =
1, . . . ,d. In other words, the arrows in the McKay-Gabriel quiver appear
in opposed pairs.
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PROOF. Let G be one of the subgroups of SL(2,C) listed in Theo-
rem 6.11; in particular, the given two-dimensional representation V
is defined by the matrices listed there. By Schur’s Lemma and Hom-
tensor adjointness, we have

mi j = dimCHomCG(V ⊗CG Vj,Vi)
= dimCHomCG(Vj,HomCG(V ,Vj)) .

The inner Hom has dimension equal to the number of copies of Vi ap-
pearing in the irreducible decomposition of V . These irreducible de-
compositions are easily read off from the listed matrices; the only one
consisting of two copies of a single irreducible is (A1), which corre-
sponds to the two-element cyclic subgroup C2. Thus HomCG(Vi,V ) has
dimension at most 1 for all i, and so mi j 6 1 for all i, j.

Since the trace of a matrix in SL(2,C) is the same as that of its
inverse, the given representation V satisfies χ(σ−1)= χ(σ) for every σ.
Thus

mi j = 〈χi,χχ j〉 = 〈χiχ,χ j〉 = m ji

for every i and j. �

In displaying the McKay-Gabriel quivers for the Kleinian singular-
ities, we replace each opposed pair of arrows by a simple edge. This has
the effect, thanks to Lemma 6.25, of reducing the quiver to a simple
graph with no multiple edges.

6.26 (An). We have already calculated the McKay-Gabriel quiver
for the (An) singularities xz− yn+1, for n> 1, in Example 5.25. Replac-
ing the pairs of arrows there by single edges, we obtain

V0

V1 V2 · · · Vn−1 Vn .

6.27 (Dn). The binary dihedral group Dn−2 is generated by two el-
ements

α=
(
ζ2(n−2)

ζ−1
2(n−2)

)
and β=

(
i

i

)
satisfying the relations

αn−2 =β2 = (αβ)2, and β4 = 1 .

There are four natural one-dimensional representations as follows:
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V0 : α 7→ 1, β 7→ 1 ;
V1 : α 7→ 1, β 7→ −1 ;
Vn−1 : α 7→ −1, β 7→ i ;
Vn : α 7→ −1, β 7→ −i .

Furthermore, there is for each j = 2, . . . ,n−2 an irreducible two-
dimensional representation Vj given by

a 7→
(
ζ

j−1
2(n−2)

ζ
− j+1
2(n−2)

)
and b 7→

(
i j−1

i j−1

)
.

In particular, the given representation V is isomorphic to V2. It’s easy
to compute now that

V ⊗k Vj ∼=Vj+1 ⊕Vj−1

for 2 6 j 6 n− 2, leading to the McKay-Gabriel quiver for the (Dn)
singularity.

V0 Vn−1

V2 V3 · · · Vn−3 Vn−2

V1 Vn

For the remaining examples, we will take the character table of G
as given (see, for example, [Hum94], [IN99], or [GAP08]). From these
data, we will be able to calculate the McKay-Gabriel quiver, since the
character of a tensor product is the product of the characters and the
irreducible representations are uniquely determined up to equivalence
by their characters.

6.28 (E6). The given presentation of T is defined by the generators

α=
(
i

−i

)
, β=

(
i

i

)
, and γ= 1p

2

(
ζ8 ζ3

8
ζ8 ζ7

8

)
.
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The character table has the following form.

representative I −I β γ γ2 γ4 γ5

|class| 1 1 6 4 4 4 4
order 1 2 4 6 3 3 6

V0 1 1 1 1 1 1 1
V1 2 −2 0 1 −1 −1 1
V2 3 3 −1 0 0 0 0
V3 2 −2 0 ζ3 −ζ3 −ζ2

3 ζ2
3

V ∨
3 2 −2 0 ζ2

3 −ζ2
3 −ζ3 ζ3

V4 1 1 1 ζ3 ζ3 ζ2
3 ζ2

3
V ∨

4 1 1 1 ζ2
3 ζ2

3 ζ3 ζ3

Here V = V1 is the given two-dimensional representation. Now one
verifies for example that the character of V1⊗k V4, that is the element-
wise product of the second and sixth rows of the table, is equal to the
character of V3. Hence V1 ⊗k V4

∼= V3 and the McKay-Gabriel quiver
contains an edge connecting V3 and V4. Similarly, V1 ⊗k V2

∼= V1 ⊕V3 ⊕
V ∨

3 , so V2 is a vertex of degree three. Continuing in this way gives the
following McKay-Gabriel quiver.

V0

V1

V ∨
4 V ∨

3 V2 V3 V4

6.29. (E7) The binary octahedral group O is generated by α, β, and
γ from the previous case together with

δ=
(
ζ3

8
ζ5

8

)
.
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This time the character table is as follows.

representative I −I β γ γ2 δ βδ δ3

|class| 1 1 6 8 8 6 12 6
order 1 2 4 6 3 8 4 8

V0 1 1 1 1 1 1 1 1
V1 2 2 0 1 −1 −p2 0

p
2

V2 3 3 −1 0 0 1 −1 1
V3 4 −4 0 −1 1 0 0 0
V4 3 3 −1 0 0 −1 1 −1
V5 2 −2 0 1 −1

p
2 0 −p2

V6 1 1 1 1 1 −1 −1 −1
V7 2 2 2 −1 −1 0 0 0

Again V = V1 is the given two-dimensional representation. Now we
compute the McKay-Gabriel quiver to be the following.

V7

V0 V1 V2 V3 V4 V5 V6

6.30. (E8) Finally, we consider the binary icosahedral group I ,
generated by

σ= 1p
5

(
ζ4

5 −ζ5 ζ2
5 −ζ3

5
ζ2

5 −ζ3
5 ζ5 −ζ4

5

)
and τ= 1p

5

(
ζ2

5 −ζ4
5 ζ4

5 −1
1−ζ5 ζ3

5 −ζ5

)
.

Set ϕ+ = (1+p
5)/2, the golden ratio, and ϕ− = (1−p

5)/2. The character
table for I is below.

representative I −I σ τ τ2 στ (στ)2 (στ)3 (στ)4

|class| 1 1 30 20 20 12 12 12 12
order 1 2 4 6 3 10 5 10 5

V0 1 1 1 1 1 1 1 1 1
V1 2 −2 0 1 −1 ϕ+ −ϕ− ϕ− −ϕ+
V2 3 3 −1 0 0 ϕ+ ϕ− ϕ− ϕ+
V3 4 −4 0 −1 1 1 −1 1 −1
V4 5 5 1 −1 −1 0 0 0 0
V5 6 −6 0 0 0 −1 0 −1 0
V6 4 4 0 1 1 −1 −1 −1 −1
V7 2 −2 0 1 −1 ϕ− −ϕ+ ϕ+ −ϕ−
V8 3 3 −1 0 0 ϕ− ϕ+ ϕ+ ϕ−
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We find that the McKay-Gabriel quiver of I is the extended Coxeter-
Dynkin diagram Ẽ8.

V8

V7 V6 V5 V4 V3 V2 V1 V0

We have verified the first sentence of the following result, and the
rest is straightforward to check from the definitions.

6.31. PROPOSITION. The McKay-Gabriel quivers of the finite sub-
groups of SL(2,C) are the extended Coxeter-Dynkin diagrams. The di-
mensions of the irreducible representations appearing in the McKay-
Gabriel quiver define an additive function on the quiver: Twice the
dimension at a given vertex is equal to the sum of the dimensions at
the neighboring vertices. In accordance with Corollary 5.20, these di-
mensions coincide with the ranks of the indecomposable MCM modules
over the Kleinian singularity. �

§4. Geometric McKay correspondence

The one-one correspondences derived in Chapter 5 in general, and
in this chapter in dimension two, connect the representation theories
of a finite subgroup of SL(2,k) and of its ring of invariants to the (ex-
tended) ADE Coxeter-Dynkin diagrams. These diagrams were known
to be related to the geometry of the Kleinian singularities much earlier.
Du Val’s three-part 1934 paper [DV34] showed that the desingulariza-
tion graphs of surfaces “not affecting the conditions of adjunction” are
of ADE type; these are exactly the Kleinian singularities [Art66].

The first direct link between the representation theory of the com-
plex Kleinian singularities and geometric data is due to Gonzalez-
Sprinberg and Verdier [GSV81]. They constructed, on a case-by-case
basis, a one-one correspondence between the irreducible representa-
tions of a binary polyhedral group and the irreducible components of
the exceptional fiber in a minimal resolution of singularities of the in-
variant ring. (See below for definitions.) At the end of this section we
describe Artin and Verdier’s direct argument linking MCM modules
and exceptional components.

This section is significantly more geometric than other parts of the
book; in particular, we omit many of the proofs which would take us
too far afield to justify. Most unexplained terminology can be found
in [Har77].
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Throughout the section, (R,m,k) will be a two-dimensional normal
local domain with algebraically closed residue field k. We do not as-
sume chark = 0. Let X = SpecR, a two-dimensional affine scheme,
that is, a surface. In particular, since R is normal, X is regular in
codimension one, so m is the unique singular point of X .

A resolution of singularities of X is a non-singular surface Y with
a proper birational map π : Y −→ X such that the restriction of π to
Y \π−1(m) is an isomorphism. Since dim(X )= 2, resolutions of X exist
as long as R is excellent [Lip78]. The geometric genus g(X ) of X is the
k-dimension of the first cohomology group H1(Y ,OY ). This number is
finite, and is independent of the choice of a resolution Y . Again since
dim(X ) = 2, there is among all resolutions of X a minimal resolution
π : X̃ −→ X such that any other resolution factors through π.

6.32. DEFINITION. We say that X and R have (or are) rational sin-
gularities if g(X )= 0, that is, H1(X̃ ,O X̃ )= 0.

We can rephrase this definition in a number of ways. Since X =
SpecR is affine, the cohomology Hi(X̃ ,O X̃ ) is isomorphic to the higher
direct image Riπ∗(O X̃ ), so R has a rational singularity if and only if
R1π∗(O X̃ ) = 0. This is equivalent to the condition that Riπ∗(O X̃ ) =
0 for all i > 1, since the fibers of a resolution π are at most one-
dimensional [Har77, III.11.2]. The direct image π∗O X̃ itself is easy
to compute: it is a coherent sheaf of R-algebras, so S = Γ(X ,π∗O X̃ ) is
a module-finite R-algebra. But since π is birational, S has the same
quotient field as R. Thus S is an integral extension, whence equal to
R by normality, and so π∗O X̃ =O X .

Alternatively, recall that the arithmetic genus of a scheme Y is de-
fined by pa(Y )= χ(OY )−1, where χ is the Euler characteristic, defined
by the alternating sum of the k-dimensions of the Hi(Y ,OY ). It follows
from the Leray spectral sequence, for example, that if π : X̃ −→ X is a
resolution of singularities, then

pa(X )− pa(X̃ )= dimk H1(X̃ ,O X̃ ) ,

so that X is a rational singularity if and only if the arithmetic genus
of X is not changed by resolving the singularity.

For a more algebraic criterion, assume momentarily that R is a
non-negatively graded ring over a field R0 = k of characteristic zero.
Flenner [Fle81] and Watanabe [Wat83] independently proved that R
has a rational singularity if and only if the a-invariant a(R) is nega-
tive. In general, a(R) is the largest n such that the nth graded piece
of the local cohomology module Hdim(R)

m (R) is non-zero. For a two-
dimensional quasi-homogeneous hypersurface singularity such as the
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Kleinian singularities in Theorem 6.18, the definition is particularly
easy to apply:

a(k[x, y, z]/( f ))= deg f −deg x−deg y−deg z .

In particular, we check from Table 6.19 that the Kleinian singularities
have rational singularities in characteristic zero.

More generally, any two-dimensional quotient singularity k[u,v]G

or k[[u,v]]G , where G is a finite group with |G| invertible in k, has ra-
tional singularities [Bur74, Vie77]. In fact, the restriction on |G| is
unnecessary for the Kleinian singularities: if S has rational singular-
ities and R is a subring of S which is a direct summand as R-module,
then R has rational singularities [Bou87]. Thus the Kleinian singu-
larities have rational singularities in any characteristic in which they
are defined.

As a final bit of motivation for the study of rational surface singu-
larities, we point out that a normal surface X = SpecR is a rational
singularity if and only if the divisor class group Cl(R) is finite, if and
only if R has only finitely many rank-one MCM modules up to isomor-
phism [Mum61, Lip69].

Return now to our two-dimensional normal domain R, its spectrum
X , and π : X̃ −→ X the minimal resolution of singularities. With 0 ∈ X
the unique singular point of X , set E = π−1(0), the exceptional fiber of
π. Then E is connected by Zariski’s Main Theorem [Har77, III.5.2],
and is one-dimensional since π is birational. In other words, E is a
union of irreducible curves on X̃ , so we write E = ⋃n

i=1 E i. The next
result is [Bri68, Lemma 1.3].

6.33. LEMMA. Let π : X̃ −→ X be the minimal resolution of a ratio-
nal singularity X , and let E =⋃n

i=1 E i be the exceptional fiber.
(i) Each E i is non-singular, in particular reduced, and furthermore

is a rational curve, i.e. E i ∼=P1.
(ii) E i ∩E j ∩Ek =; for pairwise distinct i, j,k.

(iii) E i ∩E j is either empty or a single reduced point for i 6= j, that
is, the E i meet transversely if at all.

(iv) E is cycle-free. �

To describe the intersection properties of the exceptional curves
more precisely, recall a bit of the intersection theory of curves on non-
singular surfaces. Let C and D be curves on X̃ with no common com-
ponent. The intersection multiplicity of C and D at a closed point x ∈ X̃
is the length of the quotient O X̃ ,x/( f , g), where f = 0 and g = 0 are local
equations of C and D at x. The intersection number C ·D of C and D



100 6. KLEINIAN SINGULARITIES AND FINITE CM TYPE

is the sum of intersection multiplicities at all common points x. The
self-intersection C2, a special case, is defined to be the degree of the
normal bundle to C in X̃ . Somewhat counter-intuitively, this can be
negative; see [Har77, V.1.9.2] for an example.

The first part of the next theorem is due to Du Val [DV34] and
Mumford [Mum61, Hir95a]; it immediately implies the second and
third parts [Art66, Prop. 2 and Thm. 4].

6.34. THEOREM. Let π : X̃ −→ X be the minimal resolution of a sur-
face singularity (not necessarily rational) with exceptional fiber E =⋃n

i=1 E i. Define the intersection matrix of X to be the symmetric matrix
E(X )i j = (E i ·E j).

(i) The matrix E(X ) is negative definite with off-diagonal entries
either 0 or 1.

(ii) There exist positive divisors supported on E (that is, divisors of
the form Z =∑n

i=1 miE i with mi > 1 for all i) such that Z ·E i 6 0
for all i.

(iii) Among all such Z as in (ii), there is a unique smallest one, which
is called the fundamental divisor of X and denoted Z f . �

To find the fundamental divisor there is a straightforward combi-
natorial algorithm: begin with mi = 1 for all i, so that Z1 = ∑

i E i. If
Z1 ·E i 6 0 for each i, we set Z f = Z1 and stop; otherwise Z1 ·E j > 0 for
some j. In that case, we put Z2 = Z1 +E j and continue. The process
terminates by the negative definiteness of the matrix E(X ). See below
for two examples.

For a rational singularity, we can identify Z f more precisely, and
this will allow us to identify the Gorenstein rational singularities.

6.35. PROPOSITION (Artin). The fundamental divisor Z f of a nor-
mal surface X with a rational singularity satisfies(

O X̃ ⊗O X m
)
/torsion=O X̃ (−Z f ) .

In particular, we have formulas for the multiplicity and the embedding
dimension µR(m) of R:

e(R)=−Z2
f

embdim(R)=−Z2
f +1

�

6.36. COROLLARY. A two-dimensional normal local domain R with
a rational singularity has minimal multiplicity in the sense of Ab-
hyankar:

e(R)=µR(m)−dim(R)+1 . �



§4. GEOMETRIC MCKAY CORRESPONDENCE 101

6.37. COROLLARY. Let (R,m) be a two-dimensional normal local
domain, and assume that R is Gorenstein. If R is a rational singular-
ity, then R is a hypersurface ring of multiplicity two. �

Isolated singularities of multiplicity two are often called “double
points.”

PROOF OF COROLLARY 6.37. By the Proposition, we have e(R) =
−Z2

f and µR(m) = −Z2
f + 1. Since k is algebraically closed, by Theo-

rem A.20 there exists a minimal reduction, that is, a regular sequence
of length two in m\m2 such that the quotient R satisfies e(R) = `(R)
and µR(m) = µR(m)−2. These together imply that µR(m) = `(R)−1, so
the Hilbert function of R is (1,−Z2

f −1,0, . . . ). However, R is Gorenstein,
so has socle dimension equal to 1. This forces Z2

f = −2, which gives
e(R)= 2 and µR(m)= 3. In particular R is a hypersurface ring. �

6.38. COROLLARY. Let R be a Gorenstein rational surface singular-
ity. The self-intersection number E2

i of each exceptional component is
−2. Equivalently the normal bundle N E i /X̃ is OE i (−2).

PROOF. This is a straightforward calculation using the adjunction
formula and Riemann-Roch Theorem, see [Dur79, A3], together with
Z2

f =−2. �

6.39. REMARK. At this point, we can describe the connection be-
tween Gorenstein rational surface singularities and the ADE Coxeter-
Dynkin diagrams. To do this, we define the desingularization graph of
a surface X to be the dual graph of the exceptional fiber in a minimal
resolution of singularities. Precisely, let π : X̃ −→ X be the minimal
resolution of singularities, and let E1, . . . ,En be the irreducible compo-
nents of the exceptional fiber. Then the desingularization graph has
vertices E1, . . . ,En, with an edge joining E i to E j for i 6= j if and only if
E i ∩E j 6= ;.

Let Z f = ∑
i miE i be the fundamental divisor of X , and define a

function f from the vertices {E1, . . . ,En} to N by f (E i) = mi. Then for
i = 1, . . . ,n we have

0> Z ·E i =−2mi +
∑

j
m j(E i ·E j)=−2mi +

∑
j

m j ,

where the sum is over all j 6= i such that E i ∩ E j 6= ;. This gives
2 f (E i) >

∑
j f (E j), and the negative definiteness of the intersection

matrix (Theorem 6.34) implies that f is a sub-additive, non-additive
function on the graph. Thus the graph is ADE.
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We illustrate the general facts described so far with two examples
of resolutions of rational double points: the (A1) and (D4) hypersur-
faces. We will also draw the desingularization graphs for these two
examples.

6.40. EXAMPLE. Let X be the hypersurface in A3 defined by the
(A1) polynomial x2 + y2 + z2. To resolve the singularity of X at the
origin, we blow up the origin in A3. Precisely, we set

Ã3 = {
((x, y, z) , (a : b : c)) ∈A3 ×P2 ∣∣ xb = ya, xc = za, yc = zb

}
.

(See [Har77] for basics on blowups.) The projection ϕ : Ã3 −→ A3 is
an isomorphism away from the origin in A3, while ϕ−1(0,0,0) is the
projective plane P2 ⊆ Ã3.

Let X̃ be the blowup of X at the origin. That is, X̃ is the Zariski
closure of ϕ−1(X \ (0,0,0)) in Ã3. Then X̃ is defined in Ã2 by the van-
ishing of a2 + b2 + c2. The restriction of ϕ gives π : X̃ −→ X , and the
exceptional fiber E is the preimage of (0,0,0) in X̃ . We claim that X̃ is
smooth, and that E is a single projective line P1.

The blowup X̃ is covered by three affine charts Ua, Ub, Uc, defined
by a 6= 0, b 6= 0, c 6= 0 respectively, or equivalently by a = 1, b = 1,
c = 1. In the chart Ua, we have y = xb and z = xc, so that the defining
equation of X becomes

x2 + x2b2 + x2z2 = x2 (
1+b2 + c2)

Above X \ (0,0,0), we have x 6= 0, so the preimage of X \ (0,0,0) is de-
fined by x 6= 0 and 1+b2+ c2 = 0. The Zariski closure of ϕ−1(X \(0,0,0))
is thus in this chart the cylinder 1+ b2 + c2 = 0 in Ua ∼= A2. Applying
the same reasoning to the other charts, we conclude that X̃ is smooth.

Remaining in the chart Ua, we see that the exceptional fiber E is
defined in X̃ by x = 0, so is defined in Ua by 1+ b2 + c2 = x = 0, with
similar equations in Ub and Uc. We conclude that E is smooth, and
even rational, so E ∼=P1.

Drawing the desingularization graph of X is thus quite trivial: it
has a single node and no edges.

E

Observe that this is the (A1) Coxeter-Dynkin diagram. Since E2 =−2
by Corollary 6.38, we find that Z f = E is the fundamental divisor.

6.41. EXAMPLE. For a slightly more sophisticated example, con-
sider the (D4) hypersurface X ⊆ A3 defined by the vanishing of x2 y+
y3 + z2. Again blowing up the origin in A3, we obtain as before

Ã3 = {
((x, y, z) , (a : b : c)) ∈A3 ×P2 ∣∣ xb = ya, xc = za, yc = zb

}
,
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with projection ϕ : Ã3 −→ A3. This time let X1 be the Zariski closure
of ϕ−1(X \ (0,0,0)). In the affine chart Ua where a = 1, we again have
y= xb and z = xc, so the defining polynomial becomes

x3b+ x3b3 + x2c2 = x2 (
x
(
b+b3)+ c2) .

Thus X1 is defined by x(b + b3)+ c2 in Ua, so is a singular surface.
In fact, an easy change of variables reveals that in this chart X1 is
isomorphic to an (A1) hypersurface singularity (in the variables 1

2 (x+
(b+ b3)), i

2 (x− (b+ b3)), and c). In particular, X1 has three singular
points, with coordinates x = c = 0 and b+ b3 = 0. In the coordinates
of Ã3, they are at ((0,0,0) , (1 : b : 0)), where b3 = −b. The exceptional
fiber, which we denote E1, corresponds in this chart to x = 0, whence
c = 0, so is just the b-axis.

In the other charts, we find no further singularities. On Ub, the
defining polynomial is

y3a+ y3 + y2c2 = y2 (
ya+ y+ c2)

so that X1 is defined in Ub by ya+ y+c2 = 0. This is also an (A1) singu-
larity, this time with a single singular point at y= c = 0. However, this
point has Ã3 coordinates ((0,0,0) , (−1 : 1 : 0)), so we’ve already seen it;
it lies in Ua. The exceptional fiber here is the a-axis. Finally, in the
chart Uc, we find

z3a2b+ z3b3 + z2 = z2 (
za2b+ zb3 +1

)
so that X1 is smooth in this chart and E1 is not visible. In particular
we find that E1

∼=P1.
Since the first blowup X1 is not smooth, we continue, resolving the

singularities of the surface x(b+ b3)+ c2 = 0 by blowing up its three
singular points. Since each singular point is locally isomorphic to an
(A1) hypersurface, we appeal to the previous example to see that the
resulting surface X̃ is smooth, and that each of the three new excep-
tional fibers E2, E3, E4 intersects the original one E1 transversely.
The desingularization graph thus has the shape of the (D4) Coxeter-
Dynkin diagram:

E2

E3 E1 E4

To compute the fundamental divisor Z f , we begin with Z1 = E1 +E2 +
E3 +E4. Since E2

i =−2 and E j ·E1 = 1 for each j = 2,3,4, we find

Z1 ·E1 =−2+1+1+1= 1> 0 .
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Thus we replace Z1 by Z2 = 2E1 +E2 +E3 +E4. Now

Z2 ·E1 =−4+1+1+16 0 ,

and for j = 2,3,4 we have Z2 ·E j = 2−2+0+06 0 , so that Z f = Z2 =
2E1 +E2 +E3 +E4 is the fundamental divisor.

The calculations in the examples can be carried out for each of the
Kleinian singularities in Table 6.19, and one verifies the next result,
which was McKay’s original observation.

6.42. THEOREM (McKay). Let G be a finite subgroup of SL(2,C) and
R = C[[u,v]]G the corresponding ring of invariants. Then the desingu-
larization graph of X = SpecR is an ADE Coxeter-Dynkin diagram. In
particular, it is equal to the McKay-Gabriel quiver of G with the ver-
tex corresponding to the trivial representation removed. Furthermore,
the coefficients of the fundamental divisor Z f coincide with the dimen-
sions of the corresponding irreducible representations of G, and with
the ranks of the corresponding indecomposable MCM R-modules. �

We can now state the theorem of Artin and Verdier on the geomet-
ric McKay correspondence. Here is the notation in effect through the
end of the section:

6.43. NOTATION. Let (R,m,k) be a complete local normal domain
of dimension two, which is a rational singularity. Let π : X̃ −→ X =
SpecR be its minimal resolution of singularities, and E = π−1(m) the
exceptional fiber, with irreducible components E1, . . . ,En. Let Z f =∑

i miE i be the fundamental divisor of X . We identify a reflexive R-
module M with the associated coherent sheaf of O X -modules, and de-
fine the strict transform of M by

M̃ = (M⊗O X O X̃ )/torsion ,

a sheaf on X̃ .

6.44. THEOREM (Artin-Verdier). With notation as above, assume in
addition that R is Gorenstein. Then there is a one-one correspondence,
induced by the first Chern class c1(−), between indecomposable non-
free MCM R-modules and irreducible components E i of the exceptional
fiber. Precisely: Let M be an indecomposable non-free MCM R-module,
and let [C] = c1(M̃) ∈ Pic(X̃ ). Then there is a unique index i such that
C ·E i = 1 and C ·E j = 0 for i 6= j. Furthermore, we have rankR(M) =
C ·Z f = mi. �

The first Chern class mentioned in the Theorem is a mechanism for
turning a locally free sheaf E into a divisor c1(E ) in the Picard group
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Pic(X̃ ). In particular, c1(−) is additive on short exact sequences over
X̃ .

The main ingredients of the proof of Theorem 6.44 are compiled in
the next propositions. We refer to [AV85] for the proofs.

6.45. PROPOSITION. With notation as in 6.43, M̃ enjoys the follow-
ing properties.

(i) M̃ is a locally free O X̃ -module, generated by its global sections.
(ii) Γ(X̃ , M̃)= M and H1(X̃ , M̃∗)= 0.

(iii) There is a short exact sequence of sheaves on X̃

(6.45.1) 0−→O (r)
X̃

−→ M̃ −→OC −→ 0 ,

where r = rankR(M), and C is a closed one-dimensional sub-
scheme of X̃ which meets the exceptional fiber E transversely.
Furthermore, the global sections of (6.45.1) give an exact se-
quence of R-modules:

(6.45.2) 0−→ R(r) −→ M −→Γ(X̃ ,OC)−→ 0

�

Observe that the class [C] of the curve C in the Picard group Pic(X̃ )
is equal to the first Chern class c1(M̃) of M̃, since c1(−) is additive on
short exact sequences and c1(L )= [L ] ∈Pic(X̃ ) for any line bundle L .

6.46. PROPOSITION. Keep all the notation of 6.43, and assume in
addition that R is Gorenstein. Fix a reflexive R-module M, and let C
be the curve guaranteed by Proposition 6.45. Then

(i) C ·Z f 6 r, with equality if M has no non-trivial free direct sum-
mands.

(ii) If C = C1 ∪ ·· · ∪Cs is the decomposition of C into irreducible
components, then M decomposes accordingly: M ∼= M1⊕·· ·⊕Ms,
with each Mi indecomposable and c1(M̃i)= [Ci] for each i. �

§5. Exercises

6.47. EXERCISE. Let R −→ S be a module-finite extension of com-
plete local rings, with S regular. Prove that if M is a reflexive R-
module such that Exti

R(M∗,S)= 0 for i = 1, . . . ,n−2, then M ∈ addR(S).

6.48. EXERCISE. Let R be a reduced Noetherian ring and M, N, P
finitely generated reflexive R-modules. Define the reflexive product of
M and N by

M ·N = (M⊗R N)∗∗
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Prove the following isomorphisms.
(i) M ·N ∼= N ·M.

(ii) HomR(M ·N,P)∼=HomR(M,HomR(N,P)).
(iii) M · (N ·P)∼= (M ·N) ·P.

6.49. EXERCISE. Let (R,m) be a reduced CM local ring of dimen-
sion two, X =SpecR, U = X \{m}, and i : U −→ X the open embedding.
Let M 7→ M̃ and F 7→ Γ(F ) be the usual sheafification and global sec-
tion functors between R-modules and coherent sheaves on X .

(i) If M is MCM, then the natural map M −→ Γ(i∗i∗M̃) is an iso-
morphism. (Use the exact sequence 0 −→ H0

m(M) −→ M −→
Γ(i∗i∗M̃)−→H1

m(M)−→ 0.)
(ii) If M is torsion-free, M∗∗ −→ Γ(i∗i∗M̃) is an isomorphism. (Use

the case above and λ(H1
m(M)) <∞. Notice i∗ is exact since i is

an open embedding, and i∗H1
m(M) = 0, so get a square relating

M to M∗∗ and �M∗∗.)
(iii) Assume R is normal, and let VB(U) be the category of locally

free OU -modules. Then i∗ : CM(R)−→VB(U) is an equivalence.

6.50. EXERCISE (Abhyankar). Let (R,m,k) be a CM local ring of
multiplicity e(R). Verify the inequality

e(R)>µR(m)−dim(R)+1 .

6.51. EXERCISE. Generalize Corollary 6.37 by showing that any
Gorenstein local ring (R,m,k) satisfying e(R)=µR(m)−dim(R)+1 is a
hypersurface of multiplicity two.

6.52. EXERCISE. Classify the finite subgroups of GL(2,C) by using
the surjection C∗×SL(2,C)−→GL(2,C) sending (d,σ) to dσ.

6.53. EXERCISE. Let G = 〈σ〉 be a finite cyclic subgroup of GL(2,C).
Show that the ring of invariants C[[u,v]]G is generated by two invari-
ants if and only if σ has an eigenvalue equal to 1.



CHAPTER 7

Isolated Singularities and Classification in
Dimension Two

In this chapter we present a pair of celebrated theorems due origi-
nally to Auslander. The first, Theorem 7.12, states that a CM local ring
of finite CM type has at most an isolated singularity. We give the sim-
plified proof due to Huneke and Leuschke, which requires some easy
general preliminaries on elements of Ext1. The second, Theorem 7.19,
gives a strong converse to Herzog’s Theorem 6.3, namely that in di-
mension two over a field of characteristic zero, every CM complete local
algebra having finite CM type is a ring of invariants.

§1. Miyata’s theorem

The classical Yoneda correspondence (see for example [ML95]) al-
lows us to identify elements of an Ext-module Exti

R(M, N) as equiva-
lence classes of i-fold extensions of N by M. In the case i = 1, this is
particularly simple: an element α ∈Ext1

R(M, N) is an equivalence class
of short exact sequences 0 −→ N −→ X −→ M −→ 0, where we declare
two such sequences, with middle terms X , X ′, to be equivalent if they
fit into a commutative diagram

(7.0.1)

0 // N // X //

��

M // 0

0 // N // X ′ // M // 0 .

It follows from the Snake Lemma that in this situation X ∼= X ′, so
the middle term Xα is determined by the element α. The converse is
false (cf. Exercise 7.22), but Miyata’s Theorem [Miy67] gives a partial
converse: if a short exact sequence is “apparently” split—the middle
term is isomorphic to the direct sum of the other two—then it is split.

7.1. THEOREM (Miyata). Let R be a commutative Noetherian ring
and let

α : N
p
// Xα

q
// M // 0

be an exact sequence of finitely generated R-modules. If Xα
∼= M ⊕ N,

then α is a split short exact sequence.
107
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PROOF. It suffices to show that p : N −→ Xα is a pure homomor-
phism, that is, Z⊗R p : Z⊗R N −→ Z⊗R Xα is injective for every finitely
generated R-module Z. Indeed, taking Z = R will show that p is injec-
tive, and by Exercise 7.23 (or Exercise 13.37), pure submodules with
finitely-presented quotients are direct summands.

Fix a finitely generated R-module Z. To show that Z ⊗R p is in-
jective, we may localize at a maximal ideal and assume that (R,m) is
local. Suppose c ∈ Z⊗N is a non-zero element of the kernel of Z⊗R p.
Take n so large that c ∉ mn(Z ⊗R N) = mnZ ⊗R N. Tensoring further
with R/mn gives the right-exact sequence

(Z/mnZ)⊗R N
p
// (Z/mnZ)⊗R M⊕N // (Z/mnZ)⊗R M // 0

of finite length R-modules. Counting lengths shows that p is injective,
contradicting the presence of the nonzero element c in the kernel. �

Let

α : 0 // N // Xα
// M // 0

β : 0 // N // Xβ
// M // 0

be two extensions of N by M, with Xα
∼= Xβ. As mentioned above, α

and β need not represent the same element of Ext1
R(M, N). In the rest

of this section we describe a result of Striuli [Str05] giving a partial
result in that direction.

7.2. REMARK. We recall briefly a few more details of the Yoneda
correspondence for Ext1. First, recall that if α ∈ Ext1

R(M, N) is repre-
sented by the short exact sequence

α : 0 // N // Xα
// M // 0 ,

then for r ∈ R, the product rα can be computed via either a pullback
or a pushout. Precisely, rα is represented either by the top row of the
diagram

rα : 0 //// N // P //

��

M //

r
��

0

α : 0 // N p
// X q

// M // 0
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or the bottom row of the diagram

α : 0 //// N
p
//

r
��

X
q
//

��

M // 0

rα : 0 // N // Q // M // 0

where

P = {(x,m) ∈ X ⊕M |q(x)= rm}

and

Q = X ⊕N/〈(p(n),−rn) |n ∈ N〉 .

More generally, the same sorts of diagrams define actions of EndR(M)
and EndR(N) on Ext1

R(M, N), on the right and left respectively, replac-
ing r by an endomorphism of the appropriate module.

Pullbacks and pushouts also define the connecting homomorphisms
δ in the long exact sequences of Ext. If α ∈Ext1

R(M, N) is as above, then
for an R-module Z the long exact sequence looks like

· · · //HomR(Z, X )
q∗
//HomR(Z, M) δ

//Ext1
R(Z, N) // · · · .

The image of a homomorphism g : Z −→ M in Ext1
R(M, N) is the top

row of the pullback diagram below.

0 // // N // U //

��

Z //

g
��

0

0 // N p
// X q

// M // 0

In particular, when Z = M we find that δ(1M) = α. Similar considera-
tions apply for the long exact sequence attached to HomR(−, Z).

Here is the result that will occupy the rest of the section. In fact
this result holds for arbitrary Noetherian rings; we leave the straight-
forward extension to the interested reader.

7.3. THEOREM (Striuli). Let R be a local ring. Let

α : 0 // N // Xα
// M // 0

β : 0 // N // Xβ
// M // 0

be two short exact sequences of finitely generated R-modules. Suppose
that Xα

∼= Xβ and that β ∈ I Ext1
R(M, N) for some ideal I of R. Then the

complex α⊗R R/I is a split exact sequence.
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We need one preliminary result.

7.4. PROPOSITION. Let (R,m) be a local ring and I an ideal of R.
Let

α : 0 // N
p
// Xα

q
// M // 0

be a short exact sequence of finitely generated R-modules, and denote
by α=α⊗R R/I the complex

α : 0 // N/IN
p
// Xα/IXα

q
// M/IM // 0 .

If α ∈ I Ext1
R(M, N), then α is a split exact sequence.

PROOF. By Miyata’s Theorem 7.1 it suffices to show that Xα/IXα
∼=

M/IM⊕N/IN. Let

ξ : 0 // Z i
// F0

d0
// M // 0

be the beginning of a minimal resolution of M over R, so that Z =
syzR

1 (M) is the first syzygy of M. Then applying HomR(−, N) gives
a surjection HomR(Z, N) −→ Ext1

R(M, N). In particular I HomR(Z, N)
maps onto I Ext1

R(M, N), so there exists ϕ ∈ I HomR(Z, N) such that α
is obtained from the pushout diagram below.

ξ : 0 // Z

ϕ

��

i
// F0

ψ

��

d0
// M // 0

α : 0 // N p
// Xα q

// M // 0

In particular, we have ϕ(Z) ⊆ IN. The pushout diagram also induces
an exact sequence

ν : 0 // Z

[
i−ϕ

]
// F0 ⊕N

[ψ p ]
// Xα

// 0 .

Let L be an arbitrary R/I-module of finite length, and tensor both ξ

and ν with L:

Z⊗R L
i⊗1L

// F0 ⊗R L
d0⊗1L

// M⊗R L // 0

Z⊗R L

[ i⊗1L−ϕ⊗1L

]
// (F0 ⊗R L)⊕ (N ⊗R L)

[
ψ⊗1L
p⊗1L

]T

// Xα⊗R L // 0 .
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Since ϕ(Z) ⊂ IN and IL = 0, the image of −ϕ⊗1L is zero in N ⊗R L.
Denoting the image of i⊗1 by K , we get exact sequences

0 // K // F0 ⊗R L // M⊗R L // 0

0 // K // (F0 ⊗R L)⊕ (N ⊗R L) // Xα⊗R L // 0 .

Counting lengths (over either R or R/I, equally) now gives

`(Xα⊗R L)= `(M⊗R L)+`(N ⊗R L) .

In particular, since L is an R/I-module, we have

`(Xα/IXα⊗R/I L)= `(M/IM⊗R/I L)+`(N/IN ⊗R/I L) .

Exercise 7.25 now applies, since L was arbitrary, to give Xα/IXα
∼=

M/IM⊕N/IN. �

PROOF OF THEOREM 7.3. Since β ∈ I Ext1
R(M, N), Proposition 7.4

implies that Xβ/IXβ
∼= M/IM ⊕ N/IN and hence Xα/IXα

∼= M/IM ⊕
N/IN. Applying Miyata’s Theorem 7.1, we have that α⊗R R/I is split
exact. �

Here is an amusing consequence.

7.5. COROLLARY. Let (R,m) be a local ring and M a non-free finitely
generated module. Let α be the short exact sequence

α : 0 // M1 // F // M // 0 ,

where F is a finitely generated free module and M1 ⊆mF. Then α is a
part of a minimal generating set of Ext1

R(M, M1).

PROOF. If α ∈mExt1
R(M, M1), then α = α⊗R/m is split exact. But

since M1 ⊆mF, the image of M1 ⊗R/m is zero, a contradiction. �

7.6. EXAMPLE. The converse of Proposition 7.4 fails. Consider the
one-dimensional (A2) singularity R = k[[t2, t3]]. Since R is Gorenstein,
Ext1

R(k,R)∼= k, and so every nonzero element of Ext1
R(k,R) is part of a

basis. Define α to be the bottom row of the pushout diagram

0 // m //

ϕ

��

R //

��

k // 0

0 // R // X // k // 0

where ϕ is defined by ϕ(t2) = t3 and ϕ(t3) = t4. Then α is non-split,
since there is no map R −→ R extending ϕ, whence α ∉mExt1

R(k,R).
On the other hand, µ(X )= 2 and hence X /mX ∼= k⊕k. It follows that α
is split exact.
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These results raise the following question, which will be particu-
larly relevant in Chapter 15.

7.7. QUESTION. Let (R,m) be a CM local ring and let M and N be
MCM R-modules. Take a maximal regular sequence x on R, M, and N,
and take α ∈Ext1

R(M, N). Is it true that α ∈ xExt1
R(M, N) if and only if

α⊗R/(x) is split exact?

§2. Isolated singularities

Now we come to the first major theorem in the general theory of CM
local rings of finite CM type: that they have at most isolated singular-
ities. The result is due originally to Auslander [Aus86a] for complete
local rings, though as Yoshino observed, the original proof relies only
on the KRS property, hence works equally well for Henselian rings
by Theorem 1.8. Auslander’s argument is a tour de force of functo-
rial imagination, and an early vindication of the use of almost split
sequences in commutative algebra (cf. Chapter 13). Here we give a
simple argument due to Huneke and Leuschke [HL02], valid for all
CM local rings, using the results of the previous section.

7.8. DEFINITION. Let (R,m) be a local ring. We say that R is, or
has, an isolated singularity provided Rp is a regular local ring for all
non-maximal prime ideals p.

Note that we include the case where R is regular under the defi-
nition above. We also say R has “at most” an isolated singularity to
explicitly allow this possibility.

The next lemma is standard, and we leave its proof as an exercise
(Exercise 7.27).

7.9. LEMMA. Let (R,m) be a CM local ring. Then the following
conditions are equivalent.

(i) The ring R has at most an isolated singularity.
(ii) Each MCM R-module is locally free on the punctured spectrum.

(iii) For all MCM R-modules M and N, Ext1
R(M, N) has finite length.

�

7.10. LEMMA. Let (R,m) be a local ring, r ∈m, and

α : 0 // // N i
//

r
��

Xα
//

f
��

M // 0

rα : 0 // N
j
// Xrα // M // 0
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a commutative diagram of short exact sequences of finitely generated R-
modules. Assume that Xα

∼= Xrα (not necessarily via the map f ). Then
α ∈ rExt1

R(M, N).

Note that the case r = 0 is Miyata’s Theorem 7.1.

PROOF. The pushout diagram gives an exact sequence

0 // N

[ r
−i

]
// N ⊕ Xα

[ j f ]
// Xrα // 0 .

Since N ⊕ Xα
∼= N ⊕ Xrα, Miyata’s Theorem 7.1 implies that the se-

quence splits. In particular, the induced map on Ext,[ r
−i∗

]
: Ext1

R(M, N)−→Ext1
R(M, N)⊕Ext1

R(M, Xα) ,

is a split injection. Let h be a left inverse for
[ r
−i∗

]
.

Now apply HomR(M,−) to α, getting an exact sequence

· · · // HomR(M, M) δ
// Ext1

R(M, N)
i∗
// Ext1

R(M, Xα) // · · · .

The connecting homomorphism δ takes 1M to α, so i∗(α)= 0. Thus

α= h(rα,0)= rh(α,0) ∈ rExt1
R(M, N) . �

7.11. THEOREM. Let (R,m) be local and M, N finitely generated R-
modules. Suppose there are only finitely many isomorphism classes of
modules X for which there exists a short exact sequence

0−→ N −→ X −→ M −→ 0 .

Then Ext1
R(M, N) has finite length.

PROOF. Let α ∈ Ext1
R(M, N), and let r ∈ m. By Exercise 7.26, it

will suffice to prove that rnα = 0 for n À 0. For any integer n> 0, we
consider a representative for rnα, namely

rnα : 0−→ N −→ Xn −→ M −→ 0 .

Since there are only finitely many isomorphism classes of such Xn,
there exists an infinite sequence n1 < n2 < ·· · such that Xni

∼= Xn j for
every i, j. Set β= rn1α, and let i > 1. Note that rniα= rni−n1β. Hence
we get the commutative diagram

β : 0 // N //

rni−n1

��

Xn1
//

��

M // 0

rni−n1β : 0 // N // Xni
// M // 0
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for each i. By Lemma 7.10, Xn1
∼= Xni implies β ∈ rni−n1 Ext1

R(M, N)
for every i. This implies β ∈mt Ext1

R(M, N) for every t> 1, whence, by
the Krull Intersection Theorem, β= 0. �

If R has finite CM type, then for all MCM modules M and N,
there exist only finitely many MCM modules X generated by at most
µR(M)+µR(N) elements, thus finitely many potential middle terms for
short exact sequences. Thus we obtain Auslander’s theorem:

7.12. THEOREM (Auslander). Let (R,m) be a CM ring with finite
CM type. Then R has at most an isolated singularity. �

7.13. REMARK. A non-commutative version of Theorem 7.12 is easy
to state, and the same proof applies. This was Auslander’s original
context [Aus86a]. Specifically, Auslander considers the following sit-
uation: Let T be a complete regular local ring and let Λ be a (pos-
sibly non-commutative) T-algebra which is a finitely generated free
T-module. Say that Λ is non-singular if gldimΛ = dim(T), and that
Λ has finite representation type if there are only finitely many isomor-
phism classes of indecomposable finitely generated (left) Λ-modules
that are free as T-modules. If Λ has finite representation type, then
Λp is non-singular for all non-maximal primes p of T.

We mention here a few further applications of Theorem 7.11, all
based on the same elementary observation. Suppose that R is a CM
local ring and M is a MCM R-module such that there are only finitely
many non-isomorphic MCM modules of multiplicity less than or equal
to µR(M) · e(R); then M is locally free on the punctured spectrum.
This follows immediately from Theorem 7.12 upon taking N to be the
first syzygy of M in a minimal free resolution. If in addition R is a
domain, then the criterion simplifies to the existence of only finitely
many MCM modules of rank at most µR(M).

Obvious candidates for M are the canonical module ω, the conor-
mal module I/I2 of a regular presentation R = A/I, and the module
of Kähler differentials Ω1

R/k if R is essentially of finite type over a
field k. Since the freeness of these modules implies that R is Goren-
stein, respectively complete intersection [Mat89, 19.9], respectively
regular [Kun86, Theorem 7.2], we obtain the following corollaries.

7.14. COROLLARY. Let (R,m) be a CM local ring with canonical
module ω. If R has only finitely many non-isomorphic MCM modules of
multiplicity up to r(R)e(R), where r(R) = dimk Extdim(R)

R (k,R) denotes
the Cohen-Macaulay type of R, then R is Gorenstein on the punctured
spectrum. �
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7.15. COROLLARY. Let (A,n) be a regular local ring, and suppose
I ⊆ n2 is an ideal such that R = A/I is CM. Assume that I/I2 is a MCM
R-module. If R has only finitely many non-isomorphic MCM modules
of multiplicity at most µA(I) · e(R), then R is complete intersection on
the punctured spectrum. �

7.16. COROLLARY. Let k be a field of characteristic zero, and let
R be a k-algebra essentially of finite type. Let Ω1

R/k be the module of
Kähler differentials of R over k. Assume that Ω is a MCM R-module. If
R has only finitely many non-isomorphic MCM modules of multiplicity
up to embdim(R) ·e(R), then R has at most an isolated singularity. �

The second corollary raises the question of when the conormal mod-
ule I/I2 is MCM over A/I for an ideal I in a regular local ring A. Her-
zog [Her78a] showed that this is the case if A/I is Gorenstein and
I has height three; see [HU89] and [Buc81, 6.2.10] for some further
results in this direction.

§3. Classification of two-dimensional CM rings of finite CM
type

Our aim in this section is to prove a converse to Herzog’s The-
orem 6.3, which states that rings of invariants of two-dimensional
regular local rings have finite CM type. The result, due to Auslan-
der [Aus86b] and Esnault [Esn85], is that if a complete local ring R
of dimension two, with a coefficient field k of characteristic zero, has
finite CM type, then R ∼= k[[u,v]]G for some finite group G ⊆GL(n,k).

Auslander’s proof relies on a deep result of Mumford in topology
(see [Mum61] and [Hir95b]). We give Mumford’s theorem below, fol-
lowed by the interpretation and more general statement in commuta-
tive algebra due to Flenner [Fle75] (see also [CS93]).

7.17. THEOREM (Mumford). Let V be a normal complex space of
dimension 2 and x ∈V a point. Then the following properties hold.

(i) The local fundamental group π(V , x) is finitely generated.
(ii) If the local homology group H1(V , x) vanishes, then π(V , x) is

isomorphic to the fundamental group of a valued tree having
negative definite intersection matrix.

(iii) If π(V , x)= {1} is trivial, then x is a regular point. �

To translate Mumford’s result into commutative algebra, we recall
the definition of the étale fundamental group, also called the algebraic
fundamental group. See [Mil08] for more details. (We will not attempt
maximal generality in this brief sketch; in particular, we will ignore
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the need to choose a base point.) For a connected normal scheme X ,
the étale fundamental group πet

1 (X ) classifies the finite étale coverings
of X in a manner analogous to the usual fundamental group classifying
the covering spaces of a topological space.

The construction of πet
1 is clearest when X = Spec A for a normal

domain A. Let K be the quotient field of A, and fix an algebraic clo-
sure Ω of K . Then πet

1 (X ) ∼= Gal(L/K), where L is the union of all the
finite separable field extensions K ′ of K contained in Ω, and such that
the integral closure of A in K ′ is étale over A. There is a Galois cor-
respondence between subgroups H ⊆ πet

1 (X ) of finite index and finite
étale covers A −→ B of A. In particular, πet

1 (X )= 0 if and only if A has
no non-trivial finite étale covers.

With some extra work, the étale fundamental group can be defined
for arbitrary schemes X . In particular, one may take X to be the punc-
tured spectrum Spec◦ A = Spec A \ {m} of a local ring (A,m). We say
that the local ring (A,m) is pure if the induced morphism of étale fun-
damental groups πet

1 (Spec◦ A) −→ πet
1 (Spec A) is an isomorphism. (Un-

fortunately this usage of the word “pure” has nothing to do with the
usage of the same word earlier in this chapter.) The point is the sur-
jectivity: A is pure if and only if every étale cover of the punctured
spectrum extends to an étale cover of the whole spectrum.

7.18. THEOREM (Flenner). Let (A,m,k) be an excellent Henselian
local normal domain of dimension two. Assume that chark = 0. Con-
sider the following conditions.

(i) πet
1 (Spec◦ A)= 0;

(ii) A is pure;
(iii) A is a regular local ring.

Then (a) =⇒ (b) ⇐⇒ (c), and the three conditions are equivalent if k
is algebraically closed. �

The implication “A regular =⇒ A pure” is a restatement of the
theorem on the purity of the branch locus (Theorem B.12). The content
of the theorem of Mumford and Flenner is in the other implications, in
particular, a converse to purity of the branch locus.

Now we come to Auslander and Esnault’s characterization of the
equicharacteristic zero, two-dimensional, complete local rings having
finite CM type.

7.19. THEOREM (Auslander, Esnault). Let R be a complete CM lo-
cal ring of dimension two with coefficient field k. Assume that k has
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characteristic zero. If R has finite CM type, then there exists a power se-
ries ring S = k[[u,v]] and a finite group G acting on S by linear changes
of variables such that R ∼= SG .

PROOF. First, notice that by Theorem 7.12 R is regular in codi-
mension one, whence a normal domain.

Let K be the quotient field of the normal domain R, and fix an
algebraic closure Ω. Consider the family of all finite field extensions
K ′ of K , contained in Ω, and such that the integral closure of R in K ′
is unramified in codimension one over R. Let L be the field generated
by all these K ′, and let S be the integral closure of R in L.

We will show that L is a finite Galois extension of K , so that in
particular S is a module-finite R-algebra [Mat89, p. 262, Lemma 1].
Furthermore, S is a local ring since R is Henselian. Observe that if we
show that S is a local ring module-finite over R, then by construction S
has no module-finite ring extensions which are unramified in codimen-
sion one; indeed, any such ring extension would also be module-finite
and unramified in codimension one over R. (See Appendix B.) In other
words, we will have πet

1 (SpecS \{mS}) = 0 and it will follow that S is a
regular local ring, hence S ∼= k[[u,v]].

To show that L/K is a finite Galois extension, assume that there is
an infinite ascending chain

K ( L1 ( L2 ( · · ·( L

of finite Galois extensions of K inside L. Let Si be the integral closure
of R in L i. Then we have a corresponding infinite ascending chain

R ( S1 ( S2 ( · · ·( S

of module-finite ring extensions. Each Si is a normal domain, so in
particular a reflexive R-module. By Exercise 4.30, the Si are pairwise
non-isomorphic as R-modules, contradicting the assumption that R
has finite CM type. Thus L/K is finite, and it’s easy to see it is a Galois
extension. Let G be the Galois group of L over K . Then G acts on S
with fixed ring R, and the argument of Lemma 5.3 allows us to assume
the action is linear. �

Theorem 7.19 is false in positive characteristic. Artin [Art77] has
given counterexamples to Mumford’s characterization of smoothness
in characteristic p > 0; the simplest is the (Ap−1) singularity x2 +
yp + z2 = 0, which has trivial étale fundamental group. Even though
k[[x, y, z]]/(x2 + yp + z2) has finite CM type by Theorem 6.23, it is not a
ring of invariants when k has characteristic p.
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Among other things, Auslander’s Theorem 7.19 implies that the
two-dimensional CM local rings of finite CM type with residue field
C have rational singularities (see Definition 6.32). This suggests the
following conjecture.

7.20. CONJECTURE. Let (R,m) be a CM local ring of dimension at
least two. Assume that R has finite CM type. Then R has rational
singularities.

The assumption dim(R)> 2 is necessary to allow for the existence
of non-normal, that is, non-regular, one-dimensional rings of finite CM
type.

To add some evidence for this conjecture, we recall that by results
of Mumford [Mum61] (in characteristic zero) and Lipman [Lip69] (in
characteristic p > 0), a normal surface singularity X = SpecR has a
rational singularity if and only if there are only finitely many rank
one MCM R-modules up to isomorphism.

Here is a weaker version of Conjecture 7.20. This problem was first
raised in print by Eisenbud and Herzog [EH88].

7.21. CONJECTURE. Let (R,m) be a CM local ring of dimension at
least two. If R has finite CM type, then R has minimal multiplicity, that
is,

e(R)=µR(m)−dim(R)+1 .

Recall that rational singularity implies minimal multiplicity, Corol-
lary 6.36. We will prove Conjecture 7.21 for hypersurfaces in Chap-
ter 9, §3, and in fact Conjecture 7.20 for the hypersurface case will
follow from the classification in Chapter 9.

§4. Exercises

7.22. EXERCISE. Prove that the p−1 inequivalent non-zero exten-
sions in Ext1

Z(Z/pZ,Z/pZ) all have isomorphic middle terms. Find an
example of abelian groups A and B and two elements of Ext1

Z(A,B)
with isomorphic middle terms but different annihilators. (See [Str05]
for one example, due to Caviglia.)

7.23. EXERCISE. Let N ⊂ M be modules over a commutative ring
R. Prove that N is a pure submodule of M if and only if the following
condition is satisfied: Whenever x1, . . . , xt is a sequence of elements
in N, and xi = ∑s

j=1 r i jm j for some r i j ∈ R and m j ∈ M, there exist
y1, . . . , ys ∈ N such that xi = ∑s

j=1 r i j yj for i = 1, . . . , t. Conclude that if
M/N is finitely presented and N ⊂ M is pure, then the inclusion of N
into M splits. (See also Exercise 13.37.)
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7.24. EXERCISE. Let R be a commutative Artinian ring and let
M, N be two finitely generated R-modules. Prove that M ∼= N if and
only if `(HomR(M, X ))= `(HomR(N, X )) for every finitely generated R-
module X . (Hint: It suffices by induction on `(HomR(N, N)) to show
that M and N have a non-zero direct summand in common. To show
this, take generators f1, . . . , fr for HomR(M, N) to define a homomor-
phism F : M(r) −→ N, and show that F splits.) See [Bon89].

7.25. EXERCISE. Prove that the following conditions are equivalent
for finitely generated modules M and N over a local ring (R,m).

(i) M ∼= N;
(ii) `(HomR(M,L)) = `(HomR(N,L)) for every R-module L of finite

length;
(iii) `(M⊗R L)= `(N ⊗R L) for every R-module L of finite length.

(Hint: Use Matlis duality for (ii) =⇒ (iii). Assuming (ii), reduce mod-
ulo mn and conclude from Exercise 7.24 that M/mnM ∼= N/mnN for
every n, then use Corollary 1.14.)

7.26. EXERCISE. Let (R,m) be local, and let M be a finitely gen-
erated R-module. Show that M has finite length if and only if for all
r ∈m and for all x ∈ M, there exists an integer n such that rnx = 0.

7.27. EXERCISE. Consider these conditions on a local ring R.
(i) The ring R has at most an isolated singularity.

(ii) Every MCM R-module is locally free on the punctured spec-
trum.

(iii) For all MCM R-modules M and N, `(Ext1
R(M, N))<∞.

Prove a slightly more general version of Lemma 7.9: We have (i) =⇒
(ii) =⇒ (iii), and (iii) =⇒ (i) if R is CM.





CHAPTER 8

The Double Branched Cover

In this chapter we introduce two key tools in the representation
theory of hypersurface rings: matrix factorizations and the double
branched cover. We fix the following notation for the entire chapter.

8.1. CONVENTIONS. Let (S,n,k) be a regular local ring and let f
be a non-zero element of n2. Put R = S/( f ) and m = n/( f ). We let d =
dim(R)= dim(S)−1.

§1. Matrix factorizations

With the notation of 8.1, suppose M is a MCM R-module. Then M
has depth d when viewed as an R-module or as an S-module. By the
Auslander-Buchsbaum formula, M has projective dimension 1 over S.
Therefore the minimal free resolution of M as an S-module is of the
form

(8.1.1) 0 // G
ϕ
// F // M // 0 ,

where G and F are finitely generated free S-modules. Since f ·M = 0,
M is a torsion S-module, so rankS G = rankS F.

For any x ∈ F, the image of f x in M vanishes, so there is a unique
element y ∈ G such that ϕ(y) = f x. Since the element y is linearly
determined by x, we get a homomorphism ψ : F −→G satisfying ϕψ=
f 1F . It follows from the injectivity of the map ϕ that ψϕ = f 1G too.
This construction motivates the following definition [Eis80].

8.2. DEFINITION. Let (S,n,k) be a regular local ring, and let f be
a non-zero element of n2. A matrix factorization of f is a pair (ϕ,ψ) of
homomorphisms between free S-modules of the same rank, ϕ : G −→ F
and ψ : F −→G, such that

ψϕ= 1G and ϕψ= 1F .

Equivalently (after choosing bases), ϕ and ψ are square matrices of
the same size over S, say n×n, such that

ψϕ=ϕψ= In .

121
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Let (ϕ,ψ) be a matrix factorization of f as in Definition 8.2. Since f
is a non-zerodivisor, it follows that ϕ and ψ are injective, and we have
short exact sequences

(8.2.1)
0 // G

ϕ
// F // cokϕ // 0

0 // F
ψ
// G // cokψ // 0

of S-modules. As f F = ϕψ(F) is contained in the image of ϕ, the cok-
ernel of ϕ is annihilated by f . Similarly, f · cokψ= 0. Thus cokϕ and
cokψ are naturally finitely generated modules over R = S/( f ).

8.3. PROPOSITION. Let (S,n) be a regular local ring and let f be a
non-zero element of n2.

(i) For every MCM R-module, there is a matrix factorization (ϕ,ψ)
of f with cokϕ∼= M.

(ii) If (ϕ,ψ) is a matrix factorization of f , then cokϕ and cokψ are
MCM R-modules.

PROOF. Only the second statement needs verification. The exact
sequences (8.2.1) and the fact that f · cokϕ = 0 = f · cokψ imply that
the cokernels have projective dimension one over S. By the Auslander-
Buchsbaum formula, they have depth equal to dim(S)−1= dim(R) and
therefore are MCM R-modules. �

8.4. NOTATION. When we wish to emphasize the provenance of a
presentation matrix ϕ as half of a matrix factorization (ϕ,ψ), we write
cok(ϕ,ψ) in place of cokϕ. We also write (ϕ : G −→ F, ψ : F −→ G) to
include the free S-module G and F in the notation.

There are two distinguished trivial matrix factorizations of any el-
ement f ∈ S, namely ( f ,1) and (1, f ). Note that cok(1, f ) = 0, while
cok( f ,1)∼= R.

8.5. DEFINITION. Consider a pair of matrix factorizations of f ∈ S,
say (ϕ : G −→ F, ψ : F −→G) and (ϕ′ : G′ −→ F ′, ψ′ : F ′ −→G′). A homo-
morphism of matrix factorizations between (ϕ,ψ) and (ϕ′,ψ′) is a pair
of S-module homomorphisms α : F −→ F ′ and β : G −→ G′ rendering
the diagram

(8.5.1)

F
ψ
//

α
��

G
ϕ
//

β
��

F

α
��

F ′
ψ′
// G′

ϕ′
// F ′
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commutative. (In fact, commutativity of just one of the squares is suf-
ficient; see Exercise 8.34.)

A homomorphism of matrix factorizations (α,β) : (ϕ,ψ) −→ (ϕ′,ψ′)
induces a homomorphism of R-modules cok(ϕ,ψ)−→ cok(ϕ′,ψ′), which
we denote cok(α,β):

0 // G
ϕ
//

β
��

F //

α
��

cok(ϕ,ψ)

cok(α,β)
��

// 0

0 // G′
ϕ′
// F ′ // cok(ϕ′,ψ′) // 0

Conversely, every S-linear map from cok(ϕ,ψ) to cok(ϕ′,ψ′) lifts to give
a homomorphism of matrix factorizations.

Two matrix factorizations (ϕ,ψ) and (ϕ′,ψ′) are equivalent if there
is a homomorphism of matrix factorizations (α,β) : (ϕ,ψ)−→ (ϕ′,ψ′) in
which both α and β are isomorphisms.

Direct sums of matrix factorizations are defined in the natural way:

(ϕ,ψ)⊕ (ϕ′,ψ′)=
((
ϕ

ϕ′
)
,

(
ψ

ψ′
))

.

We say that a matrix factorization is reduced provided it is not equiv-
alent to a matrix factorizations having a trivial direct summand ( f ,1)
or (1, f ). It’s straightforward to see that (ϕ,ψ) is reduced if and only
if all the entries of ϕ and ψ are in the maximal ideal of S. See Exer-
cise 8.35. In particular, ϕ has no unit entries if and only if cok(ϕ,ψ)
has no non-zero R-free direct summands.

With overlines denoting reduction modulo f , a matrix factorization
(ϕ : G −→ F, ψ : F −→G) induces a complex

(8.5.2) · · · // G
ϕ
// F

ψ
// G

ϕ
// F // cok(ϕ,ψ) // 0

in which G and F are finitely generated free modules over R = S/( f ).
In fact (Exercise 8.36), this complex is exact, hence is a free resolution
of cok(ϕ,ψ). If (ϕ,ψ) is a reduced matrix factorization, then (8.5.2) is a
minimal R-free resolution of cok(ϕ,ψ).

The reversed pair (ψ,ϕ) is also a matrix factorization of f , and the
resolution (8.5.2) exhibits cok(ψ,ϕ) as a first syzygy of cok(ϕ,ψ) and
vice versa:

(8.5.3)
0 // cok(ψ,ϕ) // F // cok(ϕ,ψ) // 0

0 // cok(ϕ,ψ) // G // cok(ψ,ϕ) // 0



124 8. THE DOUBLE BRANCHED COVER

are exact sequences of R-modules. This gives the first assertion of the
next result; we leave the rest, and the proof of the theorem following,
as exercises. Recall that an R-module M is stable provided it does not
have a direct summand isomorphic to R. We remark that a direct sum
of two stable modules is again stable, by Lemma 1.2 (i) (or directly,
Exercise 8.37).

8.6. PROPOSITION. Keep the notation of 8.1.

(i) Let M be a MCM R-module. Then M has a free resolution which
is periodic of period at most two.

(ii) Let M be a stable MCM R-module. Then the minimal free reso-
lution of M is periodic of period at most two.

(iii) Let M be a MCM R-module. Then syzR
1 M is a stable MCM R-

module. If M is indecomposable and not free, so is syzR
1 M.

(iv) Let M be a finitely generated R-module. Then the minimal free
resolution of M is eventually periodic of period at most two. In
particular the minimal free resolution of M is bounded.

(v) Let M and N be R-modules with M finitely generated. For each
i > dim(R)−depth M, we have Exti

R(M, N) ∼= Exti+2
R (M, N) and

TorR
i (M, N)∼=TorR

i+2(M, N). �

In the next chapter we will see a converse to (iv): If every minimal
free resolution over a local ring R is bounded, then (the completion of)
R is a hypersurface ring.

8.7. THEOREM (Eisenbud). Keep the notation of 8.1. The associa-
tion

(ϕ,ψ)←→ cok(ϕ,ψ)

induces an equivalence of categories between reduced matrix factoriza-
tions of f up to equivalence and of stable MCM R-modules up to isomor-
phism. In particular, it gives a bijection between equivalence classes of
reduced matrix factorizations and isomorphism classes of stable MCM
modules. �

8.8. REMARK. If in addition f is a prime/irreducible element of S,
so that R is an integral domain, then from ϕψ = f · In it follows that
both detϕ and detψ are, up to units, powers of f . Specifically, we must
have detϕ= uf k and detψ= u−1 f n−k for some unit u ∈ S and k6 n. In
this case the R-module cok(ϕ,ψ) has rank k, while cok(ψ,ϕ) has rank
n−k. To see this, localize at the prime ideal ( f ). Then over the discrete
valuation ring S( f ), ϕ is equivalent to f ·1k⊕1n−k and so cokϕ has rank
k over the field R( f ).
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Similar remarks hold when f is merely reduced, provided we con-
sider rank M as the tuple (rankRp Mp) as p runs over the minimal
primes in R.

8.9. REMARK. Let

(ϕ : G −→ F, ψ : F −→G) and (ϕ′ : G′ −→ F ′, ψ′ : F ′ −→G′)

be two matrix factorizations of f . Put M = cok(ϕ,ψ), N = cok(ψ,ϕ),
M′ = cok(ϕ′,ψ′), and N ′ = cok(ψ′,ϕ′). Then any homomorphism of ma-
trix factorizations (α,β) : (ψ,ϕ) −→ (ϕ′,ψ′) (note the order!) defines a
pushout diagram

(8.9.1)

0 // N //

��

F //

��

M // 0

0 // M′ // Q // M // 0

of R-modules, the bottom row of which is the image of cok(α,β) under
the surjective connecting homomorphism

HomR(N, M′)−→Ext1
R(M, M′) .

In particular, every extension of M′ by M arises in this way.
The middle module Q is of course MCM as well. Splicing (8.9.1) to-

gether with the R-free resolutions of N and M′, we obtain a morphism
of exact sequences

(8.9.2) · · · ϕ
// F

ψ
//

β
��

G
ϕ
//

α
��

F //

��

M // 0

· · ·
ψ′
// G′

ϕ′
// F ′ // Q // M // 0

defined, after the first step, by α and β. The mapping cone of (8.9.2) is
thus the exact complex

· · · −→ F ′⊕F

[
ψ′ β

−ϕ
]

−−−−−−→G′⊕G

[
ϕ′ α

−ψ
]

−−−−−−→ F ′⊕F −→Q⊕M −→ M −→ 0 .

We may cancel the two occurrences of M (since the map between them
is the identity) and find that

Q ∼= cok
((
ϕ′ α

−ψ
)
,

(
ψ′ β

−ϕ
))

.



126 8. THE DOUBLE BRANCHED COVER

§2. The double branched cover

We continue with the notation and conventions established in 8.1
and assume, in addition, that S is complete. Thus (S,n,k) is a complete
regular local ring of dimension d+1, 0 6= f ∈ n2, and R = S/( f ). We will
refer to a ring R of this form as a complete hypersurface singularity.

8.10. DEFINITION. The double branched cover of R is

R] = S[[z]]/( f + z2) ,

a complete hypersurface singularity of dimension d+1.

8.11. WARNING. It is important to have a particular defining equa-
tion in mind, since different equations defining the same hypersur-
face R can lead to non-isomorphic rings R]. For example, we have
R[[x]]/(x2) = R[[x]]/(−x2), yet R[[x, z]]/(x2 + z2) 6∼= R[[x, z]]/(−x2 + z2). (One
is a domain; the other is not.) Exercise 8.39 shows that such oddities
cannot occur if k is algebraically closed and of characteristic different
from two.

We want to compare the MCM modules over R] with those over
R. Observe that we have a surjection R] −→ R, killing the class of z.
There is no homomorphism the other way in general. However, R] is a
finitely generated free S-module, generated by the images of 1 and z;
cf. Exercise 8.41.

8.12. DEFINITION. Let N be a MCM R]-module. Set

N[ = N/zN ,

a MCM R-module. Contrariwise, let M be a MCM R-module. View M
as an R]-module via the surjection R] −→ R, and set

M] = syzR]

1 M .

Notice that there is no conflict of notation if we view R as an
R-module and sharp it: Since z is a non-zerodivisor of R] (cf. Exer-
cise 8.40), we have a short exact sequence

0 // R] z
// R] // R // 0 .

Thus R] is indeed the first syzygy of R as an R]-module.

8.13. NOTATION. Let ϕ : G −→ F be a homomorphism of finitely
generated free S-modules, or equivalently a matrix with entries in S.
We use the same symbol ϕ for the induced homomorphism S[[z]]⊗S
G −→ S[[z]]⊗S F; as matrices, they are identical. In particular we
abuse the notation 1F , using it also for the identity map S[[z]]⊗S 1F .



§2. THE DOUBLE BRANCHED COVER 127

Furthermore let ϕ̃ : G̃ −→ F̃ denote the corresponding homomor-
phism over R], obtained via the composition of the natural homomor-
phisms S −→ S[[z]] −→ S[[z]]/( f + z2) = R]. Finally, as in §1, we let
ϕ : G −→ F denote the matrix over R = S/( f ) obtained via the natural
map S −→ R. Thus F = F̃/zF̃.

8.14. LEMMA. Let (ϕ : G −→ F, ψ : F −→ G) be a matrix factor-
ization of f , let M = cok(ϕ,ψ), and let π : F̃ � M be the composition
F̃� F�M.

(i) There is an exact sequence

F̃ ⊕ G̃

[
ψ̃ −z1G̃

z1F̃ ϕ̃

]
−−−−−−−−−→ G̃⊕ F̃ [ ϕ̃ z1F̃ ]−−−−−−→ F̃ π−→ M −→ 0

of R]-modules.
(ii) The matrices over S[[z]](

ψ −z1G
z1F ϕ

)
and

(
ϕ z1F

−z1G ψ

)

form a matrix factorization of f + z2 over S[[z]].
(iii) We have

M] ∼= cok
((

ψ −z1G
z1F ϕ

)
,

(
ϕ z1F

−z1G ψ

))
.

(iv) The R]-module M] is stable if and only if R M is stable, in which
case

syzR]

1 (M])∼= M] .

PROOF. The proof of (ii) amounts to matrix multiplication, and (iii)
is an immediate consequence of (i), (ii), and the matrix calculation(

1
1

)(
ϕ z1F

−z1G ψ

)(
1

1

)
=

(
ψ −z1G

z1F ϕ

)
over S[[z]]. Item (iv) follows from (iii) and Exercise 8.35, since the
entries of the matrix factorization for M] are those in the matrix fac-
torization for M, together with z. It thus suffices to prove (i). First
we note that z is a non-zerodivisor of R] (Exercise 8.40). Therefore the
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columns of the following commutative diagram are exact.

0

��

0

��

0

��

F̃
ψ̃
//

z
��

G̃
ϕ̃
//

z
��

F̃

z
��

F̃
ψ̃
//

��

G̃
ϕ̃
//

��

F̃
π

����

· · ·
ϕ
// F

ψ

//

��

G
ϕ
//

��

F //

��

M // 0

0 0 0

The bottom row is also exact by (8.5.2), but the first two rows aren’t
even complexes. In fact,

(8.14.1) ϕ̃ψ̃=−z2 1F .

An easy diagram chase shows that kerπ= im ϕ̃+zF̃ = im[ ϕ̃ z1F̃ ]. Also,

ker
[
ϕ̃ z1F̃

]⊇ im
[
ψ̃ −z1G̃

z1F̃ ϕ̃

]
by (8.14.1). For the opposite inclusion, let

[ x
y
] ∈ ker[ ϕ̃ z1F̃ ], so that

ϕ̃(x)=−zy. A diagram chase yields elements a ∈ F̃ and b ∈ G̃ such that
[ ψ̃ −z1G̃ ]

[a
b
]= x. We need to show that [ z1F̃ ϕ̃ ]

[a
b
]= y. Using (8.14.1),

we obtain the equations

z(za+ ϕ̃(b))=−ϕ̃ψ̃(a)+ zϕ̃(b)=−ϕ̃(ψ̃(a)− zb)=−ϕ̃(x)= zy .

Cancelling the non-zerodivisor z, we get the desired result. �

This allows us already to prove one “natural” relation between
sharping and flatting.

8.15. PROPOSITION. Let M be a MCM R-module. Then

M][ ∼= M⊕syzR
1 M .

PROOF. The R-module M][ is presented by the matrix factorization
(Φ⊗R]R, Ψ⊗R]R), where (Φ,Ψ) is the matrix factorization for M] given
in Lemma 8.14. Killing z in that matrix factorization gives

M][ ∼= cok
((
ϕ

ψ

)
,

(
ψ

ϕ

))
,

as desired. �
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8.16. COROLLARY. Let M be an indecomposable stable MCM R-
module.

(i) M] is a direct sum of either one or two indecomposable R]-modules.
(ii) M is a direct summand of N[ for some indecomposable non-free

R-module N.

PROOF. If M] were a direct sum of three or more non-trivial R-
modules, then M][ would be too. But by Proposition 8.15 and Proposi-
tion 8.6 (iii) , M][ is a direct sum of exactly two indecomposable mod-
ules.

For the second statement, we note that M⊕syzR
1 (M) is stable by (iii)

of Proposition 8.6 and Exercise 8.37. Write M] ∼= N1 ⊕ ·· ·⊕ Nt, where
the Ni are indecomposable MCM R]-modules, none of the free by Pro-
postion 8.15. Then M ⊕ syzR

1 (M) ∼= M][ ∼= N1
[⊕·· ·⊕Nt

[. By KRS, M is
isomorphic to a direct summand of some N[

i . �

The question of whether M] is indecomposable or a direct sum
of two indecomposable modules will be answered in Proposition 8.30.
Now we turn to the other “natural” relation. Recall that R] is a free
S-module of rank 2; in particular any MCM R]-module is a finitely
generated free S-module.

8.17. LEMMA. Let N be a MCM R]-module. Let ϕ : N −→ N be an
S-linear homomorphism representing multiplication by z on N.

(i) The pair (ϕ,−ϕ) is a matrix factorization of f with cok(ϕ,−ϕ)∼=
N[.

(ii) If N is stable, then

N[ ∼= syzR
1 (N[) ,

and hence N[ is stable too.
(iii) Consider z1N ±ϕ as an endomorphism of S[[z]]⊗S N, a finitely

generated free S[[z]]-module. Then

(z1N −ϕ, z1N +ϕ)

is a matrix factorization of f + z2 with cok(z1N −ϕ, z1N +ϕ) ∼=
N. If N is stable, then (z1N −ϕ, z1N +ϕ) is a reduced matrix
factorization.

PROOF. On the S-module N, −ϕ2 corresponds to multiplication by
−z2. But since N is an R]-module, the action of −z2 on N agrees with
that of f . In other words, −ϕ2 = f 1N . Now ϕ and −ϕ obviously have
isomorphic cokernels, each isomorphic to N/zN = N[. Items (i) and
(ii) follow. We leave the first assertion of (iii) as Exercise 8.42. For
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the final sentence, note that if z1N −ϕ contains a unit of S[[z]], then
ϕ contains a unit of S as an entry. But then z1N +ϕ has a unit entry,
so that the trivial matrix factorization ( f + z2,1) is a direct summand
of (z1N −ϕ, z1N +ϕ) up to equivalence. This exhibits R] as a direct
summand of N, contradicting the stability of N. �

8.18. PROPOSITION. Let N be a stable MCM R]-module. Assume
that chark 6= 2. Then

N[] ∼= N ⊕syzR]

1 N .

PROOF. Let ϕ : N −→ N be the homomorphism of free S-modules
representing multiplication by z as in Lemma 8.17. Then (ϕ,−ϕ) is a
matrix factorization of f with cok(ϕ,−ϕ)∼= N[ by the Lemma, so that

N[] = syzR]

1 (N[)

∼= cok
(( −ϕ −z1N

z1N ϕ

)
,

(
ϕ z1N

−z1N −ϕ
))

by (iii) of Lemma 8.14. Noting that 1
2 ∈ R and hence that the matrix[ 1 1−1 1

]
is invertible over R, we pass to an equivalent matrix[

z1N −ϕ 0
0 z1N +ϕ

]
= 1

2

[
1 1
−1 1

][ −ϕ −z1N
z1N ϕ

][
1 1
−1 1

]
.

Then

N[] ∼= cok(z1N −ϕ, z1N +ϕ)⊕cok(z1N +ϕ, z1N −ϕ)∼= N ⊕syzR]

1 N

by (iii) of Lemma 8.17. �

The proof of the next result is essentially identical to that of Corol-
lary 8.16:

8.19. COROLLARY. Assume that the characteristic of k is different
from two. Let N be an indecomposable non-free MCM R]-module.

(i) N[ is a direct sum of either one or two indecomposable R-modules.
(ii) N is a direct summand of M] for some indecomposable non-free

R-module M. �

We now have all the machinery we need to verify that R has finite
CM type if and only if R# does. The same arguments take care of the
case of countable CM type (see Definition 14.1), so in anticipation of
Chapter 14 we prove both statements simultaneously.

8.20. THEOREM (Knörrer). Let (S,n,k) be a complete regular local
ring, f a non-zero element of n2, and R = S/( f ).

(i) If R] has finite (respectively countable) CM type, then so has R.
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(ii) If R has finite (respectively countable) CM type and chark 6= 2,
then R] has finite CM type.

PROOF. We will prove (i), leaving the almost identical proof of (ii)
to the reader. Let {Ni}i∈I be a representative list of the indecomposable
non-free MCM R]-modules, where I is a finite (respectively countable)
index set. Write Ni

[ = Mi1 ⊕ ·· · ⊕ Mir i , where each Mi j is an inde-
composable R-module. (We are ignoring the first assertion of Corol-
lary 8.19 here, since we’re allowing the residue field to have charac-
teristic two.) By Corollary 8.16, every indecomposable non-free MCM
R-module is a direct summand of some Ni and therefore, by KRS, must
occur on the finite (respectively countable) list {Mi j}. �

8.21. EXAMPLE. One cannot remove the assumption on the char-
acteristic in (ii). For example, let R = k[[x]]/(x2), and notice that R] has
infinite CM type in characteristic two by Proposition 4.15.

8.22. COROLLARY (ADE Redux). Let (R,m,k) be an ADE (or simple)
plane curve singularity (cf. Chapter 4, §3) over an algebraically closed
field k of characteristic different from 2, 3 or 5. Then R has finite CM
type.

PROOF. The hypersurface R] is a complete Kleinian singularity
and therefore has finite CM type by Theorem 6.23. By Theorem 8.20,
R has finite CM type. �

8.23. EXAMPLE. Assume k is a field with chark 6= 2, and let n and d
be integers with n> 1 and d> 0. Put Rn,d = k[[x, z1, . . . , zd]]/(xn+1+z2

1+
·· ·+ z2

d). The ring Rn,0 = k[[x]]/(xn+1) obviously has finite CM type (see
Theorem 3.3). By applying Theorem 8.20 repeatedly, we see that the d-
dimensional (An)-singularity Rn,d has finite CM type for every d. If k
contains a square root of −1, the ring R = k[[x1, . . . , xt, y1, . . . , yt]]/(x1 y1+
·· · + xt yt) also has finite CM type: The change of variables xi = ui +p−1vi, yi = ui −

p−1vi shows that R ∼= R1,2d+2.

§3. Knörrer’s periodicity

The results of the previous section on the double branched cover
imply that if M and N are indecomposable non-free MCM modules
over R and R], respectively, then M][ and N[] both decompose into
precisely two indecomposable MCM modules. However, we do not yet
know whether this splitting occurs on the way up or the way down. In
this section we clarify this point, and use the result to prove Knörrer’s
theorem that the MCM modules over R are in bijection with those over
the double double branched cover R]].
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8.24. NOTATION. We keep all the notations of the last section, so
that (S,n,k) is a complete regular local ring, f is a non-zero element
of n2, and R = S/( f ) is the corresponding complete hypersurface sin-
gularity. In addition, we assume throughout this section that k is an
algebraically closed field of characteristic different from 2.

We first prove a sort of converse to Lemma 8.17.

8.25. LEMMA. Let M be a MCM R-module such that M ∼= syzR
1 M.

Then M ∼= cok(ϕ0,ϕ0) for a square matrix ϕ0 satisfying ϕ2
0 = f In.

PROOF. We may assume that M is indecomposable, and write M =
cok(ϕ : G −→ F, ψ : F −→ G) by Theorem 8.7. By assumption there is
an equivalence of matrix factorizations (α,β) : (ϕ,ψ) −→ (ψ,ϕ), i.e. a
commutative diagram of free S-modules

F
ψ
//

α
��

G
ϕ
//

β
��

F

α
��

G
ϕ
// F

ψ
// G

with α and β isomorphisms. Thus cok(βα,αβ) is an automorphism
of M. Since M is indecomposable and R is complete, EndR(M) is an
nc-local ring. Furthermore, EndR(M)/J (EndR(M)) ∼= k since k is alge-
braically closed. Hence we may write

cok(βα,αβ)= c1M +ρ ,

where c ∈ k× and ρ ∈ J (EndR(M)). By replacing α by c−1α, we may
assume that c = 1. Now, putting ρ1 = βα−1F and ρ2 = αβ−1G , we
have

(βα,αβ)= (1F ,1G)+ (ρ1,ρ2)

with cok(ρ1,ρ2) ∈J (EndR(M)). Then αρ1 = ρ2α and βρ2 = ρ1β.
Represent the function (1+ x)−1/2 by its Maclaurin series and set

α′ =α(1F +ρ1)−1/2 = (1G +ρ2)−1/2α : F −→G

β′ =β(1G +ρ2)−1/2 = (1F +ρ1)−1/2β : G −→ F .

Then the homomorphism of matrix factorizations (α′,β′) : (ϕ,ψ) −→
(ψ,ϕ) satisfies β′α′β= β and α′β′α=α. Therefore β′α′ = 1F and α′β′ =
1G . Finally, set ϕ0 =ϕα′ : F −→ F. Then ϕ0 =β′ψ, and we have

ϕ2
0 =ϕα′β′ψ=ϕψ= f In ,

and cok(ϕ0,ϕ0)∼= M. �
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Let R] = S[[z]]/( f + z2) be the double branched cover of the previous
section. Then R] carries an involution σ, which fixes S and sends z
to −z. Denote by R][σ] the skew group ring of the two-element group
generated by σ (cf. Chapter 5), i.e. R][σ] = R]⊕ (R] ·σ) as R]-modules,
with multiplication

(r+ sσ)(r′+ s′σ)= (rr′+ sσ(s′))+ (rs′+ sσ(r′))σ .

The modules over R][σ] are precisely the R]-modules N carrying a
compatible action of the involution σ:

σ(rx)=σ(r)σ(x)

for r ∈ R] and x ∈ N. (Note that R] itself is naturally an R][σ]-module.)
We will call an R][σ]-module N maximal Cohen-Macaulay (MCM, as
usual) if it is MCM as an R]-module.

Let N be a finitely generated R][σ]-module, and set

N+ = {x ∈ M |σ(x)= x}
N− = {x ∈ M |σ(x)=−x} .

Then N = N+⊕N− as R]-modules. If N is a MCM R][σ]-module, then
it follows that N+ and N− are MCM modules over (R])+ = S, i.e. free
S-modules of finite rank.

8.26. DEFINITION. Let R, R], and R][σ] be as above.
(i) Let N be a MCM R][σ]-module. Define a MCM R-module A (N)

as follows. Multiplication by z, respectively −z, defines an S-
linear map between finitely generated free S-modules

ϕ : N+ −→ N− , resp. ψ : N− −→ N+

which together constitute a matrix factorization of f . Set

A (N)= cok(ϕ,ψ) .

(ii) Let M be a MCM R-module, and define a MCM R]-module
B(M) with compatible σ-action by the following recipe. Write
M = cok(ϕ : G −→ F, ψ : F −→ G) with F and G finitely gener-
ated free S-modules. Set

B(M)=G⊕F ,

with multiplication by z defined via

z(x, y)= (−ψ(y),ϕ(x))

and σ-action
σ(x, y)= (x,−y) .
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8.27. PROPOSITION. The mappings A (−) and B(−) induce mutu-
ally inverse bijections between the isomorphism classes of stable MCM
R-modules and the isomorphism classes of MCM R][σ]-modules hav-
ing no direct summand R][σ]-isomorphic to R].

PROOF. It is easy to verify that A (R]) = cok(1, f ) = 0, that B(R) =
R], and that A B and BA are naturally the identities otherwise. �

In fact A and B can be used to define equivalences of categories
between the MCM R][σ]-modules and the matrix factorizations of f ,
though we will not need this fact.

8.28. LEMMA. Let M be a MCM R-module. Then

M] ∼=B(M)

as R]-modules (we ignore the action of σ on the right-hand side). Thus
M] acquires, via this isomorphism, the structure of an R][σ]-module.

PROOF. Write M = cok(ϕ : G −→ F, ψ : F −→ G), so that B(M) =
G ⊕F as S-modules, with z(x, y) = (−ψ(y),ϕ(x)). Since M] = syzR]

1 (M),
we want to build an R]-isomorphism between B(M) and the kernel of
the map π : F̃ −→ M in Lemma 8.14 (i). First we compute the kernel:
Given an element u ∈ F̃, write u = a+bz, with a,b ∈ F. In the notation
of 8.13 π is the composition F̃ −→ F −→ M, where F̃ −→ F kills z and
F −→ M is the cokernel of ϕ : G −→ F. Thus u ∈ kerπ ⇐⇒ a ∈ ϕ(G)+
f F.

Define ξ : B(M)−→ F by ξ(x, y)=ϕ(x)+ yz for x ∈G and y ∈ F. One
checks that ξ(z(x, y) = zξ(x, y), so ξ is R]-linear. Clearly imξ ⊆ kerπ.
For the reverse inclusion, let u = a+ bz ∈ kerπ, write a = ϕ(x′)+ f y′,
with x′ ∈G and y′ ∈ F, and check that ξ(x′,b− y′z)= u. �

8.29. PROPOSITION. Let N be a stable MCM R]-module. Then N is
in the image of (−)], that is, N ∼= M] for some MCM R-module M, if and
only if N ∼= syzR]

1 N.

PROOF. If N ∼= M], then N ∼= syzR]

1 N by Lemma 8.14(iv).
For the converse, it suffices to show that if N is an indecompos-

able MCM R]-module such that N ∼= syzR]

1 N, then N has the structure
of an R][σ]-module. Indeed, in that case N ∼= B(A (N)) ∼= A (N)] by
Proposition 8.27 and Lemma 8.28, so that N is in the image of (−)].

By assumption, there is an isomorphism of R]-modules ξ : N −→
syzR]

1 N. Now Lemma 8.17 (iii) implies that syzR]

1 (N) has the same
underlying Abelian group as N, with R]-structure defined via σ, i.e.
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r · x =σ(r)x. Therefore we may consider ξ as a function N −→ N satis-
fying ξ(rn)=σ(r)ξ(n). As N is indecomposable, R] is complete, and k is
algebraically closed we may assume, by shenanigans similar to those
in Lemma 8.25, that ξ satisfies ξ2 = 1N . Therefore ξ defines an action
of σ on N, whence N has a structure of R][σ]-module. �

Now we can say exactly which modules decompose upon sharping
or flatting.

8.30. PROPOSITION. Keep all the notation of 8.24. In particular, k
is an algebraically closed field of characteristic not equal to 2.

(i) Let M be an indecomposable non-free MCM R-module. Then
M] is decomposable if, and only if, M ∼= syzR

1 M. In this case
M] ∼= N⊕syzR]

1 N for an indecomposable R]-module N such that
N 6∼= syzR]

1 N.
(ii) Let N be a non-free indecomposable MCM R]-module. Then N[

is decomposable if, and only if, N ∼= syzR]

1 N. In this case N[ ∼=
M ⊕syzR

1 M for an indecomposable R-module M such that M 6∼=
syzR

1 M.

PROOF. First let R M be indecomposable, MCM, and non-free. If
M ∼= syzR

1 M, then M ∼= cok(ϕ,ϕ) for some ϕ by Lemma 8.25, so that by
Lemma 8.14

M] ∼= cok
((

ϕ −z1F
z1F ϕ

)
,

(
ϕ z1F

−z1F ϕ

))
∼= cok

(
ϕ+ iz1F , ϕ− iz1F

)⊕cok
(
ϕ− iz1F , ϕ+ iz1F

)
,

via a diagonalization similar to that in the proof of Proposition 8.18.
(Here i is a square root of −1 in k.) Conversely, suppose M] ∼= N1 ⊕N2
for non-zero MCM R]-modules N1 and N2. Then

N1
[⊕N2

[ ∼= M][ ∼= M⊕syzR
1 M

by Proposition 8.15. Since M is indecomposable and R is complete,
by KRS we may interchange N1 and N2 if necessary to assume that
N1

[ ∼= M and N2
[ ∼= syzR

1 M. Note that N1 is stable since M is not free.
Then syzR

1 (N1
[)∼= N1

[ by Lemma 8.17(ii), so

M ∼= N1
[ ∼= syzR

1 (N1
[) ∼= syzR

1 M ,

as desired.
Next let N be a non-free indecomposable MCM R]-module. By

Proposition 8.29, if N ∼= syzR]

1 N then N ∼= M] for some R M, whence

N[ ∼= M][ ∼= M⊕syzR
1 M



136 8. THE DOUBLE BRANCHED COVER

is decomposable by Proposition 8.15. The converse is shown as above.
To complete the proof of (i), suppose M ∼= syzR

1 M, so that M] ∼=
N ⊕ syzR]

1 N for some R]N. Then M][ ∼= M ⊕ syzR
1 M is a direct sum of

exactly two indecomposable modules, so N[ must be indecomposable.
Hence N 6∼= syzR]

1 N by the part of (ii) we have already proved. The last
sentence of (ii) follows similarly. �

8.31. DEFINITION. In the notation of 8.24, set

R]] = S[[u,v]]/( f +uv) .

(Since we assume k is algebraically closed of characteristic not 2, this
is isomorphic to (R])].) For a MCM R-module M given by the matrix
factorization M = cok(ϕ : G −→ F, ψ : F −→ G), we define a MCM R]]-
module M5 by

M5 = cok
((

ϕ −v1F
u1G ψ

)
,

(
ψ v1G

−u1F ϕ

))
.

Here we continue our convention (cf. 8.13) of using 1F and 1G for the
identity maps on the free S[[u,v]]-modules induced from F and G.

We leave verification of the next lemma as an exercise.

8.32. LEMMA. Keep the notation of the Definition.

(i) (M])] ∼= M5⊕syzR]]

1 (M5).
(ii) (M5)[[ ∼= M⊕syzR

1 M.
(iii) (syzR

1 M)5 ∼= syzR]]

1 (M5).

Now we can prove a more precise version of Theorem 8.20.

8.33. THEOREM (Knörrer). The association M 7→ M5 defines a bijec-
tion between the isomorphism classes of indecomposable non-free MCM
modules over R and over R]].

PROOF. Let M be an indecomposable MCM R-module which is not
free. Then M]] splits into precisely two indecomposable summands by
Proposition 8.30(i), so that M5 is indecomposable by Lemma 8.32(i).

If M′ is another indecomposable MCM R-module with (M′)5 ∼= M5,
then by Lemma 8.32(ii) we have either M′ ∼= M or M′ ∼= syzR

1 M. As-
sume M 6∼= M′ ∼= syzR

1 M. Then by Proposition 8.30 M] is indecompos-
able. Therefore the two indecomposable direct summands of M]] are
non-isomorphic by Proposition 8.30, and it follows from Lemma 8.32,
parts (i) and (iii) that

M5 6∼= syzR]]

1 (M5) ∼= (syzR
1 )5 ∼= (M′)5 ,
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a contradiction.
Finally let N be an indecomposable non-free MCM R]]-module. We

must show that N is a direct summand of M5 for some R M. From
Lemma 8.32(i) we find

(N[[)]] ∼= (N[[)5⊕syzR]]

1 ((N[[)5)

∼= (N[[⊕syzR]]

1 (N[[))5 .

On the other hand,

(N[[)]] ∼=
(
(N[)[]

)]
∼=

(
N[⊕syzR]

1 (N[)
)]

∼= N[]⊕syzR]

1 (N[])

∼= N(2) ⊕ (syzR]

1 N)(2) .

Hence N is in the image of (−)5. �

We will not prove Knörrer’s stronger result than in fact M ←→ M5
induces an equivalence between the stable categories of MCM mod-
ules; see [Knö87] for details.

§4. Exercises

8.34. EXERCISE. Prove that commutativity of one of the squares in
the diagram (8.5.1) implies commutativity of the other.

8.35. EXERCISE. Prove that a matrix factorization (ϕ,ψ) is reduced
if and only if all entries of ϕ and ψ are in the maximal ideal n of S.

8.36. EXERCISE. Verify exactness of the sequence (8.5.2).

8.37. EXERCISE. Let Λ be a ring, possibly non-commutative, hav-
ing exactly one maximal left ideal. Let M and N be left Λ-modules. If
M ⊕ N has a direct summand isomorphic to ΛΛ, then either M or N
has a direct summand isomorphic to ΛΛ. Is this still true if, instead, Λ
has exactly one maximal two-sided ideal?

8.38. EXERCISE. Fill in the details of the proofs of Proposition 8.6
and Theorem 8.7.

8.39. EXERCISE. Let (S,n,k) be a complete local ring, let f ∈ n2\{0},
and put g = uf , where u is a unit of R. If k is closed under square
roots and has characteristic different from 2, show that S[[z]]/( f +z2)∼=
S[[z]]/(g+ z2).
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8.40. EXERCISE. Prove that z is a non-zerodivisor of R] = S[[z]]/( f +
z2).

8.41. EXERCISE. Prove that the natural inclusion S[z]/( f + z2) −→
S[[z]]/( f + z2) is an isomorphism. In particular, R] is a free S-module
with basis {1, z}. Show by example that if S is not assumed to be com-
plete then S[[z]]/( f +z2) need not be finitely generated as an S-module.

8.42. EXERCISE. With notation as in the proof of Lemma 8.17 (iii),
show that the sequence

S[[z]](n) zIn−ϕ−−−−→ S[[z]](n) −→ N −→ 0

is exact. (Hint: Use Exercise 8.41 and choose bases.)

8.43. EXERCISE. In Exercise 8.21 we gave an example of a zero-
dimensional ring R with finite CM type such that R] has infinite CM
type. Find higher-dimensional examples of this behavior.

8.44. EXERCISE. Prove Lemma 8.32.



CHAPTER 9

Hypersurfaces with Finite CM Type

In this chapter we will show that the complete, equicharacteristic
hypersurface singularities with finite CM type are exactly the ADE
singularities. In any characteristic but two, Theorem 9.7 shows that
such a hypersurface of dimension d> 2 is the double branched cover of
one of dimension d−1. In Theorem 9.8, proved in 1987 by Buchweitz-
Greuel-Schreyer and Knörrer [Knö87, BGS87], we restrict to rings
having an algebraically closed coefficient field of characteristic differ-
ent from 2, 3, and 5, and show that finite CM type is equivalent to
simplicity (Definition 9.1), and to being an ADE singularity. We’ll also
prove Herzog’s Theorem 9.15: Gorenstein rings of finite CM type are
abstract hypersurfaces [Her78b]. In §4 we derive matrix factoriza-
tions for the Kleinian singularities (two-dimensional ADE hypersur-
face singularities). At the end of the chapter we will discuss the situa-
tion in characteristics 2,3 and 5. Later, in Chapter 10, we will see how
to eliminate the assumption that R be complete, and also we’ll weaken
“algebraically closed” to “perfect”.

We will do a few things in slightly greater generality than strictly
needed in this chapter, so that they will apply also to the study of
countable CM type in Chapter 14.

§1. Simple singularities

9.1. DEFINITION. Let (S,n) be a regular local ring, and let R =
S/( f ), where 0 6= f ∈ n2. We call R a simple (respectively countably
simple) singularity (relative to the presentation R = S/( f )) provided
there are only finitely (respectively countably) many ideals L of S such
that f ∈ L2.

9.2. THEOREM (Buchweitz-Greuel-Schreyer). Let R = S/( f ), where
(S,n) is a regular local ring and 0 6= f ∈ n2. If R has finite (respectively
countable) CM type, then R is a simple (respectively countably simple)
singularity.

PROOF. Let M be a complete set of representatives for the equiva-
lence classes of reduced matrix factorizations of f . By Theorem 8.7, M

139
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is finite (respectively countable). For each (ϕ,ψ) ∈M , let L(ϕ,ψ) be the
ideal of S generated by the entries of

[
ϕ

∣∣ψ]
. Let S be the set of ideals

that are ideal sums of finite subsets of
{
L(ϕ,ψ)

∣∣ (ϕ,ψ) ∈M
}
. Then

S is finite (respectively countable), and we claim that every proper
ideal L for which f ∈ L2 belongs to S . To see this, let a0, . . . ,ar gen-
erate L, and write f = a0b0 +·· ·+arbr, with bi ∈ L. For 06 s6 r, let
fs = a0b0 + ·· · + asbs. Put σ0 = a0, τ0 = b0, and for 1 6 s 6 r define,
inductively, a 2s ×2s matrix factorization of fs by

(9.2.1) σs =
[
asI2s−1 σs−1
τs−1 −bsI2s−1

]
and τs =

[
bsI2s−1 σs−1
τs−1 −asI2s−1

]
.

Letting σ=σr and τ= τr, we see that (σ,τ) is a reduced matrix factor-
ization of f with L(σ,τ) = L. Then (σ,τ) is equivalent to (ϕ1,ψ1)(n1) ⊕
·· ·⊕ (ϕt,ψt)(nt), where (ϕ j,ψ j) ∈ M and n j > 0 for each j. Finally, we
have L = L(σ,τ)=∑t

j=1 L(ϕ j,ψ j) ∈S . �

The following lemma, together with the Weierstrass Preparation
Theorem, will show that every simple singularity of dimension d > 2
is a double branched cover of a (d−1)-dimensional simple singularity:

9.3. LEMMA. Let (S,n,k) be a regular local ring and R = S/( f ) a
singularity with d = dim(R)> 1.

(i) Suppose R is a simple singularity and k is an infinite field.
Then:
(a) R is reduced, i.e. for each g ∈ n we have g2 - f .
(b) e(R)6 3.
(c) If k is algebraically closed and d> 2, then e(R)= 2.

(ii) Suppose R is a countably simple singularity and that k is an
uncountable field. Then:
(a) For each g ∈ n we have g3 - f .
(b) e(R)6 3.
(c) If k is algebraically closed and d> 2, then e(R)= 2.

PROOF. (ia) Suppose f has a repeated factor, so that we can write
f = g2h, where g ∈ n and h ∈ S. Now dim(S/(g)) = d > 1, so S/(g) has
infinitely many ideals. Therefore S has infinitely many ideals that
contain g, and f is in the square of each, a contradiction.

(iia) Suppose f is divisible by the cube of some g ∈ n. Let Λ⊂ R be
a complete set of coset representatives for k×. If S/(g) is not a DVR,
let {ξ,η} be part of a minimal generating set for n/(g), and lift ξ,η to
x, y ∈ n. For λ ∈ Λ, put Lλ = (x+λy, g). We have Lλ 6= Lµ if λ 6= µ,
for if L = Lλ = Lµ and λ 6≡ µmodm, then L contains (λ−µ)y, hence y,
and hence x; this means that L/(g) = (ξ,η) = (ξ+λη), contradicting the
choice of ξ and η. For each λ ∈ k, we have f ∈ L3

λ
⊆ L2

λ
, a contradiction.
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Now assume that S/(g) is a DVR. Then dim(S) = 2 and g ∉ n2.
Write n = (g,h), and note that g and h are non-associate irreducible
elements of S. For λ ∈Λ, put Iλ = (g+λh2, gh). Suppose I := Iλ = Iµ
with λ 6=µ. Then I = (g,h2). Writing

(9.3.1) g = (g+λh2)p+ ghq,

with p, q ∈ S, we see that g | λh2 p, whence g | p. Write p = gs, with
s ∈ S, plug this into (9.3.1), and cancel g, getting the equation 1= (g+
λh2)s+hq ∈ n, a contradiction. Thus Lλ 6= Lµ when λ 6= µ. Moreover,
we have

g3 = g(g+λh2)2 −λh(g+λh2)(gh)−λ(gh)2 ∈ I2
λ

for each λ. Thus f ∈ I2
λ

for each λ, again contradicting countable sim-
plicity.

(ib) and (iib) Suppose e(R)> 4. Then f ∈ n4 (cf. Exercise 9.29). If L
is any ideal such that n2 ( L ( n, then f ∈ L2. These ideals correspond
to non-zero proper subspaces of the k-vector space n/n2, so there are
infinitely (respectively uncountably) many of them, a contradiction.

(ic) and (iic) We know that e(R) is either 2 or 3, so we suppose
e(R) = 3, that is, f ∈ n3\n4. Let f ∗ be the coset of f in n3/n4. Then f ∗
is a cubic form in the associated graded ring G = k⊕n/n2⊕n2/n3⊕ . . . =
k[x0, . . . , xd], where (x0, . . . , xd) = n. The zero set Z of f ∗ is an infinite
(respectively uncountable) subset of Pd

k . Fix a point λ = (λ0 : λ1 : · · · :
λd) ∈ Z, and let {L1, . . . ,Ld} be a basis for the k-vector space of linear
forms vanishing at λ. These forms generate the ideal of G consisting
of polynomials vanishing at λ, and it follows that

(9.3.2) f ∗ ∈ (L1, . . . ,Ld)(x0, . . . , xd)2G .

Lift each L i ∈ n/n2 to a element L̃ i ∈ n\n2, and put Iλ = (L̃1, . . . , L̃d)S+
n2. Pulling (9.3.2) back to S and using the fact that f ∗ = f +n4, we
get f ∈ (L̃1, . . . , L̃d)n2 + n4, whence f ∈ I2

λ
. Since Iλ 6= Iµ if λ and µ

are distinct points of Z, we have contradicted simplicity (respectively
countable simplicity). �

The next lemma will be used to control the order of the higher-
degree terms in the defining equations of (countably) simple singular-
ities:

9.4. LEMMA. Let R = S/( f ) be a hypersurface singularity of positive
dimension, where (S,n,k) is a regular local ring and 0 6= f ∈ n2. As-
sume either that k is infinite and R is a simple singularity, or that k is
uncountable and R is a countably simple singularity. Let α,β ∈ n. Then
f ∉ (α,β2)3.
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PROOF. Suppose f ∈ (α,β2)3. Let Λ ⊆ S be a complete set of rep-
resentatives for the residue field k, and for each λ ∈ Λ put Iλ = (α+
λβ2,β3). One checks easily that (α,β2)3 ⊆ I2

λ
(Exercise 9.31). There-

fore it will suffice to show that Iλ 6= Iµ whenever λ and µ are distinct
elements of Λ.

Suppose λ,µ ∈Λ, λ 6= µ, and Iλ = Iµ. Since λ−µ is a unit of S, we
see that β2 ∈ Iλ. Writing β2 = s(α+λβ2)+ tβ3, with s, t ∈ S, we see that
β2(1− tβ) ∈ (α+λβ2). Therefore β2 ∈ (α+λβ2), and it follows that Iλ =
(α+λβ2). Now f ∈ (α,β2)3 = I3

λ
= (α+λβ2)3, and this contradicts (ia)

or (iia) of Lemma 9.3. �

§2. Hypersurfaces in good characteristics

For this section k is an algebraically closed field and d is a positive
integer. Put S = k[[x0, . . . , xd]] and n = (x0, . . . , xd). We will consider d-
dimensional hypersurface singularities: rings of the form S/( f ), where
0 6= f ∈ n2.

We refer to [Lan02, Chapter IV, Theorem 9.2] for the following
version of the Weierstrass Preparation Theorem:

9.5. THEOREM (WPT). Let (D,m) be a complete local ring, and let
g ∈ D[[x]]. Suppose g = a0 +a1x+·· ·+aexe +higher degree terms, with
a0,a1, . . . ,ae−1 ∈m and ae ∈ D\m. Then there exist b1, . . . ,be ∈m and a
unit u ∈ D[[x]] such that g = (xe +b1xe−1 +·· ·+be)u. �

The conclusion is equivalent to asserting that D[[x]]/(g) is a free
D-module of rank e, with basis 1, x, . . . , xe−1.

9.6. COROLLARY. Let ` be an infinite field, and let g be a non-zero
power series in S = `[[x0, . . . , xn]], n> 1. Assume that the order e of g
is at least 2 and is not a multiple of char(`). Then, after a change of
coordinates, we have g = (xe

n+b2xe−2
n +b3xe−3

n +·· ·+be−1xn+be)u, where
b2, . . . ,be are non-units of D := `[[x0, . . . , xn−1]] and u is a unit of S.

PROOF. We make a linear change of variables, following Zariski
and Samuel [ZS75, p. 147], so that Theorem 9.5 applies with respect
to the new variables. Write g = ge + ge+1 + ·· · , where each g j is a
homogeneous polynomial of degree j and ge 6= 0. Then xn ge 6= 0, and,
since ` is infinite, there is a point (c0, c1, . . . , cn) ∈ `n+1 such that xn ge
does not vanish when evaluated at (c0, . . . , cn). Then cn 6= 0, and since
xn ge is homogeneous we can scale and assume that cn = 1. We change
variables as follows:

ϕ : xi 7→
{

xi + cixn if i < n
xn if i = n .
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Now, ϕ(g)=ϕ(ge)+higher-order terms, and ϕ(ge) contains the term
ge(c0, c1, . . . , cn−1,1)xe

n = cxe
n, where c ∈ `×. It follows that ϕ(g) has the

form required in Theorem 9.5, with x = xn. Replacing g by ϕ(g), we
now have g = (xe

n + b1xe−1
n +·· ·+ be)u, where the bi are non-units of D

and u is a unit of S. Finally, we make the substitution xn 7→ xn− b1
e xe−1

n
to eliminate the coefficient b1. �

Here is the main theorem of this chapter, due to Buchweitz-Greuel-
Schreyer and Knörrer [Knö87, BGS87].

9.7. THEOREM. Let k be an algebraically closed field of charac-
teristic different from 2, and put S = k[[x0, . . . , xd]], where d > 2. Let
R = S/( f ), where 0 6= f ∈ (x0, . . . , xd)2. Then R has finite CM type if
and only if there is a non-zero element g ∈ (x0, x1)2k[[x0, x1]] such that
k[[x0, x1]]/(g) has finite CM type and R ∼= S/(g+ x2

2 +·· ·+ x2
d).

PROOF. The “if” direction follows from Theorem 8.20 and induc-
tion on d. For the converse, we assume that R has finite CM type.
Then R is a simple singularity (Theorem 9.2), and (ic) of Lemma 9.3
implies that e(R) = 2. Since char(k) 6= 2, we may assume, by Corol-
lary 9.6, that f = x2

d + b, with b ∈ (x0, . . . , xd−1)2k[[x0, x1, . . . , xd−1]]. (The
unit u in the conclusion of the corollary does not affect the isomor-
phism class of R.) Note that b 6= 0, by (ia) of Lemma 9.3. Then R = A#,
where A = k[[x0, x1, . . . , xd−1]]

/
(b). Now Theorem 8.20 implies that A

has finite CM type. If d = 2 we set g = b, and we’re done. Other-
wise, after a change of coordinates we have b = (x2

d−1 + c)u, where c ∈
(x0, . . . , xd−2)2k[[x0, . . . , xd−2]]\{0} and u is a unit of k[[x0, x1, . . . , xd−1]].
Now f = (x2

du−1 + x2
d−1 + c)u. Since S is complete, it is in particular

Henselian by Hensel’s Lemma (Corollary1.9), and since char(k) 6= 2 the
classical definition of Henselianness (Corollary A.31) provides a unit v
such that v2 = u−1. After replacing xd by xdv and discarding the unit
u, we now have R ∼= S/(c+ x2

d−1 + x2
d). Repeat! �

If the characteristic of k is different from 2, 3 and 5, we get a more
explicit version of the theorem.

9.8. THEOREM. Let k be an algebraically closed field of characteris-
tic different from 2, 3, or 5, let d> 1, and let R = k[[x, y, x2, . . . , xd]]/( f ),
where 0 6= f ∈ (x, y, x2, . . . , xd)2. These are equivalent:

(i) R has finite CM type.
(ii) R is a simple singularity.

(iii) R ∼= k[[x, y, x2, . . . , xd]]/(g+ x2
2 +·· ·+ x2

d), where g ∈ k[x, y] defines
a one-dimensional ADE singularity (cf. Chapter 4, §3). �
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A consequence of this theorem is that, in this context, simplicity of
R depends only on the isomorphism class of R, not on the presentation
R = S/( f ). We know of no proof of this fact in general. The proof of the
theorem will occupy the rest of the section.

PROOF. (i) =⇒ (ii) by Theorem 9.2.
(ii) =⇒ (iii): Suppose first that d > 2; then e(R) = 2 by (ic) of

Lemma 9.3. By Corollary 9.6, we may assume that f = x2
d + b, where

b is a non-zero non-unit of k[[x0, x1, . . . , xd−1]]. Then R = A#, where A =
k[[x0, x1, . . . , xd−1]]

/
(b). Simplicity passes from R to A: If there were an

infinite number of ideals L i of k[[x0, x1, . . . , xd−1]] with b ∈ L2
i for each i,

we would have x2
d+b ∈ (L iS+xdS)2 for each i, where S = k[[x0, . . . , xd]].

Since (L iS+ xdS)∩ k[[x0, x1, . . . , xd−1]] = L i, the extended ideals would
be distinct, contradicting simplicity of R. Thus we can continue the
process, dropping dimensions till we reach dimension one. It suffices,
therefore, to prove that (ii) =⇒ (iii) when d = 1.

Changing notation, we set S = k[[y, x]] and n = (y, x)S. (The silly
ordering of the variables stems from the choice of the normal forms for
the ADE singularities in Chapter 4, §3.) We have a power series f ∈
n2\{0} which is contained in the squares of only finitely many ideals,
and we want to show that R = S/( f ) is an ADE singularity. We will
follow Yoshino’s proof of [Yos90, Proposition 8.5] closely, adding a few
details and making a few necessary modifications (some of them to
accommodate non-zero characteristic p > 5).

Suppose first that e(R) = 2. By Corollary 9.6, we may assume that
f = x2 + g, where g ∈ yk[[y]]. Then g 6= 0 by (ia) of Lemma 9.3, and
we write g = ytu, where u ∈ k[[y]]×. Then t > 2, else R would be a
discrete valuation ring. Replacing f by u−1 f , we now have f = u−1x2+
yt. Now we let v ∈ k[[y]]× be a square root of u−1 using Hensel’s Lemma
(Corollaries 1.9 and A.31) and make the change of variables x 7→ vx.
Then f = x2 + yt, so R is an (At−1)-singularity.

Before taking on the more challenging case e(R) = 3, we pause for
a primer on tangent directions of the branches of an analytic curve.
Given any non-zero, non-unit power series g ∈ K[[x, y]], where K is
any algebraically closed field, let ge be the initial form of g. Thus
ge is a non-zero homogeneous polynomial of degree e > 1 and g =
ge +higher-degree forms. We can factor ge as a product of powers of
distinct linear forms:

ge = `m1
1 · · · · ·`mh

h ,

where each mi > 0 and the linear forms `i are not associates in K[x, y].
(To do this, dehomogenize, then factor, then homogenize.) The tangent
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lines to the curve g = 0 are the lines `i = 0, 16 i6 h. We will need the
“Tangent Lemma” (cf. [Abh90, p. 141]):

9.9. LEMMA. Let g be a non-zero non-unit in K[[x, y]], where K is
an algebraically closed field. If g is irreducible, then g has a unique
tangent line.

PROOF. Let e be the order of g. By the Weierstrass Preparation
Theorem 9.5 we may assume that g = ye+b1 ye−1+·· ·+be−1 y+be, where
the bi ∈ B := K[[x]]. Since xi | bi (else the order of g would be smaller
than e), we may write

g = ye + c1xye−1 +·· ·+ ce−1xe−1 y+ cexe ,

with ci ∈ B. Let us assume that the curve g = 0 has more than one
tangent line. Then we can factor the leading form

ge = ye + c1(0)xye−1 +·· ·+ ce−1(0)xe−1 y+ ce(0)xe

as a product of linear factors y−aix with not all ai equal. Dehomoge-
nizing (setting x = 1), we have

ye + c1(0)ye−1 +·· ·+ ce−1(0)y+ ce(0)=
e∏

i=1
(y−ai) .

By grouping the factors intelligently, we can write

(9.9.1) ye + c1(0)ye−1 +·· ·+ ce−1(0)y+ ce(0)= pq ,

where p and q are relatively prime monic polynomials of positive de-
gree.

Put z = y
x . Then z is transcendental over B, and we have

g = xeh, where h = ze + c1ze−1 +·· ·+ ce−1z+ ce ∈ B[z] .

By (9.9.1), the reduction of h modulo xB factors as the product of
two relatively prime monic polynomials of positive degree. Since B
is Henselian (cf. Theorem A.30 and Corollary 1.9), we can write

h = (zm +u1zm−1 +·· ·+u0)(zn +v1zn−1 +·· ·+v0) .

with ui,v j ∈ B and with both m and n positive. Then

g = (ym +u1xym−1 +·· ·+u0xm)(yn +v1xyn−1 +·· ·+v0xn)

is the desired factorization of g. �

The lemma is exemplified by the nodal cubic g = y2 − x2 − x3 = y2 −
x2(1+x), which, though irreducible in K[x, y], factors in K[[x, y]] as long
as char(K) 6= 2. It has two distinct tangent lines, x+ y= 0 and x− y= 0;
and indeed it factors: If h is a square root of 1+ x (obtained from the
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Taylor expansion of (1+ x)
1
2 , or via Hensel’s Lemma: Corollaries 1.9

and A.31), then g = (y+ xh)(y− xh).

Now assume e(R)= 3, and write f = x3+xa+b, where a,b ∈ yk[[y]].
Since f has order 3, we have a ∈ y2k[[y]] and b ∈ y3k[[y]].

9.10. CASE. f is irreducible.

Then b 6= 0. The initial form f3 of f is a power of a single linear form
by Lemma 9.9, and it follows that f3 = x3. Therefore the order of a is
at least 3, and b has order n> 4. If a = 0 we have f = x3 +uyn, where
u ∈ k[[y]]×. By extracting a cube root of u−1 (using Corollary A.31), we
may assume that f = x3 + yn. Now Lemma 9.4 implies that n must be
4 or 5, and R is an (E6) or (E8) singularity. If a 6= 0 we can assume that
f = x3+uxym+ yn, where m> 3 and u ∈ k[[y]]×. Suppose for a moment
that m = 3 and n> 5. Then one can find a root ξ ∈ k[[y]]× of T3+uT2+
y2n−9 = 0 by lifting the simple root −u of T3 +uT2 ∈ k[T]. One checks
that then x = ξ−1 ym−3 is a root of f , contradicting irreducibility. Thus
either m> 4 or n = 4.

Suppose n = 4, so f = x3 + uxym + y4. After the transformation
y 7→ y− 1

4 uxym−3, f takes the form

f =
{

x3 +bx2 y2 + y4 (b ∈ k[[x, y]]) if m > 3
vx3 + cx2 y2 + y4 (c ∈ k[[x, y]], v ∈ k[[x, y]]×) if m = 3 .

If m = 3, we use the transformation x 7→ v−
1
3 x to eliminate the unit

v (modifying c along the way). Thus in either case we have f = x3 +
bx2 y2 + y4, and now the transformation x 7→ x− 1

3 by2 puts f into the
form f = x3+wy4, where w ∈ k[[x, y]]×. Replacing y by w− 1

4 y, we obtain
the (E6)-singularity.

Now assume that n 6= 4 (and, consequently, m> 4). Lemma 9.4 im-
plies that n = 5. The transformation y 7→ y− 1

5 uxym−4 (with a unit ad-
justment to x if m = 4) puts f in the form x3+bx2 y3+ y5. The change of
variable x 7→ x− 1

3 by3 now transforms f to x3+wy5, where w ∈ k[[x, y]]×.
On replacing y with w− 1

5 y, we obtain the (E8) singularity, finishing
this case.

9.11. CASE. f is reducible but has only one tangent line.

Changing notation, we may assume that f = x(x2+ax+b), where a
and b are non-units of k[[y]]. As before, x3 must be the initial form of
f , so f = x(x2 + cxy2 +dy3), where c,d ∈ k[[y]]. By Lemma 9.4 d must
be a unit. After replacing y by d− 1

3 y, we can write f = x(x2+ exy2+ y3),
where e ∈ k[[y]]. Next do the change of variable y 7→ y− 1

3 ex to eliminate
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the y2 term. Now f = x(ux2 + y3), where u ∈ k[[x, y]]×. Replacing x by
u− 1

2 x, we have, up to a unit multiple, an (E7) singularity.

9.12. CASE. f is reducible and has more than one tangent line.

Write f = `q, where ` is linear in x and q is quadratic. If the
tangent line of ` happens to be a tangent line of q, then, by Lemma 9.9,
q factors as a product of two linear polynomials with distinct tangent
lines. In any case, we can write f = (x− r)(x2 + sx+ t), where r, s, t ∈
yk[[y]], and where the tangent line to x− r is not a tangent line of
x2+sx+ t. After the usual changes of variables and multiplication by a
unit, we may assume that f = (x−r)(x2+yn), where n> 2. If n = 2, then
f is a product of three distinct lines, and we get (D4). Assume now that
n> 3. Then x = 0 is the tangent line to x2 + yn and therefore cannot
be the tangent line to x− r. Hence r = uy for some unit u ∈ k[[y]]×. We
make the coordinate change y 7→ x−y

u . Now f = y(ax2 + bxyn−1 + cyn),
where a and c are units of k[[x, y]]. Better, up to the unit multiple c,
we have f = y(ac−1x2 + bc−1xyn−1 + yn). Replace x by (ac−1)−

1
2 x; now

f = y(x2+dxyn−1+ yn). After the change of coordinates x 7→ x− 1
2 d yn−1,

we have f = y(x2 − 1
4 d2 y2n−2 + yn). Since 2n− 2 > n, we can rewrite

this as f = y(x2 + eyn), where e ∈ k[[x, y]]×. Finally, we factor out e and
replace x by e

1
2 x, bringing f into the form y(x2 + yn), the equation for

the (Dn+2) singularity.
To finish the cycle and complete the proof of Theorem 9.8, we now

show that (iii) =⇒ (i). If d = 1 we invoke Corollary 8.22. Assuming
inductively that k[[x0, . . . , xr]]/(g+ z2

2 + ·· · + z2
r ) has finite CM type for

some r > 1, we see, by (ii) of Theorem 8.20, that k[[x0, . . . , xr+1]]/(g+
z2

2 +·· ·+ z2
r+1) has finite CM type as well. �

9.13. REMARK. Inspecting the proof, we see that the demonstration
of (ii) =⇒ (iii) in the one-dimensional case of Theorem 9.8 uses only
the following three properties of a simple singularity R = S/( f ), where
(S,n) is a two-dimensional regular local ring:

(i) R is reduced;
(ii) e(R)6 3; and

(iii) f ∉ (α,β2)3 for every α,β ∈ n.

Since the one-dimensional ADE hypersurfaces obviously satisfy these
properties, it follows that f defines a simple singularity if and only if
these three conditions are satisfied.
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§3. Gorenstein rings of finite CM type

In this section we will prove Herzog’s theorem [Her78b] stating
that the rings of the title are abstract hypersurfaces, that is, the com-
pletion of such a ring is a hypersurface singularity. Before giving the
proof, we establish the following result (also from [Her78b]) of inde-
pendent interest. Recall that a MCM module M is stable provided it
has no non-zero free summands.

9.14. LEMMA. Let (R,m) be a CM local ring, let M be a stable MCM
R-module, and let N = syzR

1 (M).
(i) N is stable.

(ii) Assume M is indecomposable, that Ext1
R(M,R) = 0, and that

Rp is Gorenstein for every prime ideal p of R with heightp6 1.
Then N is indecomposable.

PROOF. We have a short exact sequence

(9.14.1) 0 //N //F //M //0 ,

where F is free and N ⊆ mF. Let (x) = (x1, . . . , xd) be a maximal R-
regular sequence in m. Since M is MCM, (x) is M-regular, and it fol-
lows that the map N/xN −→ F/xF is injective. We therefore have an
injection N/xN ,→mF/xF. Since (x) is a maximal N-regular sequence,
m ∈ Ass(N/xN), so m ∈ Ass(mF/xF) = Ass(m/(x)). It follows that m/x is
an unfaithful R/(x)-module and hence that N/xN is unfaithful too. But
then N/xN cannot have have R/(x) as a direct summand, and item (i)
follows.

For the second statement, we note at the outset that both M and N
are reflexive R-modules, by Corollary A.14. We dualize (9.14.1), using
the vanishing of Ext1

R(M,R), to get an exact sequence

(9.14.2) 0 //M∗ //F∗ //N∗ //0 .

Suppose N = N1 ⊕ N2, with both summands non-zero. By (i), neither
summand is free. Since N is reflexive, neither N∗

1 nor N∗
2 is free, and

it follows from (9.14.2) that M∗ decomposes non-trivially. As M is re-
flexive, this contradicts indecomposability of M. �

9.15. THEOREM (Herzog). Let (R,m,k) be a Gorenstein local ring
with a bound on the number of generators required for indecomposable
MCM modules. Then R̂ is a hypersurface ring.

PROOF. Let M = syzR
d (k), and write M = M1 ⊕·· ·⊕Mt, where each

Mi is indecomposable and the summands are indexed so that Mi ∼= R
if and only if i > s. By Lemma 9.14, syzR

j (M) is a direct sum of at
most s indecomposable modules for j > d. (The requisite vanishing of
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Ext follows from the Gorenstein hypothesis.) It follows that the Betti
numbers of k are bounded. By a theorem of Tate and Gulliksen [Tat57,
Gul80] (see also [Eis80, Corollary 6.2] or [Avr98]) this forces R̂ to be
a hypersurface ring. �

Combining Theorem 9.15 with Theorem 9.8, we have characterized
finite CM type for complete Gorenstein algebras over an algebraically
closed field. See Corollary 10.19 for the final improvement.

9.16. THEOREM. Let k be an algebraically closed field of character-
istic different from 2, 3, and 5. Let (R,m,k) be a Gorenstein complete
local ring containing k as a coefficient field. If R has finite CM type,
then R is a complete ADE hypersurface singularity. �

The ADE classification of Theorem 9.16 allows us to verify Conjec-
tures 7.20 and 7.21 in this case.

9.17. COROLLARY. Let R be as in Theorem 9.16. Then R has mini-
mal multiplicity. If char(k)= 0, then R has a rational singularity. �

§4. Matrix factorizations for the Kleinian singularities

Theorem 6.23 is the statement that the complete Kleinian singu-
larities k[[x, y, z]]/( f ) have finite CM type, where f is one of the poly-
nomials listed in Table 6.19 and k is an algebraically closed field of
characteristic not 2, 3, or 5. This was the key step in the classification
of Gorenstein rings of finite CM type in the previous section. Given
their central importance, it is worthwhile to have a complete listing of
the matrix factorizations for the indecomposable MCM modules over
these rings.

To describe the matrix factorizations, we return to the setup of Def-
inition 6.5: Let G be a finite subgroup of SL(2,C), that is, one of the
binary polyhedral groups of Theorem 6.11. Let G act linearly on the
power series ring S = C[[u,v]], and set R = SG . Then R is generated
over C by three invariants x(u,v), y(u,v), and z(u,v), which satisfy a
relation z2 + g(x, y)= 0 for some polynomial g depending on G, so that
R ∼=C[[x, y, z]]/(z2 + g(x, y)).

Set A = C[[x(u,v), y(u,v)]] ⊂ R. Then A is a power series ring, in
particular a regular local ring. Since z2 ∈ A, we see that as in Chap-
ter 8, R is a free A-module of rank 2. Moreover, any MCM R-module
is A-free as well. It is known [ST54, Coh76] that A is also a ring of
invariants of a finite group G′ ⊂U(2), generated by complex reflections
of order 2 and containing G as a subgroup of index 2.

Let V0, . . . ,Vd be a full set of the non-isomorphic irreducible repre-
sentations of G; then we know from Corollary 5.20 and Theorem 6.3
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that M j = (S ⊗C Vj)G , for j = 0, . . . ,d, are precisely the direct sum-
mands of S as R-module and are also precisely the indecomposable
MCM R-modules. To get a handle on the M j, we can express them as
(S ⊗C IndG′

G Vj)G
′
. Being free over A, each M j will have a basis of G′-

invariants. These, and the identities of the representations IndG′
G Vj,

are computed in [GSV81].
Now we show how to obtain the matrix factorization corresponding

to each M j, following [GSV81]. The proof of the next proposition is a
straightforward verification, mimicking the proof (see Remark B.6(i))
that the kernel of the diagonal map µ : B⊗A B −→ B is generated by
all elements of the form b⊗1−1⊗b. The essential observation is that
z2 =−g(x, y) ∈ A.

9.18. PROPOSITION. Define an R-module endomorphism σ : S −→
S by sending z to −z, and let σS be the R-module with underlying
abelian group S, but with R-module structure given by r · s = σ(r)s.
Then we have two exact sequences of R-modules:

0 // σS i−
// R⊗A S

p+
// S // 0

and

0 // S i+
// R⊗A S

p−
// σS // 0 ,

where i−(s)= i+(s)= z⊗ s−1⊗ zs, j+(r⊗ s)= rs, and j−(r⊗ s)=σ(r)s.

From this proposition one deduces the following theorem. We omit
the details.

9.19. THEOREM. Let S = C[[u,v]], G a finite subgroup of SL(2,C)
acting linearly on S, and R = SG . Let x, y, and z be generating invari-
ants for R satisfying the relation z2 + g(x, y) = 0, and let A = C[[x, y]].
Then the R-free resolution of S has the form

· · · T−
// R⊗A S T+

// R⊗A S T−
// R⊗A S

p+
// S // 0 ,

where
T±(r⊗ s)= zr⊗ s± r⊗ zs .

Moreover, the R-free resolution of each indecomposable R-direct sum-
mand M j of S is the direct summand of the above resolution of the form

· · ·
T−

j
// R⊗A M j

T+
j
// R⊗A M j

T−
j
// R⊗A M j

p+
j
// M j // 0 .

�
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In terms of matrices, the resolution and corresponding matrix fac-
torization of the MCM R-module M j can be deduced from the theorem
as follows. Let Φ : S −→ S denote the R-linear homomorphism given
by multiplication by z, and let Φ j : M j −→ M j be the restriction to M j.
Then each Φ j is an A-linear map of free A-modules. Choose a basis
and represent Φ j by an n×n matrix ϕ j with entries in x and y. Then
ϕ2

j is equal to multiplication by z2 =−g(x, y) ∈ A on M j, so that

(zIn −ϕ j, zIn +ϕ j)

is a matrix factorization of z2 + g(x, y) with cokernel M j.
Our task is thus reduced to computing the matrix representing

multiplication by z on each M j. As in Chapter 6, we treat each case
separately.

9.20 (An). We have already computed the presentation matrices of
the MCM modules over C[[x, y, z]]/(xz− yn+1) in Example 5.25, but we
illustrate Theorem 9.19 in this easy case before proceeding to the more
involved ones below. The cyclic group Cn+1, generated by

εn+1 =
(
ζn+1 0

0 ζ−1
n+1

)
,

has invariants x = un+1 +vn+1, y= uv, and z = un+1 −vn+1, satisfying

z2 − (x2 −4yn+1)= 0 .

Set A = C[[x, y]] ⊂ R = k[[x, y, z]]. Then A = C[[un+1 + vn+1,uv]] is an
invariant ring of the group G′ generated by εn+1 and the additional
reflection s = ( 1

1
)
.

Let Vj, for j = 0, . . . ,n, be the irreducible representation of Cn+1

with character χ j(g)= ζ j
n+1. Then the MCM R-modules M j = (S⊗CVj)G

are generated over R by the monomials uavb such that b−a ≡ j modn+
1. Over A, each M j is freely generated by u j and vn+1− j. Since

zu j = (un+1 −vn+1)u j = (un+1 +vn+1)u j −2(uv) jvn+1− j

and

zvn+1− j = (un+1 −vn+1)vn+1− j = 2(uv)n+1− ju j − (un+1 +vn+1)vn+1− j ,

the matrix ϕ j representing the action of z on M j is

ϕ j =
(

x 2yn+1− j

−2y j −x

)
.

One checks that ϕ2
j = (x2−4yn+1)I2, so (zI2−ϕ j, zI2+ϕ j) is the matrix

factorization corresponding to M j.
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Making a linear change of variables, we find that the indecompos-
able matrix factorizations of the (An) singularity defined by x2+ yn+1+
z2 = 0 are (zI2 −ϕ j, zI2 +ϕ j), where

ϕ j =
(

ix yn+1− j

−y j −ix

)
,

for j = 0, . . . ,n, and where i denotes a square root of −1.

9.21 (Dn). The dihedral group Dn−2 is generated by

α=
(
ζ2(n−2) 0

0 ζ−1
2(n−2)

)
and β=

(
0 i
i 0

)
,

where again i denotes a square root of −1. The invariants of α and β

are x = u2(n−2)+(−1)nv2(n−2), y= u2v2, and z = uv(u2(n−2)−(−1)nv2(n−2)),
which satisfy

z2 − y(x2 −4(−1)n yn−2)= 0 .
Again we set A =C[[x, y]]=C[[u2(n−2)+ (−1)nv2(n−2),u2v2]] and again A
is the ring of invariants of the group G′ generated by α, β, and s = ( 1

1
)
.

In the matrices below, we will implicitly make the linear changes
of variable necessary to put the defining equation of R into the form

z2 − (−y
(
x2 + yn−2))= 0 .

Consider first the one-dimensional representation V1 given by α 7→ 1
and β 7→ −1. The MCM R-module M1 = (S⊗CV1)G has A-basis given by
(uv,u2(n−2) − (−1)nv2(n−2)), and after the change of variable the matrix
ϕ1 for multiplication by z is

ϕ1 =
(
0 −x2 − yn−1

y 0

)
.

Next consider the two-dimensional irreducible representations Vj, for
j = 2, . . . ,n−2, given by

α 7→
(
ζ

j−1
2(n−2) 0

0 ζ
− j+1
2(n−2)

)
and β 7→

(
0 i j−1

i j−1 0

)
.

For each j, the corresponding MCM R-module M j has A-basis

(u j−1,uv2n− j−2,u jv,v2n− j−3) .

The matrix ϕ j depends on the parity of j; for j even, it is

ϕ j =


−xy −yn−1− j/2

−y j/2 x
x yn−1− j/2

y j/2 −xy


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while if j is odd we have

ϕ j =


−xy −yn−1−( j−1)/2

−y( j+1)/2 xy
x yn−2−( j−1)/2

y( j−1)/2 −x

 .

Finally consider Vn−1 and Vn, which are the irreducible compo-
nents of the two-dimensional reducible representation

α 7→
(−1 0

0 −1

)
, β 7→

(
0 i
i 0

)
.

The MCM R-modules Mn−1 and Mn have bases over A given by

(uv(un−2 + (−1)n+1vn−2),un−2 + (−1)nvn−2)

and
(uv(un−2 + (−1)nvn−2),un−2 + (−1)n+1vn−2) ,

respectively. Again the corresponding matrices ϕn−1 and ϕn depend on
parity: for n odd we have

ϕn−1 =
(
i y(n−1)/2 −x

xy −i y(n−1)/2

)
and ϕn =

(
i y(n−1)/2 −xy

x −i y(n−1)/2

)
,

and for n even

ϕn−1 =
(

0 −x− i y(n−2)/2

xy− i yn/2 0

)
and ϕn =

(
0 −x+ i y(n−2)/2

xy+ i yn/2 0

)
.

For the E-series examples, we suppress the details of the complex
reflection group G′ and the A-bases for the M j. The interested reader
should see [ST54] and [GSV81].

9.22 (E6). The defining equation of the (E6) hypersurface singu-
larity is z2 − (−x3 − y4) = 0. For each of the six non-trivial irreducible
representations V1, V2, V3, V ∨

3 , V4, and V ∨
4 , one can choose A-bases for

M j so that multiplication by z is given by the following matrices. The
matrix factorizations for the corresponding MCM R-modules are given
by (zIn −ϕ, zIn +ϕ).

ϕ1 =


−x2 −y3

−y x
x y3

y −x2

 ϕ2 =



−x2 −y3 xy2

xy −x2 −y3

−y2 xy −x2

x 0 y2

y x 0
0 y x


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ϕ3 =


i y2 0 −x2 0
0 i y2 −xy −x2

x 0 −i y2 0
−y x 0 −i y2

 ϕ∨
3 =


−i y2 0 −x2 0

0 −i y2 −xy −x2

x 0 i y2 0
−y x 0 i y2


ϕ4 =

(
i y2 −x2

x −i y2

)
ϕ∨

4 =
(−i y2 −x2

x iy2

)
9.23 (E7). The (E7) singularity is defined by z2 − (−x3 − xy3) = 0.

There are 7 non-trivial irreducible representations V1, . . . , V7, and the
matrices ϕ j corresponding to multiplication by z are given below. The
matrix factorizations for the corresponding MCM R-modules are given
by (zIn −ϕ, zIn +ϕ).

ϕ1 =


−x2 −xy2

−y x
x xy2

y −x2

 ϕ2 =



−x2 −xy2 x2 y
xy −x2 −xy2

−y2 xy −x2

x 0 xy
y x 0
0 y x



ϕ3 =



0 0 −x2 −xy2

0 0 −xy x2

−x −y2 0 xy
−y x −x 0

0 −xy x2 xy2

x 0 xy −x2

x y2 0 0
y −x 0 0



ϕ4 =



xy −x2 −xy2

−y2 xy −x2

−x −y2 xy
0 xy x2

x 0 xy
y x 0

 ϕ5 =


−xy −x2

−x y2

y2 x2

x −xy



ϕ6 =
(

0 y3 + x2

−x 0

)
ϕ7 =


−x2 −xy2

−xy x2

x y2

y −x


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9.24 (E8). The defining equation of the hypersurface(E8) singular-
ity is z2 − (−x3 − y5) = 0. Here are the matrices ϕ j representing mul-
tiplication by z on the 8 non-trivial indecomposable MCM R-modules.
The matrix factorizations are given by (zIn −ϕ, zIn +ϕ).

ϕ1 =


−x2 −y4

−y x
x y4

y −x2

 ϕ2 =



−x2 −y4 xy3

xy −x2 −y4

−y2 xy −x2

x 0 y3

y x 0
0 y x



ϕ3 =



xy −y2 −x2 0
−y3 0 0 −x
x2 0 0 −y2

0 x −y3 −y
0 y2 −x 0
y3 xy 0 −x2

x 0 −y y2

0 x2 y3 0



ϕ4 =



−y3 x2 0 0 0
0 y3 −x2 xy2 −y4

0 −xy −y3 −x2 xy2

y2 0 xy −y3 −x2

−x −y2 0 0 0
y2 0 0 0 x2

−x 0 0 0 y3

0 x y2 0 0
y 0 x y2 0
0 y 0 x y2


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ϕ5 =



0 0 0 −x2 xy2 −y4

0 0 0 −y3 −x2 xy2

0 0 0 xy −y3 −x2

−x −y2 0 0 0 y3

0 −x −y2 y2 0 0
−y 0 −x 0 y2 0

0 0 y3 x2 −xy2 y4

y2 0 0 y3 x2 −xy2

0 y2 0 −xy y3 x2

x y2 0 0 0 0
0 x y2 0 0 0
y 0 x 0 0 0



ϕ6 =



0 −y3 −x2 0
−y2 0 xy −x2

−x −y2 0 y3

0 −x y2 0
0 y3 x2 −xy2

y2 0 0 x2

x 0 0 −y3

y x −y2 0



ϕ7 =


−y3 −x2

x −y2

y2 −x2

x y3

 ϕ8 =



−x2 xy2 −y4

−y3 −x2 xy2

xy −y3 −x2

x y2 0
0 x y2

y 0 x



9.25. REMARK. We observe that the forms above for the indecom-
posable matrix factorizations over the two-dimensional ADE singular-
ities make it easy to find the indecomposable matrix factorizations in
dimension one. When the matrix ϕ (involving only x and y) has the
distinctive anti-diagonal block shape, the pair of non-zero blocks con-
stitutes (up to a sign) an indecomposable matrix factorization for the
one-dimensional ADE polynomial in x and y. When the matrix ϕ does
not have block form, (ϕ,−ϕ) is an indecomposable matrix factorization.
See §3 of Chapter 13.
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§5. Bad characteristics

Here we describe, without proofs, the classification of hypersur-
faces of finite CM type in characteristics 2, 3 and 5. If the character-
istic of k is different from 2, Theorem 9.7 reduces the classification to
the case of dimension one. We quote the following two theorems due
to Greuel and Kröning [GK90] (cf. also the paper [KS85] by Kiyek and
Steinke):

9.26. THEOREM (Characteristic 3). Let k be an algebraically closed
field of characteristic 3, let d > 1, and let R = k[[x, y, x2, . . . , xd]]/( f ),
where 0 6= f ∈ (x, y, x2, . . . , xd)2. Then R has finite CM type if and only
if R ∼= k[[x, y, x2, . . . , xd]]/(g+ x2

2 +·· ·+ x2
d), where g ∈ k[x, y] is one of the

following:
(An): x2 + yn+1 , n> 1
(Dn): x2 y+ yn−1 , n> 4
(E0

6): x3 + y4

(E1
6): x3 + y4 + x2 y2

(E0
7): x3 + xy3

(E1
7): x3 + xy3 + x2 y2

(E0
8): x3 + y5

(E1
8): x3 + y5 + x2 y3

(E2
8): x3 + y5 + x2 y2 �

9.27. THEOREM (Characteristic 5). Let k be an algebraically closed
field of characteristic 5, let d > 1, and let R = k[[x, y, x2, . . . , xd]]/( f ),
where 0 6= f ∈ (x, y, x2, . . . , xd)2. Then R has finite CM type if and only
if R ∼= k[[x, y, x2, . . . , xd]]/(g+ x2

2 +·· ·+ x2
d), where g ∈ k[x, y] is one of the

following:
(An): x2 + yn+1 , n> 1
(Dn): x2 y+ yn−1 , n> 4
(E6): x3 + y4

(E7): x3 + xy3

(E0
8): x3 + y5

(E1
8): x3 + y5 + xy4 �

In characteristics different from two, notice that S[[u,v]]/( f +u2 +
v2)∼= S[[u,v]]/( f +uv), via the transformation u 7→ u+v

2 , v 7→ u−v
2
p−1

. Thus,
if one does not mind skipping a dimension, one can transfer finite
CM type up and down along the iterated double branched cover R]] =
S[[u,v]]/( f + uv), where R = S/( f ). Remarkably, this works in charac-
teristic two as well [Sol89, GK90].
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9.28. THEOREM (Solberg, Greuel-Kröning). Let k be an algebraic-
ally closed field of arbitrary characteristic, let d > 3, and define R =
k[[x0, . . . , xd]]/( f ), where 0 6= f ∈ (x0, . . . , xd)2. Then R has finite CM type
if and only if there exists a non-zero non-unit g ∈ k[[x0, . . . , xd−2]] such
that k[[x0, . . . , xd−2]]/(g) has finite CM type and R ∼= k[[x0, . . . , xd]]/(g+
xd−1xd). �

Solberg proved the “if” direction in his 1987 dissertation [Sol89].
He showed, in fact, that, for any non-zero non-unit g ∈ k[[x0, . . . , xd−2]],
the hypersurface ring k[[x0, . . . , xd−2]]/(g) has finite CM type if and only
if k[[x0, . . . , xd]]/(g+ xd−1xd) has finite CM type. The proof, which uses
the theory of AR sequences (cf. Chapter 13), is quite unlike the proof in
characteristics different from two, in that there seems to be no nice cor-
respondence between MCM R-modules and MCM R]]-modules (such
as in Theorem 8.33). In 1988 Greuel and Kröning [GK90] used de-
formation theory to show that if R as in the theorem has finite CM
type, then R ∼= k[[x0, . . . , xd]]/(g+ xd−1xd) for a suitable non-zero non-
unit element g ∈ k[[x0, . . . , xd−2]], thereby establishing the converse of
the theorem.

In order to finish the classification of complete hypersurface sin-
gularities of finite CM type in characteristic two, one needs to classify
those singularities in dimensions one and two. The normal forms are
listed in Section 5 of [Sol89] and in [GK90] and depend on earlier work
of Artin [Art77], Artin-Verdier [AV85], and Kiyek and Steinke [KS85].

§6. Exercises

9.29. EXERCISE. Let (S,n) be a regular local ring, and f ∈ nr \nr+1.
Show that the hypersurface ring S/( f ) has multiplicity r. (Hint: pass
to the associated graded ring and compute the Hilbert function of
S/( f ). See Appendix A for an alternative approach.)

9.30. EXERCISE. Let S be a regular local ring and R = S/( f ) a hy-
persurface singularity of dimension at least two. If R is simple, prove
that R is an integral domain.

9.31. EXERCISE. In the notation of Lemma 9.4, prove that

(α3,α2β2,αβ4,β6)⊆ (α+λβ2,β3)2

for any λ. (Hint: start with β6 and work backwards.)



CHAPTER 10

Ascent and Descent

We have seen in Chapter 9 that the hypersurface rings (R,m,k) of
finite Cohen-Macaulay type have a particularly nice description when
R is complete, k is algebraically closed and R contains a field of char-
acteristic different from 2, 3, and 5. In this section we will see to what
extent finite CM type ascends to and descends from faithfully flat ex-
tensions such as the completion or Henselization, and how it behaves
with respect to residue field extension. In 1987 Schreyer [Sch87] con-
jectured that a local ring (R,m,k) has finite CM type if and only if the
m-adic completion R̂ has finite CM type. We have already seen that
Schreyer’s conjecture is true in dimension one (Corollary 4.17). We
shall see that the “if” direction holds in general, and the “only if” di-
rection holds when R is excellent and Cohen-Macaulay. For rings that
are neither excellent nor CM, there are counterexamples (see 10.12).
Schreyer also conjectured ascent and descent of finite CM type along
extensions of the residue field (see Theorem 10.14 below). We shall
prove descent in general, and ascent in the separable case. Insepa-
rable extensions, however, can cause problems (see Example 10.17).
We will revisit some of these issues in Chapter 17, where we consider
ascent and descent of bounded CM type.

§1. Descent

Recall from Chapter 2 that for a finitely generated R-module M, we
denote by addR(M) the full subcategory of R-mod containing modules
that are isomorphic to direct summands of direct sums of copies of
M. When A −→ B is a faithfully flat ring extension and M and N
are finitely generated R-modules, we have M ∈ addR(N) if and only
if S⊗R M ∈ addS(S⊗R N) (Proposition 2.18). Furthermore, when R is
local and M is finitely generated, addR(M) contains only finitely many
isomorphism classes of indecomposable modules (Theorem 2.2).

Here is the main result of this section ([Wie98, Theorem 1.5]).

10.1. THEOREM. Let (R,m)−→ (S,n) be a flat local homomorphism
such that S/mS is Cohen-Macaulay. If S has finite CM type, then so
has R.

159
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PROOF. The hypothesis that the closed fiber S/mS is CM guaran-
tees that S⊗R M is a MCM S-module whenever M is a MCM R-module
(see Exercise 10.20). Let U be the class of MCM S-modules that occur
in direct-sum decompositions of extended MCM modules; thus Z ∈ U

if and only if there is a MCM R-module X such that Z is isomorphic
to an S-direct-summand of S⊗R X . Let Z1, . . . , Zt be a complete set of
representatives for isomorphism classes of indecomposable modules in
U . Choose, for each i, a MCM R-module X i such that Zi | S⊗R X i, and
put Y = X1 ⊕·· ·⊕ X t.

Suppose now that L is an indecomposable MCM R-module. Then
S⊗R L ∼= Z(a1)

1 ⊕·· ·⊕Z(at)
t for suitable non-negative integers ai, and it

follows that S ⊗R L is isomorphic to a direct summand of S ⊗R Y (a),
where a = max{a1, . . . ,at}. By Proposition 2.18, L is a direct summand
of a direct sum of copies of Y . Then, by Theorem 2.2, there are only
finitely many possibilities for L, up to isomorphism. �

By the way, the class U in the proof of Theorem 10.1 is not nec-
essarily the class of all MCM S-modules. For example, consider the
extension R = k[[t2]] −→ k[[t2, t3]] = S; in this case, the only extended
MCM modules are the free ones. (Cf. also Exercise 14.29). The first
order of business in the next section will be to find situations where
this unfortunate behavior cannot occur, that is, where every MCM S-
module is a direct summand of an extended MCM module.

§2. Ascent to the completion

It’s a long way to the completion of a local ring, so we will make a
stop at the Henselization. In this section and the next, we will need to
understand the behavior of finite CM type under direct limits of étale
and, more generally, unramified extensions. We will recall the basic
definitions here and refer to Appendix B for details, in particular, for
reconciling our definitions with others in the literature.

10.2. DEFINITION. A local homomorphism (R,m,k) −→ (S,n,`) of
local rings is unramified provided S is essentially of finite type over R
(that is, S is a localization of some finitely generated R-algebra) and
the following properties hold.

(i) mS = n, and
(ii) S/mS is a finite separable field extension of R/m.

If, in addition, ϕ is flat, then we say ϕ is étale. (We say also that S
is an unramified, respectively, étale extension of R.) Finally, a pointed
étale neighborhood is an étale extension (R,m,k) −→ (S,n,`) inducing
an isomorphism on residue fields.
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By Proposition B.9, properties (i) and (ii) are equivalent to the sin-
gle requirement that the diagonal map µ : S⊗R S −→ R (taking s1⊗ s2
to s1s2) splits as S⊗R S-modules (equivalently, ker(µ) is generated by
an idempotent).

It turns out (see [Ive73] for details) that the isomorphism classes
of pointed étale neighborhoods of a local ring (R,m) form a direct sys-
tem. The remarkable fact that makes this work is that if R −→ S and
R −→ T are pointed étale neighborhoods then there is at most one ho-
momorphism S −→ T making the obvious diagram commute.

10.3. DEFINITION. The Henselization Rh of R is the direct limit
of a set of representatives of the isomorphism classes of pointed étale
neighborhoods of R.

The Henselization is, conveniently, a Henselian ring (Chapter 1, §2
and Appendix A, §3).

Suppose R ,→ S is a flat local homomorphism. As in Chapter 4, §1,
we say that a finitely generated S-module M is weakly extended (from
R) provided there is a finitely generated R-module N such that M is
isomorphic to a direct summand of the S-module S⊗R N. In this case
we also say that M is weakly extended from N.

Our immediate goal is to show, in Theorem 10.8, that if R has fi-
nite CM type then Rh does too. We prove in Proposition 10.4 that it
will suffice to show that every MCM Rh-module is weakly extended
from a MCM R-module. In Proposition 10.5 we show, under certain
conditions, that it is enough to show that every finitely generated Rh-
module is weakly extended. Then, in Proposition 10.7 we verify that
these conditions are satisfied and that, indeed, every finitely gener-
ated Rh-module is weakly extended from R [HW09, Theorem 5.2]. The
proof depends on the fact (Theorem 7.12) that rings of finite CM type
have isolated singularities. Some results here include details that will
not be needed in this chapter but will be used in the study of bounded
and countable CM type.

10.4. PROPOSITION. Let (R,m)−→ (S,n) be a local homomorphism.
Assume that every MCM S-module is weakly extended from a MCM
R-module. If R has finite CM type, so has S.

PROOF. Let L1, . . . ,L t be a complete list of representatives for the
isomorphism classes of indecomposable MCM R-modules. Let L = L1⊕
·· ·⊕L t, and put V = S⊗R L. Given a MCM S-module M, we choose a
MCM R-module N such that M | S⊗R N. Writing N = L(a1)

1 ⊕·· ·⊕L(at)
t ,

we see that N ∈ addR(L) and hence that M ∈ addS(V ). Thus every
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MCM S-module is contained in addS(V ); now Theorem 2.2 completes
the proof. �

10.5. PROPOSITION. Let (R,m) −→ (S,n) be a flat local homomor-
phism of CM local rings. Assume that

(i) the closed fiber S/mS is Artinian;
(ii) Sq is Gorenstein for each prime ideal q 6= n; and

(iii) every finitely generated S-module is weakly extended from R.
Then every MCM S-module is weakly extended from a MCM R-module.
In particular, if R has finite CM type, so has S.

PROOF. Note that dim(R) = dim(S) by [BH93, (A.11)]; let d be the
common value. Let M be a MCM S-module. As S is Gorenstein on the
punctured spectrum, Corollary A.15 implies that M is a dth syzygy of
some finitely generated S-module U . We choose a finitely generated
R-module V such that U | S⊗R V , say, U ⊕ X ∼= S⊗R V . Let W be a dth

syzygy of V . Then W is MCM by the Depth Lemma. Since R −→ S is
flat, S ⊗R W is a dth syzygy of S ⊗R V , as is M ⊕L, where L is a dth

syzygy of X . By Schanuel’s Lemma (A.10) there are finitely generated
free S-modules G1 and G2 such that (S⊗R W)⊕G1

∼= (L⊕M)⊕G2. Of
course G1 is extended from a free R-module F. Putting N =W ⊕F, we
see that M | S ⊗R N. This proves the first assertion, and the second
follows from Proposition 10.4. �

In dimension one we can get by with fewer hypotheses:

10.6. PROPOSITION. Let (R,m) −→ (S,n) be a local homomorphism
of one-dimensional CM rings, and let M be a MCM S-module. If M
is weakly extended from R, then M is weakly extended from a MCM
R-module.

PROOF. Recall that over a one-dimensional CM ring a non-zero
finitely generated module is MCM if and only if it is torsion-free. We
have

(10.6.1) M⊕ X ∼= S⊗R N

for some finitely generated R-module N. Let T be the torsion submod-
ule of N. Then S ⊗R T is a torsion S-module, since it is killed by a
regular element. Moreover, (S⊗R N)/(S⊗R T)∼= S⊗R (N/T), which is a
MCM S-module by Exercise 10.20. It follows that S⊗R T is exactly the
torsion submodule of S⊗R N. Killing the torsion in (10.6.1), we have
M⊕ X /tors(X )∼= S⊗R (N/T). �

Let’s pause for a moment to recall a few definitions. First, a Noe-
therian ring A is regular provided Am is a regular local ring for each
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maximal ideal m of A. A Noetherian ring A containing a field k is ge-
ometrically regular over k provided `⊗k A is a regular ring for every
finite algebraic extension ` of k. A homomorphism ϕ : A −→ B of Noe-
therian rings is regular provided ϕ is flat, and for each p ∈Spec(A) the
fiber Bp/pBp is geometrically regular over the field Ap/pAp. Finally, A
is excellent provided

(i) A is Noetherian,
(ii) Ap −→ (Ap)̂ is a regular homomorphism for each prime ideal p

of A,
(iii) the non-singular locus of B is open in Spec(B) for every finitely

generated A-algebra B, and
(iv) A is universally catenary.
A local homomorphism (R,m) −→ (S,n) is absolutely flat [Fer72]

provided both R −→ S and the diagonal map S⊗R S −→ S are flat ho-
momorphisms. Equivalently [Fer72, Theorem 4.1], R −→ S is flat, and
for each p ∈Spec(R) the fiber map Rp/pRp −→ Sp/pSp is absolutely flat.

10.7. PROPOSITION. Let (R,m) −→ (S,n) be a flat local homomor-
phism of CM local rings, and assume that S is the direct limit of a
system {(Sα,nα)}α∈Λ of étale extensions of (R,m).

(i) Every finitely generated S-module is weakly extended from R.
(ii) If q is a prime ideal of S and p = q∩ R, then pSq = qSq. In

particular, mS = n.
(iii) If R is Gorenstein (respectively, regular) on the punctured spec-

trum, then so is S.
(iv) If R is excellent and reduced, so is S.
(v) dimR = dimS.

PROOF. Given an arbitrary finitely generated S-module, we choose
a matrix A whose cokernel is M. Since all of the entries of A live in
some étale extension T of R, we see that M = S⊗T N for some finitely
generated T-module N. Refreshing notation, we may assume that
ϕ : R −→ S is étale. We apply −⊗S M to the diagonal map µ : S⊗R S −→
S, getting a commutative diagram

(10.7.1)
S⊗R S⊗S M

µ⊗1M
//

∼=
��

S⊗S M
∼=
��

S⊗R M // M

in which the horizontal maps are split surjections of S-modules. The
S-module structure on S ⊗R M comes from the S-action on S, not on
M. (The distinction is important; see Exercise 10.23.) Thus we have
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a split injection of S-modules j : M −→ S ⊗R M. Now write R M as a
directed union of finitely generated R-modules Nα. The flatness of ϕ
implies that S⊗R M is the directed union of the modules S⊗R Nα. Since
j(M) is a finitely generated S-module, there is an index α0 such that
j(M) ⊆ S⊗R Nα0 . We put N = Nα0 . Since j(M) is a direct summand of
S ⊗R M, it must be a direct summand of the smaller module S ⊗R N.
This proves (i).

To prove (ii), (iii), and (v), let q be an arbitrary prime ideal of S.
Put qα = q∩Sα for each α and p= q∩R. Each extension Rp −→ (Sα)qα
is étale by Exercise 10.22, and hence p(Sα)qα = qα(Sα)qα for each α.
Item (ii) follows, and now [BH93, (A.11)] gives (v).

Suppose R is Gorenstein on the punctured spectrum, and assume
q 6= n. We see from (ii) that p 6=m, so Rp is Gorenstein. Since the closed
fiber Sq/pSq is a field, [BH93, (3.3.15)] implies that Sq is Gorenstein.
If, on the other hand, Rp is regular, we see that the maximal ideal
of Sq can be generated by dim(Rp) elements. Since by [BH93, (A.11)]
dim(Sq)= dim(Rp), we conclude that Sq is regular.

To prove (iv), we show first that S is reduced. Since S is CM, it is
enough, by Proposition A.8, to show that Sq is a field if q is a minimal
prime ideal of S. By the “going-down theorem” [BH93, Lemma A.9],
p := q∩R is a minimal prime ideal of R. Therefore Rp is a field, and now
(ii) implies that Sq is a field too. Next we observe that S ⊗R S −→ S,
being a direct limit of split maps, is flat, that is, R −→ S is absolutely
flat. (One could also use [Fer72, Theorem 4.1], since each fiber is a
finite direct product of separable field extensions.) Finally, we apply
[Gre76, Theorem 5.3] to conclude that S is excellent. �

10.8. THEOREM. Let (R,m) −→ (S,n) be a local homomorphism of
CM local rings such that S is the direct limit of a system {(Sα,nα)}α∈Λ
of étale extensions of (R,m). Assume R has finite CM type. Then every
MCM S-module is weakly extended from a MCM R-module, so S too
has finite CM type. In particular, the Henselization Rh has finite CM
type.

PROOF. By Theorem 7.12, R has at most an isolated singularity
and therefore is Gorenstein on the punctured spectrum. By (iii) of
Proposition 10.7, this property ascends to S. Now Propositions 10.7
and 10.5 guarantee that every MCM S-module is weakly extended
from a MCM R-module. Proposition 10.4 completes the proof. �

Finally, we prove ascent of finite CM type to the completion for
excellent rings. Actually, we don’t need the full strength of excellence;
we just need R −→ R̂ to be a regular homomorphism.
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We will need the following consequences of regularity of a ring ho-
momorphism. The first assertion is clear from the definition, while the
second follows from the first and from [Mat89, (32.2)].

10.9. PROPOSITION. Let A −→ B be a regular homomorphism, q ∈
Spec(B), and put p= q∩ A.

(i) The homomorphism Ap −→ Bq is regular.
(ii) If Ap is a regular local ring, so is Bq. �

We’ll also need the following remarkable theorem of Elkik [Elk73].

10.10. THEOREM (Elkik). Let (R,m) be a local ring and M a finitely
generated R̂-module. If Mp is a free Rp-module for each non-maximal
prime ideal p of R̂, then M is extended from the Henselization Rh. �

10.11. COROLLARY. Let (R,m) be a CM local ring with m-adic com-
pletion R̂.

(i) If R̂ has finite CM type, so has R.
(ii) Suppose R has finite CM type and R −→ R̂ is regular. Then ev-

ery MCM R̂-module is weakly extended from a MCM R-module,
and hence R̂ has finite CM type.

In particular, if R is excellent, then R has finite CM type if and only if
R̂ has finite CM type.

PROOF. The first assertion is a special case of Theorem 10.1.
Suppose now that R −→ R̂ is regular and that R has finite CM

type. Then R has at most an isolated singularity by Theorem 7.12,
and it follows from Proposition 10.9 that R̂ too has at most an isolated
singularity.

Now let M be an arbitrary MCM R̂-module. Then Mq is a free R̂q-
module for each non-maximal prime ideal q of R̂. By Theorem 10.10,
M is extended from the Henselization, that is, there is an Rh-module
N such that M ∼= N ⊗Rh R̂; moreover, N is a MCM Rh-module by Ex-
ercise 10.20. By Theorem 10.8, N is weakly extended from a MCM
R-module, and therefore the same is true for M. Proposition 10.4 im-
plies that R̂ has finite CM type. �

It is unknown whether or not Corollary 10.11 would be true with-
out the hypothesis that R be CM, or without the hypothesis that R −→
R̂ be regular. The following example from [LW00] shows, however,
that we can’t omit both hypotheses:

10.12. EXAMPLE. Let T = k[[x, y, z]]/
((

x3 − y7)∩ (y, z)
)
, where k is

any field. We claim that T has infinite CM type. To see this, set
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R = k[[x, y]]/(x3 − y7) ∼= k[[t3, t7]]. Then R has infinite CM type by The-
orem 4.10, since (DR2) fails for this ring. Further, R[[z]] has infinite
CM type: the map R −→ R[[z]] is flat with CM closed fiber, and Theo-
rem 10.1 applies. Now R[[z]] ∼= T/(x3 − y7). As T and T/(x3 − y7) have
the same dimension, every MCM T/(x3 − y7)-module is MCM over T.
Since T/(x3 − y7) has infinite CM type, the claim follows.

It is easy to check that the image of x is a non-zerodivisor in T.
By [Lec86, Theorem 1], T is the completion of some local integral do-
main A. Then A has finite CM type; in fact, it has no MCM modules
at all! For if A had a MCM module, then A would be universally cate-
nary [Hoc73, Section 1]. But this would imply, by [Mat89, Theorem
31.7], that A is formally equidimensional, that is, all minimal primes
of Â (= T) have the same dimension. But the two minimal primes of T
obviously have dimensions two and one, contradiction.

Another example of this behavior, using a very different construc-
tion, can be found in [LW00].

§3. Ascent along separable field extensions

Let (R,m,k) be a local ring and `/k a field extension. We want to lift
the extension k ,→ ` to a flat local homomorphism (R,m,k) −→ (S,n,`)
with certain nice properties. The type of ring extension we seek is
dubbed a gonflement by Bourbaki [Bou06, Appendice]. Translations
of the term range from the innocuous “inflation” to the provocative
“swelling” or “intumescence”. To avoid choosing one, we stick with the
French word.

10.13. DEFINITION. Let (R,m,k) be a local ring.

(i) An elementary gonflement of R is either
(a) a purely transcendental extension R −→ (R[x])mR[x] (where

x is a single indeterminate), or
(b) an extension R −→ R[x]/( f ), where f is a monic polynomial

whose reduction modulo m is irreducible in k[x].
(ii) A gonflement is an extension (R,m,k) −→ S with the following

property: There is a well-ordered family {Rα}06α6λ of local ex-
tensions (R,m,k) ,→ (Rα,mα,kα) such that
(a) R0 = R and Rλ = S,
(b) Rβ =⋃

α<βRα if β is a limit ordinal, and
(c) Rα+1 is an elementary gonflement of Rα if α 6=λ.

Elementary gonflements of type (ia) are often used to pass to a local
ring with infinite residue field. (See Theorem A.20 for the reason why,
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and Proposition 4.3 for an application.) In this section we will need
gonflements that are iterations of elementary gonflements of type (ib).

The following theorem ([Bou06, Appendice, §2]) summarizes the
basic properties of gonflements.

10.14. THEOREM. Let (R,m,k) be a local ring.
(i) Let (R,m,k)−→ S be a gonflement.

(a) S is local with maximal ideal n :=mS. In particular, S is
Noetherian.

(b) R −→ S is a flat local homomorphism.
(c) dimR = dimS.
(d) With the notation as in the definition, if α 6 β 6 λ, then

Rα −→ Rβ is a gonflement.
(ii) If k −→ ` is an arbitrary field extension, there is a gonflement

(R,m,k)−→ (S,n,`) lifting k −→ `. �

We will prove ascent of finite CM type along gonflements with sep-
arable residue field growth. The next result is annoyingly similar to
Proposition 10.7, but it’s a bit different. (Notice, for example, that if
k −→ ` is an uncountably generated algebraic extension, then one can-
not represent ` as a well-ordered union of finite extensions.) The proof,
which we omit, is pretty much the same as that of Proposition 10.7 ex-
cept for the mechanical details of transfinite induction. The approach
is standard: We want to prove (in the notation of Definition 10.13) that
S = Rλ has a certain property. We fix β6 λ, assume that Rα has the
property for all α < β, then show, as in the proof of Proposition 10.7,
that Rβ has the property. Then we set β=λ to complete the proof.

10.15. PROPOSITION. Let (R,m,k)−→ (S,n,`) be a gonflement, and
assume that k −→ ` is a separable algebraic extension.

(i) Every finitely generated S-module is weakly extended from R.
(ii) If q is a prime ideal of S and p= q∩R, then pSq = qSq.

(iii) If R is Gorenstein (respectively, regular) on the punctured spec-
trum, then so is S.

(iv) If R is excellent and reduced, so is S. �

10.16. THEOREM. Let (R,m,k)−→ (S,n,`) be a gonflement. Assume
that R is CM and that k −→ ` is a separable algebraic extension.

(i) If R is Gorenstein on the punctured spectrum, then every MCM
S-module is weakly extended from a MCM R-module.

(ii) R has finite CM type if and only if S has finite CM type.

PROOF. To prove item (i), we appeal to Propositions 10.15 and 10.5.
The “if” direction of item (ii) is a special case of Theorem 10.1. For
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the converse, suppose R has finite CM type. Then R is an isolated
singularity by Theorem 7.12 and in particular is Gorenstein on the
punctured spectrum. By item (i) and Proposition 10.4, S has finite CM
type. �

The separability condition in 10.16 cannot be omitted. Indeed, here
is an example of a local ring R with finite CM type and an elementary
gonflement R −→ S such that S has infinite CM type [Wie98, Example
3.4]

10.17. EXAMPLE. Let k be an imperfect field of characteristic 2,
and let α ∈ k− k2. Put R = k[[x, y]]/(x2 +αy2). Then R is a CM local
domain of dimension one and multiplicity two, so by Theorem 4.18
R has finite CM type. However, by Proposition 4.15, S = R⊗k k(

p
α) =

k(
p
α)[[x, y]]/(x+pαy)2 does not have finite Cohen-Macaulay type, since

it is Cohen-Macaulay but not reduced.

Recall that we did not give a self-contained proof of Theorem 4.10.
Here we describe a proof, independent of the matrix decompositions
in [GR78], in an important special case.

10.18. THEOREM. Let (R,m,k) be an analytically unramified local
ring of dimension one. Assume R contains a field and that k is perfect
with chark 6= 2, 3 or 5. Then R has finite CM type if and only if R
satisfies the Drozd-Roı̆ter conditions (DR1) and (DR2) of Chapter 4.

PROOF. A complete proof of the “only if” direction is in Chapter 4.
For the converse, we may assume, by Theorems 10.14 and 10.16, that
k is algebraically closed. Corollary 4.17 (whose proof did not depend
on Theorem 4.10!) allows us to assume that R is complete. Then
R = k[[t1]]×·· ·× k[[ts]], where s6 3 and the ti are analytic indetermi-
nates. An elementary but tedious computation [Yos90, pages 72–73]
now shows that R is a finite birational extension of an ADE singular-
ity A. Since A has finite CM type (Corollary 8.22), Proposition 4.14
implies that R has finite CM type too. �

§4. Equicharacteristic Gorenstein singularities

We now assemble the pieces and obtain a nice characterization of
the equicharacteristic Gorenstein singularities of finite CM type.

10.19. COROLLARY. Let (R,m,k) be an excellent, Gorenstein local
ring containing a field. Let K be an algebraic closure of k. Assume d :=
dim(R)> 1 and that k is perfect with char(k) 6= 2, 3 or 5. Then R has
finite CM type if and only if there is a non-zero non-unit f ∈ k[[x0, . . . xd]]
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such that R̂ ∼= k[[x0, . . . , xd]]/( f ) and K[[x0, . . . , xd]]/( f ) is a complete ADE
hypersurface singularity (see Chapter 9).

PROOF. Using [Mat89, Theorem 22.5], we see that for any non-
unit f ∈ k[[x0, . . . , xd]], the hypersurface singularity K[[x0, . . . , xd]]/( f ) is
flat over k[[x0, . . . , xd]]/( f ). The “if" direction now follows from Theo-
rem 10.1 and the fact (Theorem 9.8) that simple singularities have
finite CM type.

For the converse, suppose R has finite CM type. Since R is CM
and excellent, the completion R̂ has finite CM type by Corollary 10.11.
Moreover, Theorem 9.15 implies, since R is Gorenstein, that R̂ is a
hypersurface, that is, R̂ ∼= k[[x0, . . . , xd]]/( f ) for a non-zero non-unit f .

The extension R̂ −→ K ⊗k R̂ is a gonflement lifting the field exten-
sion k −→ K (cf. Exercise 10.25), and Theorem 10.16 implies that
A := K ⊗k R has finite CM type. Moreover, A is excellent, by Propo-
sition 10.15. Corollary 10.11 implies that Â has finite CM type. But
Â ∼= K[[x0, . . . , xd]]/( f ), and by Theorem 9.8 K[[x0, . . . , xd]]/( f ) is a com-
plete ADE hypersurface singularity. �

§5. Exercises

10.20. EXERCISE. Let (R,m,k)−→ (S,n,`) be a flat local homomor-
phism, and let M be a finitely generated R-module. Prove that S⊗R M
is a MCM S-module if and only if M is MCM and the closed fiber S/mS
is a CM ring. (See [BH93, (1.2.16) and (A.11)].)

10.21. EXERCISE. Let (R,m) −→ (S,n) be a local homomorphism.
Prove that the following two conditions are equivalent:

(i) The induced map R/m−→ S/mS is an isomorphism.
(ii) The induced map R/m−→ S/n is an isomorphism and mS = n.

10.22. EXERCISE. Let ϕ : (R,m) −→ (S,n) be a flat local homomor-
phism that is essentially of finite type (that is, S is a localization of a
finitely generated R-algebra).

(i) Prove that S/mS is Artinian.
(ii) Let q be a prime ideal of S, and put p = ϕ−1(q). If R −→ S is

ètale, prove that Rp −→ Sq is étale.

10.23. EXERCISE. Find an example of an étale homomorphism be-
tween local rings R −→ S and a finitely generated S-module M such
that the two S-actions on S ⊗R M (one via the action on S, the other
via the action on M) give non-isomorphic S-modules.

10.24. EXERCISE. Suppose (R,m,k)−→ (S,n,`) is a flat local homo-
morphism such that mS = n. Let M be a finitely generated R-module.
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Prove that eR(M) = eS(S ⊗R M). Show by example that this can fail
without assumption that mS = n.

10.25. EXERCISE. Let (R,m) be a local ring with a coefficient field
k, and let K /k be an algebraic field extension. Prove that K ⊗k R is
a gonflement of R and that K is a coefficient field for R. (First do
the case where k −→ K is an elementary gonflement of type (ib) in
Definition 10.13.)

10.26. EXERCISE. Let (R,m,k) be a one-dimensional local ring sat-
isfying the Drozd-Roı̆ter conditions (DR1) and (DR2) of Chapter 4, and
let R −→ (S,n,`) be a gonflement. Prove, without reference to finite
CM type, that S satisfies (DR1) and (DR2).



CHAPTER 11

Auslander-Buchweitz Theory

We now turn to a celebrated tool in the study of CM representa-
tion types, and even more generally in the representation theory of
local rings, namely MCM approximations. The slogan here is that any
finitely generated module over a CM local ring with canonical mod-
ule can be approximated by a MCM module, in a precise sense due
originally to Auslander and Buchweitz [AB89]. The theory as origi-
nally constructed in [AB89] is quite abstract, and has since been fur-
ther generalized. In keeping with our general strategy, we adopt a
stubbornly concrete point of view. We deal exclusively with CM local
rings, finitely generated modules, and approximations by MCM mod-
ules. We also use the more limited terminology of MCM approxima-
tions and FID hulls, rather than the general notions of (pre)covers and
(pre)envelopes, though we touch on this technology in the next chapter.

In the first section we recall some basics on finitely generated mod-
ules of finite injective dimension, and particularly canonical modules,
which occupy the central spot in the theory. We then detail the the-
ory of MCM approximations and FID hulls, following Auslander and
Buchweitz’s original construction. Finally, we give some applications
in terms of Auslander’s δ-invariant. Other applications will appear in
later chapters.

§1. Canonical modules

Here we give a quick primer on finitely generated modules of finite
injective dimension over local rings and the most distinguished of such
modules, the canonical module.

We point out first that over CM local rings, finitely generated mod-
ules of finite injective dimension exist.

11.1. PROPOSITION. Let (R,m,k) be a CM local ring. Then R ad-
mits a non-zero finitely generated module of finite injective dimension.

PROOF. Let x be a system of parameters for R and R the quotient
R/(x). The injective hull E = ER(k) of the residue field of R has finite
length over R and hence over R. It follows that M = HomR(R,E) is

171
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finitely generated over R, and dualizing the Koszul resolution of R
into E displays injdim M <∞. �

As an aside, we take note here of the conjecture of Bass [Bas63]
that the converse holds as well: “It seems conceivable that, say for A
local, there exist finitely generated M 6= 0 with finite injective dimen-
sion only if A is a Cohen-Macaulay ring.” This conjecture was estab-
lished for local rings of prime characteristic or essentially of finite type
over a field of characteristic zero by Peskine and Szpiro [PS73] using
their Intersection Theorem. Since Roberts has proved the Intersection
Theorem for all local rings [Rob87], Bass’ Conjecture holds in general.

The first hint of a connection between modules of finite injective
dimension and MCM modules comes courtesy of the next result, due
to Ischebeck [Isc69], and its consequence below. We omit the proofs.

11.2. THEOREM. Let (R,m,k) be a local ring and M, N non-zero
finitely generated R-modules with injdimR N <∞. Then

depthR−depth M = sup
{

i
∣∣∣ Exti

R(M, N) 6= 0
}

. �

11.3. PROPOSITION. Let (R,m,k) be a CM local ring and M, N non-
zero finitely generated R-modules. Then

(i) M is MCM if and only if Exti
R(M,Y ) = 0 for all i > 0 and all

finitely generated R-modules Y of finite injective dimension, and
(ii) N has finite injective dimension if and only if Exti

R(X , N) = 0
for all i > 0 and all MCM R-modules X . �

Colloquially, we interpret Proposition 11.3 as the statement that
MCM modules and finitely generated modules of finite injective di-
mension are “orthogonal.” It will transpire that the intersection is
“spanned” by a single module, namely the canonical module, to which
we now turn. See [BH93, Chapter 3] for the details we omit.

11.4. DEFINITION. Let (R,m,k) be a CM local ring of dimension d.
A finitely generated R-module ω is a canonical module for R if ω is
MCM, has finite injective dimension, and satisfies dimk Extd

R(k,ω)= 1.

The condition on Extd
R(k,ω) is a sort of rank-one normalizing as-

sumption: taking into account the calculation of both depth and in-
jective dimension in terms of Exti

R(k,−),we can write Definition 11.4
compactly as

Exti
R(k,ω)∼=

{
k if i = dimR, and
0 otherwise.

We need a laundry list of properties of canonical modules. Define
the codepth of an R-module M to be depthR−depth M.
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11.5. THEOREM. Let (R,m,k) be a CM local ring and ω a canonical
module for R. Then

(i) ω is unique up to isomorphism, and R is Gorenstein if and only
if ω∼= R ;

(ii) EndR(ω)∼= R .
(iii) Let M be a CM R-module of codepth t, and set M∨ =Extt

R(M,ω).
Then

(a) M∨ is also CM of codepth t;
(b) Extt

R(M,ω)= 0 for i 6= t; and
(c) M∨∨ is naturally isomorphic to M.

(iv) The canonical module behaves well with respect to factoring out
a regular sequence, completion, and localization. �

It is a result of Sharp, Foxby, and Reiten [Sha71, Fox72, Rei72]
that a CM local ring R has a canonical module if and only if R is a ho-
momorphic image of a Gorenstein local ring. In particular, by Cohen’s
Structure Theorems any complete local ring is a homomorphic image
of a regular local ring, so admits a canonical module.

The stipulation that ExtdimR
R (k,ωR)∼= k is, as we observed, a kind of

rank-one condition. Indeed, under a mild additional condition it forces
ωR to be isomorphic to an ideal of R. We say that R is generically
Gorenstein if Rp is Gorenstein for each minimal prime p of R.

11.6. PROPOSITION. Let R be a CM local ring and ω a canonical
module for R. If R is generically Gorenstein, then ω is isomorphic to an
ideal of R, and conversely. In this case, ω has constant rank 1, ω is an
ideal of pure height one (that is, every associated prime of ω has height
one), and R/ω is a Gorenstein ring of dimension dimR−1.

PROOF. As Rp is Gorenstein for every minimal p, we conclude that
ωp is free of rank one for those primes. In particular if we denote
by K the total quotient ring, obtained by inverting the complement
of the union of those minimal primes, then ω⊗R K is a rank-one pro-
jective module over the semilocal ring K . Thus ω⊗R K ∼= K . Fixing
an isomorphism and composing with the natural map gives an R-
homomorphism ω−→ K , which is injective as ω is torsion-free. Multi-
plying the image by a carefully chosen non-zerodivisor clears the de-
nominators and knocks the image down into R, where it is an ideal.
Being locally free at the minimal primes, it has height at least one.

Since ω is MCM, the Depth Lemma applied to the short exact se-
quence

0−→ω−→ R −→ R/ω−→ 0
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yields depth(R/ω) > dimR − 1, and since heightω > 1 we have that
dimR/ω6 dimR−1. Thus R/ω is a CM ring, in particular, unmixed, so
ω has pure height one. Furthermore, R/ω is a CM R-module of codepth
1. Applying HomR(−,ω) thus gives an exact sequence

HomR(R/ω,ω)−→ω−→ R −→Ext1
R(R/ω,ω)−→ 0

and Ext1
R(R/ω,ω) = (R/ω)∨ is the canonical module for R/ω by the dis-

cussion after Theorem 11.5. Since R/ω is torsion and ω is torsion-free,
the leftmost term in the exact sequence vanishes, whence (R/ω)∨ is
isomorphic to R/ω itself, so R/ω is Gorenstein.

For the converse, assume that ω is embedded into R as an ideal.
Then as before we see that heightω> 1, so ω is not contained in any
minimal prime and Rp is Gorenstein for every minimal p. �

We quickly observe, using this result, that there does indeed exist a
CM local ring which is not a homomorphic image of a Gorenstein local
ring, and hence does not admit a canonical module. This was first con-
structed by Ferrand and Raynaud [FR70]. Specifically, they construct
a one-dimensional local domain (R,m) such that the completion R̂ is
not generically Gorenstein. If R were to have a canonical module ωR ,
it would be embeddable as an m-primary ideal of R. The completion
ω̂R is then a canonical module for R̂, and is an ideal of R̂. But this
contradicts the criterion above.

We finish the section with the promised identification of the in-
tersection of the class of MCM modules with that of modules of finite
injective dimension.

11.7. PROPOSITION. Let R be a CM local ring with canonical mod-
ule ω and let M be a finitely generated R-module. If M is both MCM
and of finite injective dimension, then M is isomorphic to a direct sum
of copies of ω.

PROOF. Let F be a free module mapping onto the canonical dual
M∨ = HomR(M,ω) with kernel K . Dualizing gives a short exact se-
quence

0−→ M −→ F∨ −→ K∨ −→ 0
where K∨ is MCM as K is. Proposition 11.3(ii) implies that the se-
quence splits as injdimR M <∞, making M a direct summand of F∨.
Dualizing again displays M∨ as a direct summand of the free module
F ∼= F∨∨, whence M∨ is free and M is a direct sum of copies of ω. �

If R is not assumed to have a canonical module, the MCM modules
of finite injective dimension are called Gorenstein modules. Should
any exist, there is one of minimal rank and all others are direct sums
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of copies of the minimal one. See Corollary A.15 for an application of
Gorenstein modules.

§2. MCM approximations and FID hulls

Throughout this section, (R,m,k) denotes a CM local ring with
canonical module ω.

We continue to think of the MCM modules and modules of finite
injective dimension over R as orthogonal subspaces of the space of all
finitely generated modules, with intersection spanned by the canonical
module ω. Guided by memories of basic linear algebra, we hope to be
able to project any R-module onto these subspaces.

11.8. DEFINITION. Let M be a finitely generated R-module. An
exact sequence of finitely generated R-modules

0−→Y −→ X −→ M −→ 0

is a MCM approximation of M if X is MCM and injdimR Y <∞. Dually,
an exact sequence

0−→ M −→Y ′ −→ X ′ −→ 0

is a hull of finite injective dimension or FID hull if injdimY ′ <∞ and
either X ′ is MCM or X ′ = 0.

We sometimes abuse language and refer to the modules X and Y ′
as the MCM approximation and FID hull of M, rather than the whole
extensions.

The orthogonality relations between MCM modules and modules of
finite injective dimension translate into lifting properties for the MCM
approximations and FID hulls.

11.9. PROPOSITION. Let 0 −→ Y −→ X −→ M −→ 0 be a MCM ap-
proximation of M and let ϕ : Z −→ M be a homomorphism with Z
MCM. Then ϕ factors through X . Any two liftings of ϕ are homotopic,
i.e. their difference factors through Y .

PROOF. Applying HomR(Z,−) to the approximation gives the exact
sequence

0−→HomR(Z,Y )−→HomR(Z, X )−→HomR(Z, M)−→Ext1
R(Z,Y ) ,

the rightmost term of which vanishes by Proposition 11.3(ii). Thus
ϕ ∈HomR(Z, M) lifts to an element of HomR(Z, X ). The final assertion
follows as well from exactness. �
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We leave it as an exercise for the reader to state and prove the dual
statement for FID hulls.

The lifting property of Proposition 11.9 allows a Schanuel-type
result: if 0 −→ Y1 −→ X1 −→ M −→ 0 and 0 −→ Y2 −→ X2 −→ M −→ 0
are two MCM approximations of the same module M, then X1 ⊕Y2

∼=
X2 ⊕Y1. We leave the details to the reader. (One can also proceed
directly, via the orthogonality relation Ext1

R(X i,Y j) = 0; compare with
Lemma A.10.) Just as for free resolutions, this motivates a notion of
minimality for MCM approximations.

11.10. DEFINITION. Let s : 0 −→ Y i−→ X
p−−→ M −→ 0 be a MCM

approximation of a non-zero finitely generated R-module M. We say
that s is minimal provided Y and X have no non-zero direct summand
in common via i. In other words, for any direct-sum decomposition
X = X0 ⊕ X1 with X0 ⊆ im i, we must have X0 = 0.

Observe that any common direct summand of Y and X is both
MCM and of finite injective dimension, so by Proposition 11.7 is a di-
rect sum of copies of the canonical module ω.

While the definition of minimality above is quite natural, in prac-
tice a more technical notion is useful.

11.11. DEFINITION. Let A be a ring and f : P −→ Q a homomor-
phism of A-modules. We say that f is right minimal if whenever
ϕ : P −→ P is an endomorphism such that fϕ= f , in fact ϕ is an auto-

morphism. If s : 0−→ N −→ P
f−−→Q −→ 0 is a short exact sequence, we

say that s is right minimal if f is.

The equivalence of minimality and right minimality for an MCM
approximation is “well-known to experts”; the proof we give is due to
Hashimoto and Shida [HS97] (see also [Yos93]). It turns out that pass-
ing to the completion is essential to the argument.

11.12. LEMMA. Let s : 0−→Y i−→ X
p−−→ M −→ 0 be a MCM approx-

imation of a non-zero R-module M. Let ŝ : 0 −→ Ŷ î−→ X̂
p̂−−→ M̂ −→ 0

be the completion of s. Then ŝ is a MCM approximation of M̂, and the
following are equivalent.

(i) ŝ is right minimal;
(ii) s is right minimal;

(iii) s is minimal;
(iv) ŝ is minimal.

PROOF. That ŝ is a MCM approximation of M̂ is trivial; the real
matter is the equivalence.
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(i) =⇒ (ii) Assume that ŝ is right minimal, and ϕ ∈ EndR(X ) sat-
isfies pϕ = p. Then p̂ϕ̂ = p̂, so ϕ̂ is an automorphism by hypothesis,
whence ϕ is an automorphism as well.

(ii) =⇒ (iii) If X = X0 ⊕ X1 is a direct-sum decomposition of X
with X0 ⊆ im i, then the idempotent ϕ : X� X1,→X obtained from the
projection onto X1 satisfies pϕ = p. Thus X0 6= 0 implies that s is not
right minimal.

(iii) =⇒ (iv) Assume that ŝ is not minimal, so that Ŷ and X̂ have a
common non-zero direct summand via i. We have already observed
that such a direct summand must be a direct sum of copies of the
canonical module ω̂, so there exist homomorphisms σ : X̂ −→ ω̂ and
τ : ω̂−→ Ŷ such that

σ îτ : ω̂−→ Ŷ −→ X̂ −→ ω̂

is the identity on ω̂. Write σ = ∑
j a jσ̂ j and τ = ∑

k bkτ̂k, where σ j ∈
HomR(X ,ω), τk ∈HomR(ω,Y ), and a j,bk ∈ R̂. Then∑

j,k
a jbkσ̂ j îτ̂k = 1 ∈ EndR̂(ω̂)∼= R̂ .

Since R̂ is local, at least one of the summands a jbkσ̂ j îτ̂k is a unit of
R̂. It follows that σ j iτk is a unit of R, that is, σk iτk : ω −→ ω is an
isomorphism. Thus s is not minimal.

(iv) =⇒ (i) We assume that R = R̂ is complete. Let ϕ : X −→ X be a
non-isomorphism satisfying pϕ = p. Let Λ ⊂ EndR(X ) be the subring
generated by R and ϕ, and observe that Λ is commutative and is a
finitely generated R-module.

As ϕ carries the kernel of p into itself, s is naturally a short exact
sequence of (finitely generated) Λ-modules. In particular, multiplica-
tion by ϕ ∈Λ is the identity on the non-zero module M, so by NAK ϕ

is not contained in the radical of Λ. On the other hand, ϕ is not an
isomorphism on X , so is not a unit of Λ. Thus Λ is not an nc-local
ring. Since R is Henselian, it follows that Λ contains a non-trivial
idempotent e 6= 0,1.

Now ϕ ∈ R + (1 −ϕ)Λ, so R + (1 −ϕ)Λ = Λ. In particular, Λ :=
Λ/(1−ϕ)Λ is a quotient of R, so is a local ring. Replacing e by 1− e
if necessary, we may assume that e = 1 in Λ. Since ϕ acts as the iden-
tity on M, we see that M is naturally a Λ-module, and in particular e
also acts as the identity on M.

Set X0 = im(1− e) = ker(e) ⊆ X . Then X0 is a non-zero direct sum-
mand of X , and p(X0) = 0 since e acts trivially on M. Thus s is not
minimal. �
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11.13. PROPOSITION. If a finitely generated module M admits a
MCM approximation, then there is a minimal one, which moreover is
unique up to isomorphism of exact sequences inducing the identity on
M.

PROOF. Removing any direct summands common to Y and X via
i in a given MCM approximation of M, we arrive at a minimal one.
For uniqueness, suppose we have two minimal approximations s : 0−→
Y i−→ X

p−−→ M −→ 0 and s′ : 0 −→ Y ′ i′−−→ X ′ p′
−−→ M −→ 0. The lifting

property delivers a commutative diagram with exact rows

0 // Y

��

i
// X

α
��

p
// M // 0

0 // Y ′

��

i′
// X ′

β
��

p′
// M // 0

0 // Y i
// X

p
// M // 0

in which, in particular, pβα= p. Since minimality implies right mini-
mality, βα is an isomorphism. A similar diagram shows that αβ is an
isomorphism as well, so that s and s′ are isomorphic exact sequences
via an isomorphism which is the identity on M. �

Here is yet a third notion of minimality for MCM approximations,
introduced by Hashimoto and Shida [HS97] and used to good effect
by Simon and Strooker [SS02]. Set d = dimR. It’s immediate from
the definition that a MCM approximation 0 −→ Y −→ X −→ M −→ 0
induces isomorphisms

Exti
R(k, M)∼=

{
Exti+1

R (k,Y ) for 06 i6 d−2 and
Exti

R(k, X ) for i> d+1 ,

and a 4-term exact sequence

0−→Extd−1
R (k, M)−→Extd

R(k,Y )−→Extd
R(k, X )−→Extd

R(k, M)−→ 0 .

We will call the approximation Ext-minimal if the induced map of k-
vector spaces Extd

R(k,Y ) −→ Extd
R(k, X ) in the middle of this exact se-

quence is the zero map. Equivalently, one (and hence both) of the nat-
ural maps Extd−1

R (k, M) −→ Extd
R(k,Y ) and Extd

R(k, X ) −→ Extd
R(k, M)

is an isomorphism. This means in particular that the Bass numbers of
M are completely determined by X and Y .

If in a MCM approximation of M there is a non-zero indecompos-
able direct summand of Y carried isomorphically to a summand of X ,
then we’ve already seen that the summand must be isomorphic to ω,
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and so Extd
R(k,Y ) −→ Extd

R(k, X ) has as a summand the identity map
on k = Extd

R(k,ω). Thus Ext-minimality implies minimality as defined
above. In fact, all three notions of minimality are equivalent. As the
proof of this fact uses some local cohomology, we relegate it to the Ex-
ercises.

11.14. PROPOSITION. Let (R,m) be a CM local ring with canonical
module, and let M be a non-zero finitely generated R-module. For a
given MCM approximation of M, minimality, right minimality, and
Ext-minimality are equivalent. �

The considerations above are exactly paralleled on the FID hull

side. A FID hull 0−→ M
j−−→Y

q−−→ X −→ 0 is minimal if Y and X have
no non-zero direct summand in common via q, is left minimal if every
endomorphism ψ ∈ EndR(Y ) such that ψ j = j is in fact an automor-
phism, and is Ext-minimal if the induced linear map Extd

R(k,Y ) −→
Extd

R(k, X ) is zero. The three notions are equivalent by arguments ex-
actly similar to those above, and if a FID hull for M exists, then there
is a minimal one, which is unique up to an isomorphism of exact se-
quences which is the identity on M.

We turn now to existence. The construction of MCM approxima-
tions is most transparent when the approximated module is CM, so
we state that case separately. In particular, the construction below ap-
plies when M is an R-module of finite length, for example M = R/mn

for some n> 1. We will return to this example in §4.

11.15. PROPOSITION. Let (R,m) be a CM local ring with canonical
module ω, and let M be a CM R-module. Then M has a minimal MCM
approximation.

PROOF. Let t = codepth M. By Theorem 11.5, M∨ = Extt
R(M,ω) is

again CM of codepth t. In a truncated minimal free resolution of M∨

0−→ syzR
t (M∨)−→ Ft−1 −→ ·· · −→ F1 −→ F0 −→ M∨ −→ 0

the tth syzygy syzR
t (M∨) is MCM. Apply HomR(−,ω) to get a complex

0−→ F∨
0 −→ F∨

1 −→ ·· · −→ F∨
t−1 −→ syzR

t (M∨)∨ −→ 0

with homology Exti
R(M∨,ω), which is M∨∨ ∼= M for i = t and trivial

otherwise. Inserting the homology at the rightmost end, and defining
K to be the kernel, we get a short exact sequence

(11.15.1) 0−→ K −→ syzR
t (M∨)∨ −→ M −→ 0 ,
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in which the middle term is MCM. Since K has a finite resolution by
direct sums of copies of R∨ = ω, it has finite injective dimension, so
that (11.15.1) is a MCM approximation of M.

It is easy to see that our initial choice of a minimal resolution forces
the obtained approximation to be minimal as well. �

As an aside, we mention here that in the setup of Proposition 11.15,
if R is generically Gorenstein (so that ωR has constant rank 1), then
the MCM approximation syzR

dimR(k∨)∨ of the residue field has constant
rank as well, computable as

(11.15.2) rank
(
syzR

dimR(k∨)∨
)
=

dimR−1∑
i=0

(−1)dimR−i−1βR
i (k) ,

where βR
i (k) indicates the appropriate Betti number.

11.16. QUESTION (Buchweitz). Is the number defined in (11.15.2)
the minimal possible rank for a non-free MCM module which occurs as
the syzygy module of some R-module of finite length?

For the general case, we give an independent construction of a
MCM approximation of a finitely generated module, which simultane-
ously produces an FID hull as well. This argument is essentially that
of [AB89], though in a more concrete setting. There are two other con-
structions: the pitchfork construction, originally due also to Auslander
and Buchweitz (for which see Construction 12.11), and the gluing con-
struction of Herzog and Martsinkovsky [HM93].

11.17. THEOREM. Let (R,m,k) be a CM local ring with canonical
module ω, and let M be a finitely generated R-module. Then M admits
a MCM approximation and a FID hull.

PROOF. We construct the approximation and hull by induction on
codepth M. When M is MCM itself, the MCM approximation is trivial.
For a FID hull, take a free module F mapping onto the dual M∨ =
HomR(M,ω) as in the proof of Proposition 11.15. In the short exact
sequence

0−→ syzR
1 (M∨)−→ F −→ M∨ −→ 0 ,

the syzygy module syzR
1 (M∨) is again MCM, so applying HomR(−,ω)

gives another exact sequence

0−→ M −→ F∨ −→ syzR
1 (M∨)∨ −→ 0

in which F∨ ∼= ω(n) has finite injective dimension and syzR
1 (M∨)∨ is

MCM.
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Suppose now that codepth M = t > 1. Taking a syzygy of M in a
minimal free resolution

0−→ syzR
1 (M)−→ F −→ M −→ 0

we have by induction a FID hull of syzR
1 (M)

0−→ syzR
1 (M)−→Y ′ −→ X ′ −→ 0 .

Construct the pushout diagram from these two sequences.

0

��

0

��

0 // syzR
1 (M) //

��

F //

��

M // 0

0 // Y ′ //

��

W //

��

M // 0

X ′

��

X ′

��

0 0

As X ′ is MCM and F is free, the exact middle column forces W to be
MCM, so that the middle row is a MCM approximation of M.

A FID hull for W exists by the base case of the induction:

0−→W −→Y ′′ −→ X ′′ −→ 0

and constructing another pushout

0

��

0

��

Y ′

��

Y ′

��

0 // W //

��

Y ′′ //

��

X ′′ // 0

0 // M //

��

Z //

��

X ′′ // 0

0 0

we see from the middle column that Z has finite injective dimension,
so the bottom row is a FID hull for M. �
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11.18. NOTATION. Having now established both the existence and
the uniqueness of minimal MCM approximations and FID hulls, we
introduce some notation for them. The minimal MCM approximation
of M is denoted by

0−→YM −→ XM −→ M −→ 0 ,

while the minimal FID hull of M is denoted

0−→ M −→Y M −→ X M −→ 0 .

To show off the new notation, here is the final diagram of the proof
of Theorem 11.17.

(11.18.1)

0

��

0

��

YM

��

YM

��

0 // XM //

��

ω(n) //

��

X M // 0

0 // M //

��

Y M

��

// X M // 0

0 0

Here n =µR(X∨
M) as the middle row is an FID hull for XM .

As in the last paragraph of the proof of Theorem 11.17, the central
square in this diagram is a pushout. It therefore induces the exact
sequence

0−→ XM −→ M⊕ω(n) −→Y M −→ 0 ,

exhibiting the given module M, up to canonical summands, as an ex-
tension of a MCM module by a module of finite injective dimension.
This is the “Approximation Theorem” of Auslander [Aus67, Chapter
3, Prop. 8], [AB69, 4.27], as observed by Buchweitz [Buc86, (5.3.2)].

We also record a few curiosities that arose in the proof of Theo-
rem 11.17.

11.19. PROPOSITION. Up to adding or deleting direct summands
isomorphic to ω, we have

(i) YM ∼=Y syzR
1 (M) ;

(ii) X M ∼= X XM ; and
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(iii) XM is an extension of a free module by X syzR
1 (M) , that is, there is

a short exact sequence 0 −→ F −→ XM −→ X syzR
1 (M) −→ 0 with F

free.
In particular, if R is Gorenstein then we have as well

(iv) XM ∼= X syzR
1 (M) ;

(v) XM ∼= syzR
1 (X M) ; and

(vi) YM ∼= syzR
1 (Y M) . �

We see already that the case of a Gorenstein local ring is special.
In this case, finite injective dimension coincides with finite projective
dimension, making the theory more tractable. In particular, the min-
imal MCM approximation of a module of finite projective dimension
over a Gorenstein local ring is very simple to describe. We leave the
proof of this fact as an exercise.

11.20. PROPOSITION. Let R be a Gorenstein local ring and M a
finitely generated R-module of finite projective dimension. The the min-
imal MCM approximation of M is 0 −→ syzR

1 (M) −→ F −→ M −→ 0,
where F is a free module of minimal rank mapping onto M. �

We will see more advantages of the Gorenstein condition in §4 and
in Chapter 12; see also Exercise 11.48.

We also record here for later reference the case of codepth 1.

11.21. PROPOSITION. Let R be a CM local ring with canonical mod-
ule ω and let M be an R-module of codepth 1. Let ξ1, . . . ,ξt be a mini-
mal set of generators for the (nonzero) module Ext1

R(M,ω), and let E be
the extension of M by ω(t) corresponding to the element ξ= (ξ1, . . . ,ξt) ∈
Ext1

R(M,ω(t))∼=Ext1
R(M,ω)(t). Then E is a MCM module and

ξ : 0−→ωt −→ E −→ M −→ 0

is the minimal MCM approximation of M. In particular, this con-
struction coincides with that of Proposition 11.15 if M is CM, i.e. if
HomR(M,ω)= 0. �

To close out this section, we have a few more words to say about
uniqueness. Since every MCM module is its own MCM approxima-
tion, the function M XM is in general surjective, but not injective.
However, we may restrict to CM modules of a fixed codepth and ask
whether every MCM module X is a MCM approximation of a CM mod-
ule of codepth r. For r = 1 and r = 2, these questions have essentially
been answered by Yoshino-Isogawa [YI00] and Kato [Kat07]. Here is
the criterion for r = 1.
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11.22. PROPOSITION. Let R be a CM local ring with canonical mod-
ule ω, and assume that R is generically Gorenstein. Let X be a MCM
R-module. Then X is a MCM approximation of some CM module M of
codepth 1 if and only if X has constant rank.

PROOF. First assume that X has constant rank s. Then there is a
short exact sequence

0−→ R(s) −→ X −→ N −→ 0

in which N is a torsion module. In particular, N has dimension at
most dimR−1. However, the Depth Lemma ensures that N has depth
at least dimR−1, so N is CM of codepth 1. As R is generically Goren-
stein, the canonical module ω embeds into R as an ideal of pure height
one (Proposition 11.6). We therefore have embeddings ω(s),→R(s) and
R(s),→X fitting into a commutative diagram

0 // ω(s) //

��

X // M //

��

0

0 // R(s) // X // N // 0 .

The Snake Lemma delivers an isomorphism from the kernel of M −→
N onto (R/ω)(s), and hence an exact sequence

0−→ (R/ω)(s) −→ M −→ N −→ 0 .

Therefore M is also CM of codepth 1, and the top row of the diagram
is a MCM approximation of M.

For the converse, suppose that M is CM of codepth 1 and that X is
a MCM approximation of M. Then X ∼= XM ⊕ω(t) for some t> 0. In the
minimal MCM approximation

0−→YM −→ XM −→ M −→ 0 ,

we see that M is torsion, whence of rank zero, and YM is isomorphic
to a direct sum of copies of ω. As R is generically Gorenstein, YM has
constant rank, and so XM and X do as well. �

It’s clear that a local ring R is a domain if and only if every finitely
generated R-module has constant rank. If in addition R is CM, then
it follows that R is a domain if and only if every MCM module has
constant rank. (Take a high syzygy of an arbitrary finitely generated
module M and compute the rank of M as an alternating sum.) These
observations prove the following corollary.
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11.23. COROLLARY. Let R be a CM local ring with a canonical mod-
ule and assume that R is generically Gorenstein. The following state-
ments are equivalent.

(i) For every MCM R-module X , there exists a CM module M of
codepth 1 such that X is MCM approximation of M.

(ii) R is a domain. �

The question of the injectivity of the function M XM for modules
M of a fixed codepth is, as far as we can tell, still open. The corre-
sponding question for FID hulls, however, has a positive answer when
R is Gorenstein, due to Kato [Kat99].

§3. Numerical invariants

Since the minimal MCM approximation and minimal FID hull of a
module M are uniquely determined up to isomorphism by M, any nu-
merical information we derive from XM , YM , X M , and Y M are invari-
ants of M. For example, if R is Henselian we might consider the num-
ber of indecomposable direct summands appearing in a direct-sum de-
composition of XM or Y M as a kind of measure of the complexity of M,
or if R is generically Gorenstein we might consider rankY M . All these
possibilities were pointed out by Buchweitz [Buc86], but seem not to
have gotten much attention. In this section we introduce two other
numerical invariants of M, namely δ(M), first defined by Auslander;
and γ(M), defined by Herzog and Martsinkovsky.

Throughout, (R,m) is still a CM local ring with canonical module
ω. For an arbitrary finitely generated R-module Z, we define the free
rank of Z, denoted f-rank Z, to be the rank of a maximal free direct
summand of Z. In other words, Z ∼= Z⊕R(f-rank Z) with Z stable, i.e. hav-
ing no non-trivial free direct summands. Dually, the canonical rank of
Z, ω-rank Z, is the largest integer n such that ω(n) is a direct summand
of Z.

11.24. DEFINITION. Let M be a finitely generated R-module, and
let 0 −→ YM −→ XM −→ M −→ 0 be the minimal MCM approximation
for M. Then we define

δ(M)= f-rank XM and γ(M)=ω-rank XM .

For the rest of the section, we fix once and for all the minimal MCM
approximation

0−→YM
i−→ XM

p−−→ M −→ 0
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of a chosen finitely generated R-module M. Note first that since we
chose our approximation to be (Ext-)minimal, we have

Extd
R(k, XM)∼=Extd

R(k, M) ,

where d = dimR. This, together with the fact (see Exercise 11.51)
that Extd

R(k, Z) 6= 0 for every non-zero finitely generated R-module Z,
immediately gives the following crude bounds.

11.25. PROPOSITION. Set s = dimk Extd
R(k, M). Then

(i) δ(M) · dimk Extd
R(k,R) 6 s, with equality if and only if XM is

free. In particular, if dimk Extd
R(k, M) < dimk Extd

R(k,R), then
δ(M)= 0.

(ii) γ(M)6 s, with equality if and only if M has finite injective di-
mension. �

Note that the question of which modules M satisfy “XM is free” is
quite subtle. One situation in which it holds is when R is Gorenstein
and M has finite projective dimension; see Proposition 11.20. However,
it may hold in other cases as well, for example M = R/ω, where ω is
embedded as an ideal of height one as in Proposition 11.6.

To obtain sharper bounds, as well as a better understanding of
what exactly each invariant measures, we consider them separately.
Of the two, δ(M) has received more attention, so we begin there.

11.26. LEMMA. Let M be a finitely generated R-module. Decompose
XM = X ⊕F, where F is a free module of rank δ(M) and X is stable.
Then

δ(M)=µR
(
M

/
p

(
X

))
.

PROOF. The commutative diagram of short exact sequences

0

��

0

��

0

��

0 // ker(p|X ) //

��

YM //

��

ker p //

��

0

0 // X //

��

XM //

p
��

F //

p=p|F
��

0

0 // p(X ) //

��

M //

��

M/p(X ) //

��

0

0 0 0
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shows that δ(M)= rankF >µR(M/p(X )). If rankF >µR(M/p(X )), then
ker p has a non-zero free direct summand. Since YM maps onto ker p,
YM also has a free summand, which we easily see is a common direct
summand of YM and XM . As our approximation was chosen minimal,
this is a contradiction. �

The lemma allows us to characterize δ(M) without referring to the
MCM approximation of M.

11.27. PROPOSITION. Let M be a finitely generated R-module. The
delta-invariant δ(M) is the minimum free rank of all MCM modules Z
admitting a surjective homomorphism onto M.

PROOF. Denote the minimum by δ′ = δ′(M), and set δ= δ(M). Then
evidently δ′ 6 δ. For the other inequality, let ϕ : Z −→ M be a surjec-
tion with Z MCM and f-rank Z = δ′. Write Z = Z ⊕ R(δ′) and XM =
X ⊕R(δ). The lifting property applied to ϕ|Z gives a homomorphism
α : Z −→ X ⊕R(δ) fitting into a commutative diagram

0 // kerϕ|Z //

��

Z

α
��

ϕ|Z
// M

0 // YM // X ⊕R(δ)
p

// M // 0

As Z has no free direct summands, the image of the composition Z −→
X ⊕R(δ)�R(δ) is contained in mR(δ). Thus α

(
Z

)
contributes no mini-

mal generators to M/p(X ), and therefore

δ=µR
(
M

/
p

(
X

))
6µR

(
M/pα

(
Z

))
6 δ′ . �

In particular, Proposition 11.27 implies that for a MCM module X ,
we have δ(X ) = f-rank X , and for M arbitrary, δ(M) = 0 if and only if
M is a homomorphic image of a stable MCM module. We also obtain
some basic properties of δ.

11.28. COROLLARY. Let M and N be finitely generated R-modules.
(i) δ(M⊕N)= δ(M)+δ(N).

(ii) δ(N)6 δ(M) if there is a surjection M�N.
(iii) δ(M)6µR(M).

PROOF. Since minimality is equivalent to Ext-minimality, the di-
rect sum of minimal MCM approximations of M and N is again min-
imal. Thus XM⊕N ∼= XM ⊕ XN . The free rank of XM ⊕ XN is the sum
of those of XM and XN , since a direct sum has a free summand if and
only if one summand does. The second and third statements are clear
from the Proposition. �
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11.29. REMARK. Corollary 11.28 is central to the early history of
the delta-invariant. Suppose that R is Gorenstein and that M is a
finitely generated R-module admitting a surjection M� N, where N
has finite projective dimension. Since the minimal MCM approxima-
tion of N is simply a free cover (Proposition 11.20), we have δ(N) > 0,
and hence δ(M) > 0. It was at first conjectured that δ(M) > 0 if and
only if M has a non-zero quotient module of finite projective dimen-
sion, but a counterexample was given by Ding [Din94]. Ding proved a
formula for δ(R/I), where R is a one-dimensional Gorenstein local ring
and I is an ideal of R containing a non-zerodivisor:

δ(R/I)= 1+` (soc(R/I))−µR
(
I∗

)
.

He then took R = k[[t3, t4]], where k is a field, and I = (t8 + t9, t10).
He showed that δ(R/I) = 1 and that I is not contained in any proper
principal ideal of R, so R/I cannot map onto a non-zero module of finite
projective dimension.

We also mention here in passing a remarkable application of the
δ-invariant, due to Martsinkovsky [Mar90, Mar91]. Let k be an al-
gebraically closed field of characteristic zero and let S = k[[x1, . . . , xn]]
be a power series ring over k. Let f ∈ S be a polynomial such that
the hypersurface ring R = S/( f ) is an isolated singularity. The Jaco-
bian ideal j( f ), generated by the partial derivatives of f , and its image
j( f ) in R, are thus primary to the respective maximal ideals. Then
Martsinkovsky shows that δ

(
R/ j ( f )

)
= 0 if and only if f ∈ j( f ). In fact,

these are equivalent to f ∈ (x1, . . . , xn) j( f ), which by a foundational re-
sult of Saito [Sai71] occurs if and only if f is quasi-homogeneous, i.e.
there is an integral weighting of the variables x1, . . . , xn under which f
is homogeneous.

Turning attention now to γ(M)=ω-rank XM , we have an analog of
Lemma 11.26, the proof of which is similar enough that we skip it.

11.30. LEMMA. Let M be a finitely generated R-module, and write
XM = X ⊕ω(γ(M)), where X has no direct summand isomorphic to ω.
Then

γ(M) ·µR(ω)=µR

(
M

/
p(X )

)
.

�

As a consequence, we find an unexpected restriction on the R-
modules of finite injective dimension.

11.31. PROPOSITION. Let M be a finitely generated R-module of
finite injective dimension. Then γ(M) ·µR(ω) = µR(M). In particular,
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µR(M) is an integer multiple of the Cohen-Macaulay type µR(ω) of R.
�

There is obviously no direct analog of Proposition 11.27 for γ(M);
as long as R is not Gorenstein, every M is a homomorphic image of
a MCM module without ω-summands, namely, a free module. Still,
we do retain additivity, and in certain cases the other assertions of
Corollary 11.28.

11.32. PROPOSITION. Let M and N be R-modules. Then γ(M⊕N)=
γ(M)+γ(N). �

11.33. PROPOSITION. Let N ⊆ M be R-modules, both of finite injec-
tive dimension. Then γ(M/N)6 γ(M)−γ(N).

PROOF. Since each of M, N, and M/N has finite injective dimen-
sion, Proposition 11.25 allows us to compute γ(−) as dimk Extd

R(k,−).
The long exact sequence of Ext ends with

Extd
R(k, N)−→Extd

R(k, M)−→Extd
R(k, M/N)−→ 0 ,

and a k-dimension count gives the inequality. �

This result fails without the assumption of finite injective dimen-
sion. For example, consider a non-Gorenstein ring R and a free mod-
ule F mapping onto the canonical module ω. We have γ(F) = 0 and
γ(ω)= 1.

In case M has codepth 1, the explicit construction of MCM approx-
imations in Proposition 11.21 allows us to compute γ(M) directly. We
leave the proof as yet another exercise.

11.34. PROPOSITION. Let M be an R-module of codepth 1 (not nec-
essarily Cohen-Macaulay). Then we have γ(M)=µR(Ext1

R(M,ω)). �

For CM modules, the δ- and γ-invariants are dual. This follows
easily from the construction of MCM approximations in this case.

11.35. PROPOSITION. Let M be a CM R-module of codepth t, and
write M∨ =Extt

R(M,ω) as usual. Then δ(M∨)= γ(syzR
t (M)). �

In fact, one can show, using the gluing construction of Herzog and
Martsinkovsky [HM93], that δ

(
syzi(M∨)

)= γ(
syzt−i(M)

)
for i = 0, . . . , t.

When R is Gorenstein, δ and γ coincide, allowing us to combine all
the above results, and enabling new ones. Here is an example.

11.36. PROPOSITION. Assume that R is a Gorenstein ring, and let
M be a finitely generated R-module. Then

δ(M)=µR

(
Y M

)
−µR

(
X M

)
.
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PROOF. Consider the diagram (11.18.1) following the construction
of MCM approximations and FID hulls. In the Gorenstein situation,
the ω(n) in the center becomes a free module R(n). Thus

δ(M)= f-rank XM = n−µR(X M) .

The middle column implies n> µR(Y M), but in fact we have equality:
the image of the vertical arrow YM −→ R(n) is contained in mR(n) by
the minimality of the left-hand column. Combining these gives the
formula of the statement. �

§4. The index and applications to finite CM type

Once again, in this section (R,m,k) is a CM local ring with canoni-
cal module ω. As a warm-up exercise, here is a straightforward result
attributed to Auslander.

11.37. PROPOSITION. The following conditions are equivalent.
(i) R is a regular local ring.

(ii) δ(syzR
n (k))> 0 for all n> 0, i.e. no syzygy of k is a homomorphic

image of a stable MCM module.
(iii) δ(k)= 1.
(iv) γ(syzR

dim(R)(k))> 0.

PROOF. If R is a regular local ring, then every MCM module is
free, so δ(M) > 0 for every module M. In particular (ii) holds. State-
ment (ii) implies (iii) trivially. If R is non-regular, then there is at
least one MCM R-module M without free summands, and the non-
zero composition M −→ M/mM ∼= k(µR (M))� k shows δ(k)= 0. Thus the
first three statements are equivalent. Finally, the construction of min-
imal MCM approximations for CM modules in Proposition 11.15 shows
that δ(k) = f-rank(syzR

dim(R)(k
∨)∨) = ω-rank(syzR

dim(R)(k)), whence (iii)
⇐⇒ (iv). �

For a moment, let us set δn = δ(R/mn) for each n > 0. Then the
Proposition implies that if R is not regular, then δ0 = 0. The surjection
R/mn+1� R/mn gives δn+1 > δn, and every δn is at most 1 by Corol-
lary 11.28. Thus the sequence {δn} is non-decreasing, with

0= δ06 δ16 · · ·6 δn6 δn+16 · · ·6 1 .

If ever δn = 1, the sequence stabilizes there. Let us define the index of
R to be the point at which that stabilization occurs, that is,

index(R)=min
{

n
∣∣ δ(

R/mn)= 1
}
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and set index(R)=∞ if δ(R/mn)= 0 for every n. Equivalently, index(R)
is the least integer n such that any MCM R-module X mapping onto
R/mn has a free direct summand. In these terms, the Proposition says
that R is regular if and only if index(R)= 1.

Next we point out that the index of R is finite if R is Gorenstein.
Let x be a system of parameters in the maximal ideal m. Then R/(x)
has finite projective dimension, so δ(R/(x))> 0 since the MCM approx-
imation is just a free cover (Proposition 11.20). The ideal generated
by x being m-primary, we have mn ⊆ (x) for some n, and the surjection
R/mn −→ R/(x) gives δn > δ(R/(x)) > 0. Thus index(R)6 n. In fact, we
see that the index of R is bounded above by the (generalized) Loewy
length of R, defined by

`̀ (R)= inf
{

n
∣∣ there exists a s.o.p. x with mn ⊆ (x)

}
.

11.38. CONJECTURE (Ding). Let R be a CM local ring with infinite
residue field. Then

index(R)= `̀ (R) .

This conjecture is known to fail for finite residue fields [HS97].
There are some partial results by Ding [Din92, Din93, Din94] and by
Herzog [Her94], who proved it in case R is homogeneous over a field.

In this section we will give Ding’s proof that the index of R is finite
if and only if R is Gorenstein on the punctured spectrum; moreover,
in this case the index is bounded by the Loewy length. This will be
Theorem 11.42, to which we come after some preliminaries. Recall
that we write M | N to indicate M is isomorphic to a direct summand
of N.

11.39. LEMMA. Let (R,m) be a CM local ring with canonical module
ω and let x ∈ m be a non-zerodivisor. Then δ(R/(x)) > 0 if and only if
ω | syzR

1 (ω/xω).

PROOF. The minimal MCM approximation of a module of codepth 1
is computed in Proposition 11.21; in the case of R/(x) we see that it is
obtained by dualizing a free resolution of

(R/(x))∨ =Ext1
R(R/(x),ω)∼=ωR/(x)

∼=ω/xω .

It therefore takes the form

0−→ F∨ −→ syzR
1 (ω/xω)∨ −→ R/(x)−→ 0

where F is a free module. Thus δ(R/(x))= f-rank
(
syzR

1 (ω/xω)∨
)

is equal
to ω-rank

(
syzR

1 (ω/xω)
)
. �

11.40. LEMMA. Keep the notation of Lemma 11.39. The following
are equivalent for a non-zerodivisor x ∈m:
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(i) ω | syzR
1 (ω/xω);

(ii) syzR
1 (ω/xω)∼=ω⊕syzR

1 (ω);
(iii) the multiplication map ω

x−−→ω factors through a free module.

PROOF. (i) =⇒ (ii) Form the pullback of a free cover F −→ ω/xω
and the surjection ω−→ω/xω to obtain a diagram as below.

0

��

0

��

syzR
1 (ω/xω)

��

syzR
1 (ω/xω)

��

0 // ω // P //

��

F //

��

0

0 // ω // ω //

��

ω/xω //

��

0

0 0

The middle row splits, giving a short exact sequence

0−→ syzR
1 (ω/xω)−→ F ⊕ω−→ω−→ 0

in the middle column. As Ext1
R(ω,ω) = 0, any summand of syzR

1 (ω/xω)
isomorphic to ω must split out as an isomorphism ω −→ ω, leaving
syzR

1 (ω) behind.
(ii) =⇒ (iii) Letting F −→ ω now be a free cover of ω, another

pullback gives the diagram

0

��

0

��

syzR
1 (ω)

��

syzR
1 (ω)

��

0 // syzR
1 (ω/xω) //

��

F //

��

ω/xω // 0

0 // ω x
//

��

ω //

��

ω/xω // 0

0 0
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Applying Miyata’s Theorem (Theorem 7.1), we find that the left-hand
column must split, so that ω x−−→ω factors through F.

(iii) =⇒ (i) If we have a factorization of the multiplication homo-
morphism ω

x−−→ ω through a free module, say ω −→ G −→ ω, we may
pull back in two stages:

0 // syzR
1 (ω) // Q //

��

ω //

��

0

0 // syzR
1 (ω) // P //

��

G //

��

0

0 // syzR
1 (ω) // F // ω // 0

The result is the same as if we had pulled back by ω x−−→ω directly, by
the functoriality of Ext. Doing so in two stages, however, reveals that
the middle row splits as G is free, and so the top row splits as well.
This gives Q ∼=ω⊕ syzR

1 (ω) and the middle column thus presents Q as
the first syzygy of cok(ω x−−→ω)∼=ω/xω, giving even property (ii) and in
particular (i). �

Putting the lemmas together, we see that δ(R/(x)) = 0 for a non-
zerodivisor x ∈ m if and only if x is in the ideal of EndR(ω) ∼= R con-
sisting of those elements for which the corresponding multiplication
factors through a free module. Let us identify this ideal explicitly.

11.41. LEMMA. Let R be a CM local ring with canonical module ω.
The following three ideals of R coincide.

(i)
{

x ∈ R
∣∣∣ ω x−−→ω factors through a free module

}
;

(ii) the trace τω(R) of ω in R, which is generated by homomorphic
images of ω in R;

(iii) the image of the natural map

α : HomR(ω,R)⊗R ω−→EndR(ω)= R

defined by α( f ⊗a)(b)= f (b) ·a. (Note that this is not the canon-
ical evaluation homomorphism ev( f ⊗a)= f (a).)

PROOF. We prove (i) ⊇ (ii) ⊇ (iii) ⊇ (i).
Let x ∈ τω(R), so that there is a linear functional f : ω−→ R and an

element a ∈ ω with f (a) = x. Defining g : R −→ ω by g(1) = a, we have
a factorization x = g ◦ f : ω−→ω.
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Now if x ∈ imα, then there exist homomorphisms f i : ω −→ R and
elements ai ∈ω such that

α

(∑
i

f i ⊗ai

)
(b)= xb

for every b ∈ω. Define homomorphisms g i : ω−→ R by g i(b)=α( f i⊗b)
for all b ∈ ω. Then

∑
i g i(ai) = x, so that x is contained in the sum of

the images of the g i, hence in the trace ideal.
Finally, suppose we have a commutative diagram

ω
x

//

∑
f i   

ω

F

∑
g i

>>

with F a free module and
∑

f i,
∑

g i the decompositions along an iso-
morphism F ∼= R(n). Then for a ∈ω, we have

α
(∑

f i ⊗ g i(1)
)
(a)=∑

f i(a) · g i(1)

=∑
g i( f i(a))

= xa

so that x ∈ imα. �

We denote by the ideal of Lemma 11.41 by τω(R).
From either of the first two descriptions above, we see that 1 ∈

τω(R) if and only if R is Gorenstein. It follows that τω(R) defines the
Gorenstein locus of R, that is, a localization Rp is Gorenstein if and
only if τω(R) 6⊆ p. In particular, R is Gorenstein on the punctured spec-
trum if and only if τω(R) is m-primary.

11.42. THEOREM (Ding). The index of a CM local ring (R,m) with
canonical module ω is finite if and only if R is Gorenstein on the punc-
tured spectrum.

PROOF. Assume first that R is Gorenstein on the punctured spec-
trum, so that τω(R) is m-primary. Then there exists a regular sequence
x1, . . . , xd in τω(R), where d = dimR. We claim by induction on d that
δ(R/(x1, . . . , xd)) 6= 0. The case d = 1 is immediate from Lemmas 11.39
and 11.40.

Suppose d > 1 and X is a MCM R-module with a surjection X −→
R/(x1, . . . , xd). Tensor with R = R/(x1) to get a surjection X /x1X −→
R/(x2, . . . , xd), where overlines indicate passage to R. Since x2, . . . , xd
are in τω(R), the inductive hypothesis says that X /x1X has an R/(x1)-
free direct summand. But then there is a surjection X −→ X /x1X −→



§4. THE INDEX AND APPLICATIONS TO FINITE CM TYPE 195

R, so that f-rank X > δ(R) > 0, and X has a non-trivial R-free direct
summand, showing δ(R/(x1, . . . , xd))> 0.

Now let us assume that τω(R) is not m-primary. For any power mn

of the maximal ideal, we may find a non-zerodivisor zn ∈mn\τω(R). By
Lemmas 11.39 and 11.40, δ(R/(zn)) = 0 for every n, and the surjection
R/(zn)−→ R/mn gives δ(R/mn)= 0 for all n, so that index(R)=∞. �

As an application of Ding’s theorem, we prove that CM local rings
of finite CM type are Gorenstein on the punctured spectrum. Of course
this follows trivially from Theorem 7.12, since isolated singularities
are Gorenstein on the punctured spectrum. This proof is completely
independent, however, and may have other applications. It relies upon
Guralnick’s results in Section §3 of Chapter 1.

11.43. THEOREM. Let (R,m) be a CM local ring of finite CM type.
Then R has finite index. If in particular R has a canonical module,
then R is Gorenstein on the punctured spectrum.

PROOF. Let {M1, . . . , Mr} be a complete set of representatives for
the isomorphism classes of non-free indecomposable MCM R-modules.
By Corollary 1.14, since R is not a direct summand of any Mi, there
exist integers ni, i = 1, . . . , r, such that for s > ni, R/ms is not a di-
rect summand of Mi/msMi. Then for s> ni, there exists no surjection
Mi/msMi −→ R/ms by Lemma 1.11. Set N = max {ni}. Let X be any
stable MCM R-module, and decompose X ∼= M(a1)

1 ⊕·· ·⊕M(ar)
r . If there

were a surjection X −→ R/mN , then (since R is local) one of the sum-
mands Mi would map onto R/mN , contradicting the choice of N. As X
was arbitrary, this shows that index(R)<∞. �

11.44. REMARK. The foundation of Ding’s theorem is identifying
the non-zerodivisors x such that δ(R/(x))> 0. One might also ask about
δ(ω/xω), as well as the corresponding values of the γ-invariant. It’s
easy to see that the minimal MCM approximation of ω/xω is the short
exact sequence 0 −→ ω

x−−→ ω −→ ω/xω −→ 0, which gives δ(ω/xω) = 0
and γ(ω/xω)= 1. However, γ(R/(x)) is much more mysterious. We have
XR/(x)

∼= syzR
1 (ω/xω)∨, so γ(R/(x)) > 0 if and only if syzR

1 (ω/xω) has a
non-zero free direct summand. We know of no effective criterion for
this.

11.45. REMARK. As a final note, we observe that Auslander’s cri-
terion for regularity, Proposition 11.37, can be interpreted via the con-
struction of minimal MCM approximations for CM modules in Propo-
sition 11.15. Assume that R is Gorenstein. Then condition (iv) can
be written δ(syzR

d (k)) > 0, and since syzR
d (k) is MCM, this says simply
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that R is regular if and only if syzR
d (k) has a non-trivial free direct sum-

mand. This is a special case of a result of Herzog [Her94], which gener-
alizes a case of Levin’s solution in his thesis [Lev65] (see also [LV68])
of a conjecture of Kaplansky. Kaplansky’s conjecture was that if there
exists a finitely generated R-module M such that mM 6= 0 and mM
has finite projective dimension, then R is regular; in particular, if
syzR

d (R/mn) is free for some n then R is regular. Yoshino has conjec-
tured [Yos98] that for any positive integers t and n, δ(syzR

t (R/mn))> 0
if and only if R is regular local, and has proven the conjecture when R
is Gorenstein and the associated graded ring grm(R) has depth at least
d−1.

§5. Exercises

11.46. EXERCISE. Prove that the canonical module of a CM local
ring is unique up to isomorphism, using the Artinian case and Corol-
lary 1.14.

11.47. EXERCISE. Prove Proposition 11.20: If R is Gorenstein and
M is an R-module of finite projective dimension, then the minimal
MCM approximation of M is just a minimal free cover.

11.48. EXERCISE. Let R be a CM local ring with canonical mod-
ule ω, and let M be a finitely generated R-module of finite injective
dimension. Show that M has a finite resolution by copies of ω

0−→ωnt −→ ·· · −→ωn1 −→ωn0 −→ M −→ 0 .

11.49. EXERCISE. Let x ∈ m be a non-zerodivisor. Prove that the
middle term X R/(x) of the minimal MCM approximation of R/(x) satis-
fies X R/(x) ∼= syzR

2 (ω/xω)∨.

11.50. EXERCISE. Let R be CM local and M a finitely generated R-
module. Define the stable MCM trace of M to be the submodule τ(M)
generated by all homomorphic images f (X ), where X is a stable MCM
module and f ∈HomR(X , M). Show that δ(M)=µR(M/τ(M)).

11.51. EXERCISE. Let (R,m) be a local ring. Denote by µi(p, M) the
number of copies of the injective hull of R/p appearing at the ith step
of a minimal injective resolution of M. This integer is called the ith

Bass number of M at p. It is equal to the vector-space dimension of
Exti

R(R/p, M)p over the field (R/p)p.

(i) If µi(p, M)> 0 and heightq/p= 1, prove that µi+1(q, M)> 0.
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(ii) If M has infinite injective dimension, prove that µi(m, M)> 0 for
all i > dim M. (Hint: go by induction on dim M, the base case
being easy. For the inductive step, distinguish two cases: (a)
injdimRp

(Mp) =∞ for some prime p 6=m, or (b) injdimRp
(Mp) <

∞ for every p 6=m. In the first case, use the previous part of this
exercise; in the second, conclude that injdimR(M)<∞.)

In particular, ExtdimR
R (k, Z) 6= 0 for every finitely generated R-module

Z.

11.52. EXERCISE. This exercise gives a proof of the last remaining
implication in Proposition 11.14, following [SS02]. Let (R,m,k) be a
CM complete local ring of dimension d with canonical module ω.

(i) Let M be a MCM R-module with minimal injective resolution
I•. Prove that Extd

R(k, M)= socle(Id) is an essential submodule
of the local cohomology Hd

m(M)= Hd(Γ(I•)).
(ii) Let M and N be finitely generated R-modules with M MCM

and N having finite injective dimension. Let f : N −→ M be a
homomorphism. Prove that the ω-rank of f (that is, the number
of direct summands isomorphic to ω common to N and M via f )
is equal to the k-dimension of the image of the homomorphism
Extd

R(k, f ). (Hint: take a MCM approximation of N, and split
the middle term XN ∼=ω(n) according to the image of Extd

R(k, f ).
Apply the first part above to the composition Extd

R(k,ω(n1)) −→
Hd

m(M), then use local duality.)

11.53. EXERCISE. Let R be a Gorenstein local ring (or, more gener-
ally, a CM local ring with canonical module ω and satisfying τω(R)⊇m)
with infinite residue field. Assume that R is not regular. Then

e(R)>µR(m)−dimR−1+ index(R) .

In particular, if R has minimal multiplicity e(R) = µR(m)−dimR +1,
then index(R)= 2. (Compare with Corollary 6.36.)





CHAPTER 12

Totally Reflexive Modules

Over Gorenstein local rings, MCM modules have a particularly ap-
pealing connection with (unbounded) acyclic complexes of finitely gen-
erated free modules. This connection is explored in detail in Buch-
weitz’s notes [Buc86]. In this chapter we introduce totally reflexive
modules, which play the same role over arbitrary local rings. The main
theorem, Theorem 12.14, which is due to Christensen, Piepmeyer, Stri-
uli, and Takahashi [CPST08], states that a local ring with at least one
non-free totally reflexive module, but only finite many indecomposable
ones, must be a hypersurface singularity of finite CM type. The proof
uses a four-term exact sequence (Proposition 12.5) associated to the
Auslander transpose Tr M, which we define in the first section.

§1. Stable Hom and Auslander transpose

In this section we introduce two technical tools which will be useful
in this chapter and the next. They arise in the context of “algebraic
duality,” that is, the duality (−)∗ =HomR(−,R) into the ring.

12.1. DEFINITION. Let M and N be finitely generated A-modules,
where A is a commutative (Noetherian, as always) ring. Denote by
P(M, N) the submodule of A-homomorphisms from M to N that factor
through a projective A-module, and put

HomR(M, N)=HomR(M, N)
/
P(M, N) .

We call HomR(M, N) the stable Hom module. We also write EndA(M)
for HomA(M, M) and refer to it as the stable endomorphism ring.

Observe that P(M, M) is a two-sided ideal of EndA(M), so that
EndA(M) really is a ring. In particular, it is a quotient of EndA(M), so
the stable endomorphism ring is nc-local if the usual endomorphism
ring is.

As with the usual Hom, the stable Hom module HomA(M, N) is
naturally a left EndA(N)-module and a right EndA(M)-module. We
leave to the reader the straightforward check that these actions are
well-defined.

199
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12.2. REMARK. Note that P(M, N) is the image of the natural ho-
momorphism

ρN
M : M∗⊗A N −→HomR(M, N)

defined by ρ( f ⊗y)(x)= f (x)y for f ∈ M∗, y ∈ N, and x ∈ M. In particular
M is projective if and only if ρM

M is surjective.

The other main character of the section is just as easy to define,
though we need some more detailed properties from it.

12.3. DEFINITION. Let A be a Noetherian ring and M a finitely
generated A-module with projective presentation

(12.3.1) P1
ϕ−−→ P0 −→ M −→ 0 .

The Auslander transpose Tr M of M is defined by

Tr M = cok(ϕ∗ : P∗
0 −→ P∗

1 ) ,

where (−)∗ = HomA(−, A). In other words, Tr M is defined by the ex-
actness of the sequence

(12.3.2) 0−→ M∗ −→ P∗
1

ϕ∗
−−−→ P∗

0 −→Tr M −→ 0 .

12.4. REMARKS. The Auslander transpose depends, up to projec-
tive direct summands, only on M. That is, if ϕ′ : P ′

1 −→ P ′
0 is another

projective presentation of M, then there are projective A-modules Q
and Q′ such that cok(ϕ∗)⊕Q ∼= cok((ϕ′)∗)⊕Q′. In particular Tr M is
only well-defined up to “stable equivalence.” However, we will work
with Tr M as if it were well-defined, taking care only to apply in it in
situations where the ambiguity will not matter, such as the vanishing
of Exti

A(Tr M,−) or TorA
i (Tr M,−) for i> 1.

It is easy to check that TrP is projective if P is, and that Tr(M ⊕
N) ∼= Tr M ⊕Tr N up to projective direct summands. Furthermore, in
(12.3.1) ϕ∗ is a projective presentation of Tr M, and ϕ∗∗ = ϕ canoni-
cally, so we have Tr(Tr M) = M up to projective summands for every
finitely generated A-module M.

When A is a local (or graded) ring, we can give a more appar-
ently intrinsic definition of Tr M by insisting that ϕ be a minimal
presentation, i.e. all the entries of a matrix representing ϕ lie in the
(homogeneous) maximal ideal. However, even then we will not have
Tr(Tr M)= M on the nose in general, since the Auslander transpose of
any free module will be zero.

Finally, one can check that Tr(−) commutes with arbitrary base
change. For example, it commutes (up to projective summands, as
always) with localization and passing to A/(x) for an arbitrary element
x ∈ A.
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The Auslander transpose is intimately related to the natural bi-
duality homomorphism σM : M −→ M∗∗, defined by

σM(x)( f )= f (x)

for x ∈ M and f ∈ M∗. More generally, we have the following proposi-
tion.

12.5. PROPOSITION. Let M and N be finitely generated A-modules.
Then in the exact sequence

0−→ kerσN
M −→ M⊗A N

σN
M−−−→HomA(M∗, N)−→ cokσN

M −→ 0 ,

in which σN
M is defined by σN

M(x⊗ y)( f ) = f (x)y for x ∈ M, y ∈ N, and
f ∈ M∗, we have

kerσN
M
∼=Ext1

A(Tr M, N) and cokσN
M
∼=Ext2

A(Tr M, N) .

Moreover
Exti

A(Tr M, N)∼=Exti−2
A (M∗, N)

for all i> 3. In particular, taking N = A gives an exact sequence

0−→Ext1
A(Tr M, A)−→ M

σM−−−→ M∗∗ −→Ext2
A(Tr M, A)−→ 0

and isomorphisms

Exti
A(Tr M,R)∼=Exti−2

A (M∗,R)

for i> 3. �

We leave the proof as an exercise. The proposition motivates the
following definition.

12.6. DEFINITION. A finitely generated A-module M is said to be
n-torsionless provided Exti

A(Tr M, A)= 0 for i = 1, . . . ,n.
In particular, M is 1-torsionless if and only if σM : M −→ M∗∗ is

injective, 2-torsionless if and only if M is reflexive, and n-torsionless
for some n > 3 if and only if M is reflexive and Exti

A(M∗,R) = 0 for
i = 1, . . . ,n−2.

12.7. PROPOSITION. Suppose that a finitely generated A-module M
is n-torsionless. Then M is an nth syzygy. The converse holds if n = 1.

PROOF. For n = 0 there is nothing to prove. For n = 1, let P −→ M∗
be a surjection with P projective; then the composition of the injections
M −→ M∗∗ and M∗∗ −→ P∗ shows that M is a submodule of a projec-
tive, whence a first syzygy. Similarly for n> 2, let Pn−1 −→ ·· ·P0 −→
M∗ −→ 0 be a projective resolution of M∗. Dualizing and using the
definition of n-torsionlessness, we see that

0−→ M −→ P∗
0 −→ ·· · −→ P∗

n−1
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is exact, so M is an nth syzygy. The converse, when n = 1, is left as an
exercise. �

The converse can fail when n = 2 (see Exercise 12.24). On the other
hand, we have the following:

12.8. PROPOSITION. Let R be a CM local ring of dimension d, and
let M be a finitely generated R-module. Assume that R is Gorenstein
on the punctured spectrum. Then the following are equivalent:

(i) M is MCM;
(ii) M is a dth syzygy;

(iii) M is d-torsionless, i.e., Exti
R(Tr M,R)= 0 for i = 1, . . . ,d.

PROOF. Items (i) and (ii) are equivalent by Corollary A.15, since R
is Gorenstein on the punctured spectrum. The implication (iii) =⇒ (ii)
follows from the previous proposition. We have only to prove (i) implies
(iii). So assume that M is MCM. The case d = 0 is vacuous. For d = 1,
the four-term exact sequence of Proposition 12.5 and the hypothesis
that R is Gorenstein on the punctured spectrum combine to show that
Ext1

R(Tr M,R) has finite length. Since Ext1
R(Tr M,R) embeds in M by

Proposition 12.5 and M is torsion-free, this implies Ext1
R(Tr M,R)= 0.

Now assume that d> 2. Let P1 −→ P0 −→ M −→ 0 be a free presen-
tation of M, so that

0−→ M∗ −→ P∗
0 −→ P∗

1 −→Tr M −→ 0

is exact. Splice this together with a free resolution of M∗ to get a
resolution of Tr M

Gd+1
ϕd+1−−−→Gd

ϕd−−→ ·· · ϕ3−→G2 −→ P∗
0 −→ P∗

1 −→Tr M −→ 0.

Dualize, obtaining a complex

0−→ (Tr M)∗ −→ P1 −→ P0 −→G∗
2
ϕ∗

3−−→ ·· · ϕ
∗
d−−→G∗

d
ϕ∗

d+1−−−→G∗
d+1

in which kerϕ∗
3
∼= M since M is reflexive. The truncation of this com-

plex at M

(12.8.1) 0−→ M −→G∗
2
ϕ∗

3−−→ ·· · ϕ
∗
d−−→G∗

d
ϕ∗

d+1−−−→G∗
d+1

is a complex of MCM R-modules, and since R is Gorenstein on the
punctured spectrum, the homology Exti−2

R (M∗,R) has finite length.
The Lemme d’Acyclicité (Exercise 12.22) therefore implies that the
complex (12.8.1) is exact, so that M is a dth syzygy. �

Finally we see how the Auslander transpose and stable Hom inter-
act. Notice that for any A-module M, Tr M is naturally a module over
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EndA(M), since any endomorphism of M lifts to an endomorphism of
its projective presentation, thus inducing an endomorphism of Tr M.

12.9. PROPOSITION. Let A be a commutative ring and M, N two
finitely generated A-modules. Then

HomA(M, N)∼=TorA
1 (Tr M, N) .

Furthermore, this isomorphism is natural in both M and N, and is
even an isomorphism of EndA(N)-EndA(M)-bimodules.

PROOF. Let P1
ϕ−−→ P0 −→ M −→ 0 be our chosen projective presen-

tation of M. Then we have the exact sequence

0−→ M∗ −→ P∗
0

ϕ∗
−−−→ P∗

1 −→Tr M −→ 0 .

Tensoring with N yields the complex

M∗⊗A N −→ P∗
0 ⊗A N

ϕ∗⊗1N−−−−−→ P∗
1 ⊗A N −→Tr M⊗A N −→ 0 .

The homology of this complex at P∗
0⊗A N is identified as TorA

1 (Tr M, N).
On the other hand, since the Pi are projective A-modules, the natu-
ral homomorphisms ρN

P1
: P∗

i ⊗A N −→ HomA(Pi, N) are isomorphisms
(Exercise 12.25). It follows that ker(ϕ∗⊗A 1N) ∼= HomR(M, N), so that
TorA

1 (Tr M, N) is isomorphic to the quotient of HomA(M, N) by the im-
age of M∗⊗A N −→HomA(P0, N), i.e. TorA

1 (Tr M, N)∼=HomA(M, N).
We leave the “Furthermore” to the reader. �

§2. Complete resolutions

This section contains two constructions over Gorenstein local rings.

12.10. CONSTRUCTION. Let R be a Gorenstein local ring, and let
M be a MCM R-module. Start with a minimal free resolution of M,
that is, an exact sequence

(12.10.1) · · · −→ Fn −→ ·· · −→ F1 −→ F0 −→ M −→ 0 ,

in which each Fi is a free module of minimal rank. Next, we resolve
M∗ =HomR(M,R) minimally:

(12.10.2) · · · −→Gn −→ ·· · −→G1 −→G0 −→ M∗ −→ 0 .

By Theorem 11.5, Exti(M,R)= 0 for i > 0 and M is reflexive. Therefore,
upon dualizing (12.10.2) and setting Fi = (G−1−i)∗ for i < 0, we get an
exact sequence

(12.10.3) 0−→ M −→ F−1 −→ F−2 −→ ·· · −→ F−n −→ ·· · .
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Now we splice (12.10.1) and (12.10.3) together, taking the composition
F0 −→ M −→ F−1 for the map F0 −→ F−1, and getting an acyclic com-
plex

(12.10.4) F• : · · · −→ F2 −→ F1 −→ F0 −→ F−1 −→ F2 −→ ·· · ,

in which M = cok(F1 −→ F0). We call this complex the complete resolu-
tion of M. We note (see Exercise 12.27) that the dual F∗• of the complex
F• in (12.10.4) is acyclic and yields a complete resolution of the MCM
module M∗.

We use these observations to motivate, in the next section, an anal-
ogous class of modules over local rings (R,m) that may not be Goren-
stein.

As a bonus application of complete resolutions, we describe the
pitchfork construction of Auslander and Buchweitz, which gives an in-
dependent proof of the existence of MCM approximations over Goren-
stein local rings. (Cf. Theorem 11.17.)

12.11. CONSTRUCTION. Let R be a Gorenstein local ring of dimen-
sion d, and let M be a finitely generated R-module of codepth t. Let

P• : · · · −→ Pn −→ ·· · −→ P1 −→ P0 −→ M −→ 0

be a minimal free resolution of M. Set C = syzR
t (M), a MCM module.

By the construction above, C has a complete resolution

F• : · · · −→ F2 −→ F1 −→ F0 −→ F−1 −→ F−2 −→ ·· · ,

which we shift so that C = cok(Ft+1 −→ Ft). Truncating F• at degree
zero, we graft it together with P• to obtain a commutative pitchfork:

Pt−1 // · · · // P0 // M // 0

· · · // Pt

99

%%

Ft−1 //

ϕt−1

OO

· · · // F0 //

ϕ0

OO

X //

f

OO

0

We construct the vertical maps ϕi inductively, starting from the equal-
ity ϕt : syzR

t X = C = syzR
t M. Suppose at the ith stage we have a comm-

utative diagram with exact rows:

0 // syzR
i+1 M // Pi // syzR

i M // 0

0 // syzR
i+1 X

ϕi+1

OO

// Fi // syzR
i X // 0



§3. TOTALLY REFLEXIVE MODULES 205

Since syzR
i+1 X is MCM (being an infinite syzygy), Ext1

R(syzR
i+1 X ,R) =

0, whence the rows of the dualized diagram

0 //
(
syzR

i M
)∗

// P∗
i

//

ϕi

��

(
syzR

i+1 M
)∗

(ϕi+1)∗
��

0 //
(
syzR

i X
)∗

// F∗
i

//
(
syzR

i+1 X
)∗

// 0

are also exact. Therefore (ϕi+1)∗ lifts to ψ : P∗
i −→ F∗

i , and re-dualizing
ϕi =ψ∗

i completes the induction.
We thus obtain a chain map ϕ• : P• −→ F• inducing a homomor-

phism f : X −→ M. We may assume that ϕ• is surjective in each de-
gree (by adding, if necessary, trivial complexes of free modules), hence
in fact split surjective. In particular we assume f is surjective as well.
Let Y = ker f , so that

(12.11.1) 0−→Y −→ X −→ M −→ 0

is exact. The long exact sequence of homology associated to the short
exact sequence of complexes

0−→ kerϕ• −→ P•
ϕ•−−→ F• −→ 0

shows that kerϕ• is a complex of projectives with Y its only non-
vanishing homology, and that kerϕi = 0 for i> t. It follows that kerϕ•
is a finite projective resolution of Y , and that (12.11.1) is a MCM ap-
proximation of M.

§3. Totally reflexive modules

12.12. DEFINITION. A doubly-infinite complex

F• : · · · −→ F2 −→ F1 −→ F0 −→ F−1 −→ F2 −→ ·· ·
over a local ring R is totally acyclic provided each Fi is a finitely gen-
erated free module and both (F•) and (F∗• ) are exact. An R-module
M is totally reflexive [AM02] provided M ∼= cok(F1 −→ F0) for some to-
tally acyclic complex (F•). We say that R has finite totally reflexive
representation type (finite TR type for short) provided there are, up to
isomorphism, only finitely many indecomposable totally reflexive mod-
ules.

Over a Gorenstein local ring, the totally reflexive modules are ex-
actly the MCM modules, and finite TR type is the same as finite CM
type. For a local ring (R,m), we let G (R) denote the class of totally
reflexive R-modules. (The letter “G ” recognizes the fact that these
modules are sometimes called “modules of Gorenstein dimension zero”
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after [AB69].) We leave to the reader the proof of the following char-
acterization of totally reflexive modules:

12.13. PROPOSITION. Let R be a local ring and M a finitely gener-
ated R-module. Then M is totally reflexive if and only if the following
conditions hold:

(i) M is reflexive;
(ii) Exti

R(M,R)= 0 for each i > 0; and
(iii) Exti

R(M∗,R)= 0 for each i > 0. �

Our goal in this section is the following theorem, due to Chris-
tensen, Piepmeyer, Striuli and Takahashi [CPST08]:

12.14. THEOREM. Let (R,m,k) be a local ring having at least one
non-free totally reflexive module. If R has finite TR type, then R is
Gorenstein (and hence has finite CM type).

This was proved by Takahashi [Tak05],[Tak04b] [Tak04a] in case
R is Henselian and has depth at most two. We will give Takahashi’s
proof for rings of depth zero and then reduce to that case using the
approach in [CPST08]. We will omit some of the technical details, but
include the main ideas of the rather delicate proof. One question that
the theorem does not answer, and which is still rather mysterious, is
which non-Gorenstein local rings have the property that all of their
totally reflexive modules are free. Golod rings [AM02, Examples 3.5]
and hence, by [Avr98, Example 5.2.8], CM local rings with minimal
multiplicity (see Conjecture 7.21) have this property.

The key to the proof of Theorem 12.14 is to show that the residue
field has an “approximation” by totally reflexive modules. In order to
pass to the completion, where we can invoke KRS, we will have to work
with more general versions of this concept, and with certain subclasses
of G .

12.15. DEFINITION. Let R be a commutative ring and C a class
of finitely generated R-modules with R ∈ C . Let M be an arbitrary
finitely generated R-module, and

(12.15.1) s : 0−→ L i−→ C
p−−→ M −→ 0

an exact sequence with C ∈C .
(i) We say that s satisfies C -lifting for M provided every homomor-

phism B
f−−→ M, with B ∈ C , lifts to a homomorphism B

g−−→ C
with pg = f ; that is, the induced homomorphism

HomR(B,C)−→HomR(B, M)
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is a surjection for all B ∈C .
(ii) Say that s is a C -cover for M provided it satisfies C -lifting for

M and p is right minimal (cf. Definition 11.11), that is, if ϕ ∈
EndR(C) and pϕ= p, then ϕ is an automorphism.

(iii) Say that s is a C -approximation if Exti
R(B,L) = 0 for every B ∈

C and every i > 0.

Part (ii) of the next lemma is known as Wakamatsu’s Lemma.

12.16. LEMMA. Let R be a commutative ring, C a class of finitely
generated R-modules with R ∈ C , and s : 0 −→ L i−→ C

p−−→ M −→ 0 a
short exact sequence with C ∈C .

(i) If s is a C -approximation, then it satisfies C -lifting for M.
(ii) If C is closed under extensions and s is a C -cover, then it is a

C -approximation.
(iii) Assume that s satisfies C -lifting for M and that there exists

a C -cover for M. Then s is a C -cover if and only if L and C
have no non-zero common direct summands under i (cf. Defini-
tion 11.10).

PROOF. We leave the proof of item (i) as an exercise. For a proof
of Wakamatsu’s Lemma, see [EJ00, Corollary 7.2.3] or [Xu96, 2.1.1].
The proof of (iii) is almost word-for-word the same as the proof of
Lemma 11.12 [CPST08, Lemma 1.6]. �

Given a class C of finitely generated R-modules, we let C ⊥ be the
class of finitely generated R-modules L such that Exti

R(C,L)= 0 for all
C ∈C and all i > 0.

12.17. DEFINITION. A full subcategory C of R-mod is a reflexive
subcategory provided

(i) R ∈C ∩C ⊥,
(ii) M⊕N ∈C ⇐⇒ M ∈C and N ∈C ,

(iii) M ∈C =⇒ M∗ ∈C , and
(iv) M ∈C =⇒ syzR

1 (M) ∈C .

We say that C is closed under extensions provided, for every short ex-
act sequence

0−→ C1 −→ X −→ C2 −→ 0

with Ci ∈C , we have X ∈C .

It follows from Proposition 12.13 that G (R) is reflexive and that
every reflexive category of modules is contained in G (R).
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To get from the lifting property to approximations and covers, we
need the next lemma (cf. [CPST08, (2.2) (c) and (2.8)]). The Krull-
Remak-Schmidt (KRS) property (Chapter 1, §1) is a key point in the
proof of the main theorem and the reason for ascent to the completion.

12.18. LEMMA. Let (R,m,k) be a local ring whose finitely generated
modules satisfy KRS, and let C be a reflexive subcategory of R-mod
closed under extensions. These conditions on a finitely generated R-
module M are equivalent:

(i) There exists a short exact sequence s as in (12.15.1) with the
C -lifting property.

(ii) M has a C -cover.
(iii) M has a C -approximation.

PROOF. Assume (i). By discarding direct summands, we may as-
sume that no non-zero direct summand of C is contained in i(L), that
is, s is minimal in the sense of Definition 11.10. The proof that (iv)=⇒
(i) in Lemma 11.12 now shows that s is right minimal, that is, s is a
C -cover of M.

The implications (ii) =⇒ (iii) and (iii) =⇒ (i) are items (ii) and (i) of
Lemma 12.16. �

Here is a connection with finite representation type:

12.19. LEMMA. Let R be a Noetherian ring and let C be a class
of finitely generated R-modules containing R and closed under direct
summands and finite direct sums. Assume that C contains only finitely
many indecomposable modules up to isomorphism. For any finitely
generated R-module M, there exists a short exact sequence which satis-
fies C -lifting for M.

PROOF. Let {C1, . . . ,Cm} be a set of representatives for the isomor-
phism classes in C . For each i, let f i1, . . . , f in be a set of generators for
HomR(Ci, M). The map p : C(n)

1 ⊕ ·· ·⊕C(n)
m −→ M, defined in the obvi-

ous way using the f i j, is surjective and yields a short exact sequence
satisfying the C -lifting property for M. �

We now prove the main theorem for rings of depth zero.

12.20. PROPOSITION. Let (R,m,k) be a Henselian local ring with
depthR = 0, and let C be a reflexive subcategory of R-modules closed
under extensions. If k has a C -approximation, then either R is Goren-
stein or C contains only free R-modules.
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PROOF. Let s : 0 −→ L i−→ C
p−−→ k −→ 0 be a C -approximation of k,

and dualize into R, obtaining a four-term exact sequence

0−→ k∗ p∗
−−−→ C∗ i∗−−→ L∗ −→Ext1

R(k,R)−→ 0

since Ext1
R(C,R)= 0. Let Z = im i∗, so that

t : 0−→ k∗ p∗
−−−→ C∗ θ−−→ Z −→ 0

is exact. Here we have written θ for the map C∗ −→ Z, to keep it
distinct from i∗.

We claim that t satisfies C -lifting for Z. Assuming the claim for
the moment, here is the end of the proof. Since t satisfies C -lifting,
either θ is right minimal (so that t is a C -cover) or not. If θ is right
minimal, then by Wakamatsu’s Lemma (Lemma 12.16 (ii)) t is a C -
approximation. Hence Exti

R(B,k∗) = 0 for all B ∈ C and all i > 0. But
since R has depth zero, k∗ =HomR(k,R) is a finite-dimensional vector
space, so this implies that every B ∈ C satisfies Exti

R(B,k) = 0 for all
i > 0. Therefore every B ∈C is free. If on the other hand θ is not right
minimal, then by Lemma 12.16 (iii) and Lemma 12.18, k∗ and C∗ have
a non-zero common direct summand under p∗. (Here is where we need
R to be Henselian.) The only direct summands of k∗ are direct sums
of copies of k, so we find that k | C∗. In particular k is TR, whence R is
Gorenstein.

Now we prove the claim that t satisfies C -lifting for Z. Let B ∈ C

be an indecomposable module; the case B ∼= R is trivial, so we assume
that B is non-free. It suffices to prove that

HomR(B, i∗) : HomR(B,C∗)−→HomR(B,L∗)

is a split surjection. Equivalently, by Hom-⊗ adjointness, we may show
that HomR(1B⊗ i∗,R) : (B⊗R C)∗ −→ (B⊗R L)∗ is a split surjection. For
this it suffices to prove that

1B ⊗ i∗ : B⊗R L −→ B⊗R C

is a split injection. This is what we will do.
We have a commutative diagram with exact rows

B⊗R L
1B⊗i

//

σL
B
��

B⊗R C
1B⊗p

//

σC
B
��

B⊗R k //

σk
B
��

0

0 // HomR(B∗,L)
j
// HomR(B∗,C) q

// HomR(B∗,k)

in which the vertical maps are the natural homomorphisms

σN
M : M⊗R N −→HomR(M∗, N)
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defined by σN
M(x⊗ y)( f ) = f (x)y. Proposition 12.5 identifies the kernel

and cokernel of σN
M :

kerσN
M
∼=Ext1

R(Tr M, N) , and cokσN
M
∼=Ext2

R(Tr M, N) .

In particular, since C is closed under syzygies and duals we see that
TrB ∈C , whence Exti

R(TrB,L)= 0 for all i > 0 as the original sequence
s is a C -approximation. This implies σL

B is an isomorphism. Further-
more, since B is indecomposable and non-free, the image of any homo-
morphism f ∈ B∗ is contained in m, and therefore

σk
B(b⊗α)( f )= f (b)α= 0

for any b ∈ B, α ∈ k, and f ∈ B∗. In other words, σk
B = 0.

Now, since ρσC
B = 0, there exists a homomorphism g : B⊗R C −→

HomR(B∗,L) such that jg = σC
B. But then g ◦ (1B ⊗ i) = σL

B, an isomor-
phism, so that B⊗ i is a split injection, as claimed. �

Given a full subcategory B of R-mod and a local homomorphism
(R,m,k)−→ (S,n,`), we let S⊗R B = {S⊗R B | B ∈B}. As in [CPST08],
we let 〈S⊗R B〉 denote the smallest class of S-modules that contains
S⊗R B and is closed under direct summands and extensions.

PROOF OF THEOREM 12.14. Put M = syzR
d (k), where d = depthR.

By Lemma 12.19 there is a short exact sequence

s : 0−→ L i−→ C
p−−→ M −→ 0

with the G (R)-lifting property for M. We now pass to the completion
R̂ and observe that the sequence

ŝ : 0−→ L̂ −→ Ĉ
p̂−−→ M̂ −→ 0

has the R̂⊗R G (R)-lifting property for M̂. Letting B = add(R̂⊗R G (R)),
the class of modules that are direct summands of modules in R̂⊗RG (R)
(cf. Definition 2.1), we see that ŝ has the B-lifting property for M̂.

Next we claim that R̂ ⊗R G (R) is closed under extensions. To see
this, let

t : 0−→ Ĝ −→V −→ Ĥ −→ 0
be an exact sequence, with G, H ∈G (R). Any R-module W fitting into
a short exact sequence 0 −→ G −→ W −→ H −→ 0 must be totally re-
flexive and must satisfy µR(H)6 µR(G)+µR(H). It follows that there
are only finitely many such modules W up to isomorphism. By Theo-
rem 7.11, Ext1

R(H,G) has finite length. It follows that Ext1
R(H,G) is an

R̂-module and that we have natural identifications

Ext1
R(H,G)∼= R̂⊗R Ext1

R(H,G)∼=Ext1
R̂

(Ĥ,Ĝ).
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This means that t = û for some exact sequence

u : 0−→G −→U −→ H −→ 0

of R-modules. Then Û ∼=V , and the claim is proved. An easy argument
now shows that B is closed under extensions and hence that B is a
reflexive subcategory of R̂-mod.

Let x= x1, . . . , xd be a regular sequence in mR̂, linearly independent
modulo m2R̂. Since M̂ has depth d, x is a regular sequence on M̂ as
well. Put S = R̂/(x), and let C = 〈S⊗R̂ B〉. One checks (see [CPST08,
Proposition 2.10]) that C is a reflexive subcategory of S-mod and that
S ⊗R̂ ŝ is exact and has the C -lifting property for S ⊗R̂ M̂. (The key
issues here are that R̂/(x) has finite projective dimension over R̂ and
that totally reflexive modules are infinite syzygies. See [CPST08] for
details.) Next, we need a technical lemma [CPST08, Lemma 3.5]:

12.21. LEMMA. Let (R,m,k) be a local ring, and let x= x1, . . . , xn be
a sequence of elements that are linearly independent modulo m2. Then
k | syzR

n (k)/xsyzR
n (k). �

Since k is a direct summand of S ⊗R̂ M = S ⊗R syzR
n (k), one can

obtain from S⊗R̂ ŝ an exact sequence

0−→ X −→ C
q−→ k −→ 0

of S-modules with the C -lifting property for k. (Here C = S ⊗R̂ Ĉ
and q is the composition of 1S ⊗ p̂ with the projections on k.) (See
[CPST08, (1.4)].) By Lemma 12.18 there exists a C -approximation for
k. Using faithfully flat descent and NAK along the homomorphisms
R −→ R̂ −→ S, we see that C contains at least one non-free module.
Since depth(S) = 0, Proposition 12.20 implies that S is Gorenstein,
whence so is R. �

§4. Exercises

12.22. EXERCISE (Lemme d’Acyclicité, [PS73]). Let (A,m) be a lo-
cal ring and M• : 0 −→ Ms −→ ·· · −→ M0 −→ 0 a complex of finitely
generated A-modules. Assume that depth Mi > i for each i, and that
every homology module Hi(M•) either has finite length or is zero. Then
M• is exact.

12.23. EXERCISE. Prove Proposition 12.5.

12.24. EXERCISE. Let M be a finitely generated A-module. Prove
that A is 1-torsionless if and only if A is a first syzygy. Let R =
k[x, y]/(x2, xy, y2). Prove that the maximal ideal is a second syzygy
but is not 2-torsionless.



212 12. TOTALLY REFLEXIVE MODULES

12.25. EXERCISE. Prove Remark 12.2: there is an exact sequence

M∗⊗A N
ρ−−→HomA(M, N)−→HomA(M, N)−→ 0 ,

where ρ sends f ⊗ y to the homomorphism x 7→ f (x)y. Prove that ρ
is an isomorphism if either M or N is projective. In the special case
M ∼= N, prove that ρ is an isomorphism if and only if M is projective.

12.26. EXERCISE. Let R be a hypersurface and M, N two MCM
R-modules. Prove that Ext2i

R (M, N)∼=HomR(M, N) for all i> 1.

12.27. EXERCISE. Let M be a MCM module over a Gorenstein local
ring, with complete resolution F• as in (12.10.4). Prove that (F∗• ) is an
acyclic complex and that M∗ ∼= cok(F∗

−2 −→ F∗
−1).

12.28. EXERCISE. Prove Proposition 12.13.

12.29. EXERCISE. Prove (i) of Lemma 12.16.



CHAPTER 13

Auslander-Reiten Theory

In this chapter we give an introduction to Auslander-Reiten (AR)
sequences, also known as almost split sequences, and the Auslander-
Reiten quiver. AR sequences are certain short exact sequences which
were first introduced in the representation theory of Artin algebras,
where they have played a central role. They have since been used fruit-
fully throughout representation theory. The information contained
within the AR sequences is conveniently arranged in the AR quiver,
which in some sense gives a picture of the whole category of MCM
modules. We illustrate with several examples in §3.

§1. AR sequences

For this section, (R,m,k) will be a Henselian CM local ring with
canonical module ω.

We begin with the definition.

13.1. DEFINITION. Let M and N be non-zero indecomposable MCM
R-modules, and let

(13.1.1) 0−→ N i−→ E
p−−→ M −→ 0

be a short exact sequence of R-modules.
(i) We say that (13.1.1) is an AR sequence ending in M if it is non-

split, but for every MCM module X and every homomorphism
f : X −→ M which is not a split surjection, f factors through p.

(ii) We say that (13.1.1) is an AR sequence starting from N if it is
non-split, but for every MCM module Y and every homomor-
phism g : N −→ Y which is not a split injection, g lifts through
i.

We will be concerned almost exclusively with AR sequences end-
ing in a module, and in fact will often call (13.1.1) an AR sequence for
M. In fact, the two halves of the definition are equivalent; see Exer-
cise 13.32. We will therefore even allow ourselves to call (13.1.1) an AR
sequence without further qualification if it satisfies either condition.

213
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Observe that if (13.1.1) is an AR sequence, then in particular it is
non-split, so that M is not free and N is not isomorphic to the canonical
module ω.

As with MCM approximations, we take care of the uniqueness of
AR sequences first, then consider existence.

13.2. PROPOSITION. Suppose that 0 −→ N i−→ E
p−−→ M −→ 0 and

0 −→ N ′ i′−−→ E′ p′
−−→ M −→ 0 are two AR sequences for M. Then there is

a commutative diagram

0 // N i
//

��

E
p
//

��

M // 0

0 // N ′
i′
// E′

p′
// M // 0

in which the first and second vertical maps are isomorphisms.

PROOF. Since both sequences are AR sequences for M, neither p
nor p′ is a split surjection. Therefore each factors through the other,
giving a commutative diagram

0 // N i
//

ψ
��

E
p
//

ϕ
��

M // 0

0 // N ′ i′
//

ψ′
��

E′ p′
//

ϕ′
��

M // 0

0 // N
i
// E p

// M // 0

with exact rows.
Consider ψ′ψ ∈EndR(N). If ψ′ψ is a unit of this nc-local ring, then

ψ′ψ is an isomorphism, so ψ is a split injection. As N and N ′ are both
indecomposable, ψ is an isomorphism, and ϕ is as well by the Snake
Lemma.

If ψ′ψ is not a unit of EndR(N), then σ := 1N −ψ′ψ is. Define
τ : E −→ N by τ(e)= e−ϕ′ϕ(e). This has image in N since pϕ′ϕ(e)= p(e)
for all e by the commutativity of the diagram. Now τ(i(n)) = σ(n) for
every n ∈ N. Since σ is a unit of EndR(N), this implies that i is a
split surjection, contradicting the assumption that the top row is an
AR sequence. �

For existence of AR sequences, we first observe that we will need
to impose an additional restriction on M or R.
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13.3. PROPOSITION. Assume that there exists an AR sequence for
M. Then M is locally free on the punctured spectrum of R. In particu-
lar, if every indecomposable MCM R-module has an AR sequence, then
R has at most an isolated singularity.

PROOF. Let α : 0−→ N −→ E −→ M −→ 0 be an AR sequence for M.
Since α is non-split, M is not free. Let L = syzR

1 (M), so that there is a
short exact sequence

0−→ L −→ F −→ M −→ 0

with F a finitely generated free module. Suppose that Mp is not free
for some prime ideal p 6=m. Then

0−→ Lp −→ Fp −→ Mp −→ 0

is still non-split, so in particular Ext1
Rp

(Mp,Lp) = Ext1
R(M,L)p is non-

zero. Choose an indecomposable direct summand K of L such that
Ext1

R(M,K)p is non-zero, and let β ∈ Ext1
R(M,K) be such that β

1 6= 0 in
Ext1

R(M,K)p. Then the annihilator of β is contained in p. Let r ∈m\p.
Then for every n> 0, rn ∉ p, so that rnβ 6= 0. In particular rnβ is rep-
resented by a non-split short exact sequence for all n > 0. Choosing
a representative 0 −→ K −→ G −→ M −→ 0 for β, and representatives
0−→ K −→Gn −→ M −→ 0 for each rnβ as well, we obtain a commuta-
tive diagram

β : 0 // K //

rn

��

G //

��

M // 0

rnβ : 0 // K //

fn
��

Gn //

��

M // 0

α : 0 // N // E // M // 0

with exact rows. The top half of this diagram is the pushout repre-
senting rnβ as a multiple of β, while the vertical arrows in the bot-
tom half are provided by the lifting property of AR sequences. Let
fn∗ : Ext1

R(M,K) −→ Ext1
R(M, N) denote the homomorphism induced

by fn. Then α = fn∗(rnβ) = rn fn∗(β) ∈ rn Ext1
R(M, N) for every n > 0,

and so α= 0 by Krull’s Intersection Theorem, a contradiction.
The last assertion follows from the first and Lemma 7.9. �

In fact, the converse of Proposition 13.3 holds as well. The proof
uses the Auslander transpose Tr(−) introduced in Chapter 12.

Write redsyzR
n (M) for the reduced nth syzygy module, i.e. the mod-

ule obtained by deleting any non-trivial free direct summands from the
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nth syzygy module syzR
n (M). In particular redsyzR

0 (M) is gotten from
M by deleting any free direct summands.

13.4. PROPOSITION. Let R be a CM local ring of dimension d and
assume that R is Gorenstein on the punctured spectrum. Let M be an
indecomposable non-free MCM R-module which is locally free on the
punctured spectrum. Then redsyzR

j (Tr M) is indecomposable for every
j = 0, . . . ,d.

PROOF. Fix a free presentation P1
ϕ−−→ P0 −→ M −→ 0 of M, so that

Tr M appears in an exact sequence

0−→ M∗ −→ P∗
0

ϕ∗
−−−→ P∗

1 −→Tr M −→ 0 .

First consider the case j = 0. It suffices to prove that if Tr M ∼= X⊕Y
for R-modules X and Y , then one of X or Y is free. If Tr M ∼= X ⊕Y ,
then ϕ∗ can be decomposed as the direct sum of two matrices, that
is, ϕ∗ is equivalent to a matrix of the form

[α
β

]
with X ∼= cokα and

Y ∼= cokβ. But then M = cokϕ= cokϕ∗∗ ∼= cok(α∗)⊕cok(β∗). This forces
one of cok(α∗) or cok(β∗) to be zero, which means that one of X ∼= cokα
or Y ∼= cokβ is free.

Next assume that j = 1, and let N be the image of ϕ∗ : P∗
1 −→ P∗

0 ,
so that N ∼= redsyzR

1 (Tr M)⊕G for some finitely generated free module
G. Again it suffices to prove that if N ∼= X ⊕Y , then one of X or Y is
free. Let F be a finitely generated free module mapping onto M∗, and
let f : F −→ P∗

0 be the composition so that we have an exact sequence

F
f−−→ P∗

0
ϕ∗

−−−→ P∗
1 −→Tr M −→ 0 .

The dual of this sequence is exact since Ext1
R(Tr M,R) = 0 by Proposi-

tion 12.8, so we obtain the exact sequence

P∗∗
1

ϕ∗∗
−−−→ P∗∗

0
f ∗−−−→ F∗

It follows that M ∼= cokϕ∗∗ ∼= im f ∗. Now, if N = cok f decomposes as
N ∼= X ⊕Y , then f can be put in block-diagonal form

[α
β

]
. It follows

that M ∼= imα∗⊕ imβ∗, so that one of imα∗ or imβ∗ is zero. This im-
plies that one of X = cokα or Y = cokβ is free.

Now assume that j > 2, and we will show by induction on j that
redsyzR

j (Tr M) is indecomposable. Note that since d > 2 and R is
Gorenstein in codimension one, M is reflexive by Corollary A.13. Thus
the case j = 2 is clear: if redsyzR

2 (Tr M) = redsyzR
0 (M∗) decomposes,

then so does M ∼= M∗∗.
Assume 2 < j 6 d, and that redsyzR

j−1(Tr M) is indecomposable.
Note that Corollary A.13 again implies that both redsyzR

j−1(Tr M) and
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redsyzR
j (Tr M) are reflexive. We have an exact sequence

0−→ redsyzR
j (Tr M)⊕G −→ F −→ redsyzR

j−1(Tr M)−→ 0 ,

with F and G finitely generated free modules. By Proposition 12.8, we
have

Ext1
R(redsyzR

j−1(Tr M),R)=Ext j
R(Tr M,R)= 0 ,

so that the dual sequence

0−→ (redsyzR
j−1(Tr M))∗ −→ F∗ −→ (redsyzR

j (Tr M))∗⊕G∗ −→ 0

is also exact. If redsyzR
j (Tr M) decomposes as X ⊕Y with neither X

nor Y free, then syzR
1 (X∗) and syzR

1 (Y ∗) appear as direct summands of
(redsyzR

j−1(Tr M))∗. We know that X∗ and Y ∗ are non-zero since both
X and Y embed in a free module, and neither X∗ nor Y ∗ is free by the
reflexivity of redsyzR

j (Tr M). Thus (redsyzR
j−1(Tr M))∗ is decomposed

non-trivially, so that redsyzR
j−1(Tr M) is as well, a contradiction. �

Our last preparation before showing the existence of AR sequences
is a short sequence of technical lemmas. The first one has the appear-
ance of a spectral sequence, but can be proven by hand just as easily,
and we leave it to the reader. See [CE99, VI.5.1] if you get stuck.

13.5. LEMMA. Let A be a commutative ring and X , Y , and Z A-
modules. Then the Hom-tensor adjointness isomorphism

HomA(X ,HomA(Y , Z))−→HomA(X ⊗A Y , Z)

induces homomorphisms

Exti
A(X ,HomA(Y , Z))−→HomA(TorA

i (X ,Y ), Z)

for every i> 0, which are isomorphisms if Z is injective. �

13.6. LEMMA. Let (R,m,k) be a CM local ring of dimension d with
canonical module ω. Let E = ER(k) be the injective hull of the residue
field of R. For any two R-modules X and Y such that Y is MCM and
TorR

i (X ,Y ) has finite length for all i > 0, we have

Exti
R(X ,HomR(Y ,E))∼=Exti+d

R (X ,HomR(Y ,ω)) .

PROOF. Let I• : 0 −→ω−→ I0 −→ ·· · −→ Id −→ 0 be a (finite) injec-
tive resolution of ω. Let κ(p) denote the residue field of Rp for a prime
ideal p of R. Since Exti

Rp
(κ(p),ω)= 0 for i < heightp, and is isomorphic

to κ(p) for i = heightp, we see first that Id ∼= E, and second (by an easy
induction) that HomR(L, I j) = 0 for every j < d and every R-module L
of finite length.
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Apply HomR(Y ,−) to I•. Since Y is MCM, Exti
R(Y ,ω) = 0 for i > 0,

so the result is an exact sequence
(13.6.1)

0−→HomR(Y ,ω)−→HomR(Y , I0)−→ ·· · −→HomR(Y , Id)−→ 0

Now from Lemma 13.5, we have

Exti
R(X ,HomR(Y , I j))∼=HomR(TorR

i (X ,Y ), I j)

for every i, j> 0, For i> 1 and j < d, however, the right-hand side van-
ishes since TorR

i (X ,Y ) has finite length. Thus applying HomR(X ,−) to
(13.6.1), we may use the long exact sequence of Ext to find that

Exti
R(X ,HomR(Y , Id))∼=Exti

R(X ,HomR(Y ,ω)) . �

Recall that we write HomR(M, N) for the stable Hom module (see
Definition 12.1).

13.7. PROPOSITION. Let (R,m,k) be a CM local ring of dimension d
with canonical module ω. Let M and N be finitely generated R-modules
with M locally free on the punctured spectrum and N MCM. Then there
is an isomorphism

HomR(HomR(M, N),ER(k))∼=Ext1
R(N, (redsyzR

d (Tr M))∨) ,

where −∨ as usual denotes HomR(−,ω). This isomorphism is natu-
ral in M and N, and is even an isomorphism of EndR(N)-EndR(M)-
bimodules.

PROOF. Using Proposition 12.9, we substitute TorR
1 (Tr M, N) for

HomR(M, N) on the left-hand side. Applying Lemma 13.5, we see

HomR(HomR(M, N),ER(k))∼=HomR(TorR
1 (Tr M, N)),ER(k)

∼=Ext1
R(Tr M,HomR(N,ER(k))) .

By Lemma 13.6, this last is isomorphic to Extd+1
R (Tr M,HomR(N,ω))

since `(TorR
i (Tr M, N)) <∞ for all i> 1. Take a reduced dth syzygy of

Tr M, as in Proposition 13.4, to get Ext1
R(redsyzR

d (Tr M), N∨). Finally,
canonical duality for the MCM modules redsyzR

d Tr M and N∨ shows
that this last module is isomorphic to Ext1

R(N, (redsyzR
d Tr M)∨).

Again we leave the assertion about naturality to the reader. �

For brevity, from now on we write

τ(M)=HomR(redsyzR
d Tr M,ω)

and call it the Auslander-Reiten (AR) translate of M.
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13.8. THEOREM. Let (R,m,k) be a Henselian CM local ring of di-
mension d and let M be an indecomposable MCM R-module which is
locally free on the punctured spectrum. Then there exists an AR se-
quence for M

α : 0−→ τ(M)−→ E −→ M −→ 0 .
Precisely, the EndR(M)-module Ext1

R(M,τ(M)) has one-dimensional so-
cle, and any representative for a generator for that socle is an AR se-
quence for M.

PROOF. First observe that EndR(M) is a quotient of the nc-local
endomorphism ring EndR(M), so is again nc-local. Thus the Matlis
dual of EndR(M), that is HomR(EndR(M),ER(k)), has one-dimensional
socle. By Proposition 13.7, this Matlis dual of EndR(M) is isomorphic
to Ext1

R(M,τ(M)). Let α : 0 −→ τ(M) −→ E −→ M −→ 0 be an extension
generating the socle of Ext1

R(M,τ(M)).
We know from Proposition 13.4 that redsyzR

d Tr M is indecompos-
able, so its canonical dual τ(M) is indecomposable as well. It therefore
suffices to check the lifting property. Let f : X −→ M be a homomor-
phism of MCM R-modules. Then pullback along f induces a homo-
morphism f ∗ : Ext1

R(M,τ(M)) −→ Ext1
R(X ,τ(M)). If f does not factor

through E, then the image of α in Ext1
R(X ,τ(M)) is non-zero. Since α

generates the socle and α does not go to zero, we see that in fact f ∗
must be injective. By Proposition 13.7, this injective homomorphism
is the same as the one

HomR(EndR(M),ER(k))−→HomR(Hom(X , M),ER(k))

induced by f : X −→ M. Since f ∗ is injective, Matlis duality implies
that

HomR(X , M)−→EndR(M)
is surjective. In particular, the map HomR(X , M)−→EndR(M) induced
by f is surjective. It follows that f is a split surjection, so we are
done. �

13.9. COROLLARY. Let R be a Henselian CM local ring with canon-
ical module, and assume that R is an isolated singularity. Then every
indecomposable non-free MCM R-module has an AR sequence. �

§2. AR quivers

The Auslander-Reiten quiver is a convenient scheme for packaging
AR sequences. Up to first approximation, we could define it already:
The AR quiver of a Henselian CM local ring with isolated singularity is
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the directed graph having a vertex [M] for each indecomposable non-
free MCM module M, a dotted line joining [M] to [τ(M)], and an arrow
[X ] −→ [M] for each occurrence of X in a direct-sum decomposition of
the middle term of the AR sequence for M.

Unfortunately, this first approximation omits the indecomposable
free module R. It is also manifestly asymmetrical: it takes into ac-
count only the AR sequences ending in a module, and omits those
starting from a module. To remedy these defects, as well as for later
use (particularly in Chapter 15), we introduce now irreducible homo-
morphisms between MCM modules, and use them to define the AR
quiver. We then reconcile this definition with the naive one above, and
check to see what additional information we’ve gained.

In this section, (R,m,k) is a Henselian CM local ring with canonical
module ω, and we assume that R has an isolated singularity.

13.10. DEFINITION. Let M and N be MCM R-modules. A homo-
morphism ϕ : M −→ N is called irreducible if it is neither a split injec-
tion nor a split surjection, and in any factorization

M

g
  

ϕ
// N

X
h

>>

with X a MCM R-module, either g is a split injection or h is a split
surjection.

13.11. DEFINITION. Let M and N be MCM R-modules.
(i) Let rad(M, N) ⊆ HomR(M, N) be the submodule consisting of

those homomorphisms ϕ : M −→ N such that, when we decom-
pose M = ⊕

j M j and N = ⊕
i Ni into indecomposable modules,

and accordingly decompose ϕ = (ϕi j : M j −→ Ni)i j, no ϕi j is an
isomorphism.

(ii) Let rad2(M, N)⊆HomR(M, N) be the submodule of those homo-
morphisms ϕ : M −→ N for which there is a factorization

M

α
  

ϕ
// N

X
β

>>

with X MCM, α ∈ rad(M, X ) and β ∈ rad(X , N).

13.12. REMARK. Suppose that M and N are indecomposable. If
M and N are not isomorphic, then rad(M, N) is simply HomR(M, N).
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If, on the other hand, M ∼= N, then rad(M, N) = J (EndR(M)) is the
Jacobson radical of the nc-local ring EndR(M), whence the name. In
particular mEndR(M)⊆ rad(M, M) by Lemma 1.7.

For any M and N, not necessarily indecomposable, it’s clear that
the set of irreducible homomorphisms from M to N coincides with
rad(M, N)\rad2(M, N). Furthermore we have

mrad(M, N)⊆ rad2(M, N)

(by Exercise 13.35), so that the following definition makes sense.

13.13. DEFINITION. Let M and N be MCM R-modules, and put

Irr(M, N)= rad(M, N)
/

rad2(M, N) .

Denote by irr(M, N) the k-vector space dimension of Irr(M, N).

Now we are ready to define the AR quiver of R. We impose an
additional hypothesis on R, that the residue field k be algebraically
closed.

13.14. DEFINITION. Let (R,m,k) be a Henselian CM local ring with
a canonical module. Assume that R has an isolated singularity and
that k is algebraically closed. The Auslander-Reiten (AR) quiver for R
is the graph Γ with

• vertices [M] for each indecomposable MCM R-module M;
• r arrows from [M] to [N] if irr(M, N)= r; and
• a dotted (undirected) line between [M] and its AR translate

[τ(M)] for every M.

Without the assumption that k be algebraically closed, we would
need to define the AR quiver as a valued quiver, as follows. Suppose
[M] and [N] are vertices in Γ, and that there is an irreducible ho-
momorphism M −→ N. The abelian group Irr(M, N) is naturally a
EndR(N)-EndR(M) bimodule, with the left and right actions inherited
from those on HomR(M, N). As such, it is annihilated by the radical of
each endomorphism ring (see again Exercise 13.35). Let m be the di-
mension of Irr(M, N) as a right vector space over EndR(M)

/
rad(M, M),

and symmetrically let n be the dimension of Irr(M, N) as a module over
EndR(N)

/
rad(N, N). Then we would draw an arrow from [M] to [N] in

Γ, and decorate it with the ordered pair (m,n). In the special case of an
algebraically closed field k, EndR(M)

/
rad(M, M) is in fact isomorphic

to k for every indecomposable M, so we always have m = n.
We now reconcile the definition of the AR quiver with our earlier

naive version.
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13.15. PROPOSITION. Let (R,m,k) be a Henselian CM local ring
with a canonical module, and assume that R has an isolated singular-
ity. Let 0−→ N i−→ E

p−−→ M −→ 0 be an AR sequence. Then i and p are
irreducible homomorphisms.

PROOF. We prove only the assertion about p, since the other is
exactly dual. First we claim that p is right minimal, that is (see Defi-
nition 11.11), that whenever ϕ : E −→ E is an endomorphism such that
pϕ = p, in fact ϕ is an automorphism. The proof of this is similar to
that of Proposition 13.2: the existence of ϕ ∈EndR(E) such that pϕ= p
defines a commutative diagram

0 // N i
//

ψ
��

E
p
//

ϕ

��

M // 0

0 // N
i
// E p

// M // 0

of exact sequences, where ψ is the restriction of ϕ to N. To see that ϕ
is an isomorphism, it suffices by the Snake Lemma to show that ψ is
an isomorphism. If not, then (since N is indecomposable and EndR(N)
is therefore nc-local) 1N −ψ is an isomorphism. Then (1E −ϕ) : E −→ N
restricts to an isomorphism on N and therefore splits the AR sequence.
This contradiction proves the claim.

We now show p is irreducible. Assume that we have a factorization

E
p

//

f   

M

X
g

>>

in which g is not a split surjection. The lifting property of AR se-
quences delivers a homomorphism u : X −→ E such that g = pu. Thus
we obtain a larger commutative diagram

E
f
//

p
!!

X
g
��

u
// E

p
}}

M .

Since p is right minimal by the claim, uf is an automorphism of E. In
particular, f is a split injection. �

Recall that we write A | B to mean that A is isomorphic to a direct
summand of B.
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13.16. PROPOSITION. Let (R,m,k) be a Henselian CM local ring
with a canonical module, and assume that R has an isolated singular-
ity. Let 0−→ N i−→ E

p−−→ M −→ 0 be an AR sequence.
(i) A homomorphism ϕ : X −→ M is irreducible if and only if ϕ is

a direct summand of p. Explicitly, this means that X | E and ϕ

factors through the inclusion j of X as a direct summand of E,
that is, ϕ= p j for a split injection j : X −→ E.

(ii) A homomorphism ψ : N −→ Y is irreducible if and only if ψ is
a direct summand of i. This means Y | E and ψ lifts over the
projection π of E onto Y , that is, ψ = πi for a split surjection
π : E −→Y .

PROOF. Again we prove only the first part and leave the dual to
the reader.

Assume first that ϕ : X −→ M is irreducible. The lifting property of
AR sequences gives a factorization ϕ = p j for some j : X −→ E. Since
ϕ is irreducible and p is not a split surjection, j is a split injection.

For the converse, assume that E ∼= X ⊕X ′, and write p = [α β] : X ⊕
X ′ −→ M along this decomposition. We must show that α is irre-
ducible. First observe that neither α nor β is a split surjection, since p
is not. If, now, we have a factorization

X α
//

g
  

M

Z
h

>>

with Z MCM and h not a split surjection, then we obtain a diagram

X ⊕ X ′ [α β]
//

[ g 0
0 1X ′

]
%%

M

Z⊕ X ′ .
[h β]

;;

As p = [α β] is irreducible by Proposition 13.15, and [h β] is not a split
surjection by Exercise 1.23, we find that g is a split injection. �

13.17. COROLLARY. Let 0 −→ N −→ E −→ M −→ 0 be an AR se-
quence. Then for any indecomposable MCM R-module X , irr(N, X ) =
irr(X , M) is the multiplicity of X in the decomposition of E as a direct
sum of indecomposables. �

Now we deal with [R].

13.18. PROPOSITION. Let (R,m) be a Henselian CM local ring with
a canonical module, and assume that R has an isolated singularity.
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Let 0 −→ Y −→ X
q−−→m −→ 0 be the minimal MCM approximation of

the maximal ideal m. (If dimR 6 1, we take X =m and Y = 0.) Then a
homomorphism ϕ : M −→ R with M MCM is irreducible if and only if
ϕ is a direct summand of q. In other words, ϕ is irreducible if and only
if M | X and ϕ factors through the inclusion of M as a direct summand
of X , that is, ϕ= q j for some split injection j : M −→ X .

PROOF. Assume that ϕ : M −→ R is irreducible. Since ϕ is not a
split surjection, the image of ϕ is contained in m. We can therefore

lift ϕ to factor through q, obtaining a factorization M
j−−→ X

q−−→ m.
This factorization composes with the inclusion of m into R to give a

factorization of ϕ : M
j−−→ X −→ R. Since ϕ is irreducible and X −→ R

is not surjective, j is a split injection. �

13.19. REMARK. Putting Propositions 13.16 and 13.18 together, we
find in particular that the AR quiver is locally finite, i.e. each vertex
has only finitely many arrows incident to it. The local structure of the
quiver is

[E1]

��

...
&&

[N]

??

88

&&

��

... [M]

...

88

[Es]

??

where N = τ(M) and E =⊕s
i=1 E i is the middle term of the AR sequence

ending in M.

§3. Examples

13.20. EXAMPLE. We can compute the AR quiver for a power series
ring R = k[[x1, . . . , xd]] directly. It has a single vertex, [R], and the irre-
ducible homomorphisms R −→ R are by Propositions 13.18 and 11.20
the direct summands of R(d) [x1, ..., xd]−−−−−−−→ R, the beginning of the Koszul
resolution of m= (x1, . . . , xd). Thus irr(R,R)= d and

[R] d
__

is the AR quiver. Note alternatively that m= rad(R,R)=J (EndR(R)),
while m2 = rad2(R,R), and dimk(m/m2)= d.



§3. EXAMPLES 225

13.21. EXAMPLE. We can also compute directly the AR quiver for
the two-dimensional (A1) singularity k[[x, y, z]]/(xz− y2), though this
one is less trivial. By Example 5.25, there is a single non-free inde-
composable MCM module, namely the ideal

I = (x, y)R ∼= cok
([

y −x
−z y

]
,
[

y x
z y

])
.

We compute Irr(I, I) from the definition: we have HomR(I, I)∼= R since
R is integrally closed, so that rad(I, I) =m, the maximal ideal (x, y, z).
Furthermore, for any element f ∈m, the endomorphism of I given by
multiplication by f factors through R(2). Indeed, I is isomorphic to
the submodule of R(2) generated by the column vectors

( y
x
)

and
( z

y
)
. If

f = ax+by+ cz, then the diagram

I
ax+by+cz

//
p�

  

I

R(2)
ϕ

>>

commutes, where ϕ is defined by ϕ(e1) = (ax+cz
cy

)
and ϕ(e2) =

(
bz

ax+by

)
.

Therefore rad2(I, I) =m= rad(I, I) and Irr(I, I) = 0. (See Exercise 16.9
for another approach to this calculation.)

It follows that in the AR sequence ending in I,

0−→ τ(I)−→ E −→ I −→ 0 ,

E has no direct summands isomorphic to I, so is necessarily free. Since
τ(I)= (redsyzR

2 (Tr I))∨ = (I∗)∨ = I, the AR sequence is of the form

0−→ I −→ R(2) −→ I −→ 0 ,

and is the beginning of the free resolution of I. We conclude that the
AR quiver of R is

[R]
++
++

[I] .
kk
kk

The direct approach of Example 13.21 is impractical in general, but
we can use the material of Chapters 5 and 6 to compute the AR quivers
of the complete Kleinian singularities (An), (Dn), (E6), (E7), and (E8)
of Table 6.24. They are isomorphic to the McKay-Gabriel quivers of
the associated finite subgroups of SL(2,k).

Recall the setup and definition of the McKay-Gabriel quiver in di-
mension two. Let k be a field and V = ku+ kv a two-dimensional k-
vector space. Let G ⊆GL(V )∼=GL(2,k) be a finite group with order in-
vertible in k, and assume that G acts on V with no non-trivial pseudo-
reflections. In this situation the k-representations of G, the projective
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modules over the skew group ring S#G, and the MCM R-modules are
equivalent as categories by Proposition 5.18, Corollaries 5.20 and 6.4
and Theorem 6.3. Explicitly, the functor defined by W 7→ S ⊗k W is
an equivalence between the finite-dimensional representations of G
and the finitely generated projective S#G-modules, while the functor
given by P 7→ PG gives an equivalence between the latter category and
addR(S), the R-direct summands of S. Since dimV = 2, these are all
the MCM R-modules by Theorem 6.3.

Writing V0 = k,V1, . . . ,Vd for a complete set of non-isomorphic irre-
ducible representations of G, we set

P j = S⊗k Vj and M j = (S⊗k Vj)G

for j = 0, . . . ,d. Then P0 = S, P1, . . . ,Pd are the indecomposable finitely
generated projective S#G-modules, and M0 = R, M1, . . . , Md are the
indecomposable MCM R-modules.

The McKay-Gabriel quiver Γ for G (see Definitions 5.21 and 5.22
and Theorem 5.23) has for vertices the indecomposable projective S#G-
modules P0, . . . ,Pd. For each i and j, we draw mi j arrows Pi −→ P j if
Vi appears with multiplicity mi j in the irreducible direct-sum decom-
position of V ⊗k Vj.

13.22. PROPOSITION. With notation as above, the McKay-Gabriel
quiver is isomorphic to the AR quiver of R = SG . (We ignore the AR
translate τ.)

PROOF. First observe that R is a two-dimensional normal domain,
whence an isolated singularity, so that AR quiver of R is defined.

It follows from Corollaries 5.20 and 6.4 and Theorem 6.3, as in the
discussion above, that the equivalence of categories defined by

P j = S⊗k Vj 7→ M j = (S⊗k Vj)G

induces a bijection between the vertices of the McKay-Gabriel quiver
and those of the AR quiver. It remains to determine the arrows.

Consider the Koszul complex over S

0−→ S⊗k

2∧
V −→ S⊗k V −→ S −→ k −→ 0 ,

which is also an exact sequence of S#G-modules, and tensor with Vj to
obtain

(13.22.1) 0−→ S⊗k

(
2∧

V ⊗k Vj

)
−→ S⊗k

(
V ⊗k Vj

)−→ P j −→Vj −→ 0 .

Since
∧2 V ⊗k (

∧2 V )∗ ∼= k, we see that
∧2 V ⊗k Vj is an indecomposable

k[G]-module, so that S⊗k
(∧2 V ⊗k Vj

)
is an indecomposable projective
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S#G-module. Take fixed points; since each Vj is simple, we have Vj
G =

0 for all j 6= 0, and V0
G = kG = k. We obtain exact sequences of R-

modules
(13.22.2)

0−→
(
S⊗k

(
2∧

V ⊗k Vj

))G

−→ (
S⊗k

(
V ⊗k Vj

))G p j−−→ M j −→ 0

for each j 6= 0, and

(13.22.3) 0−→
(
S⊗k

2∧
V

)G

−→ (S⊗k V )G
p0−−−→ R −→ k −→ 0

for j = 0.
We now claim that (13.22.2) is the AR sequence ending in M j for

all j = 1, . . . ,d, while the map p0 in (13.22.3) is the minimal MCM ap-
proximation of the maximal ideal of R. It will then follow from Propo-
sitions 13.16 and 13.18 that the number of arrows [Mi]−→ [M j] in the
AR quiver is equal to the multiplicity of Mi in a direct-sum decomposi-
tion of

(
S⊗k

(
V ⊗k Vj

))G , which is equal to the multiplicity of Vi in the
direct-sum decomposition of V ⊗k Vj.

First assume that j 6= 0. We observed already that S⊗k
(∧2 V ⊗k Vj

)
is an indecomposable projective S#G-module, whence its submodule of
fixed points

(
S⊗k

(∧2 V ⊗k Vj
))G is an indecomposable MCM R-module.

Since the sequence (13.22.1) is not split, p j is non-split as well. As-
sume that X is a MCM R-module and f : X −→ M j is a homomorphism
that is not a split surjection. There then exists a homomorphism of
projective S#G-modules f̃ : X̃ −→ P j = S⊗k Vj, also not a split surjec-
tion, such that X̃G = X and f̃ G = f . This fits into a diagram

X̃

f̃
��

S⊗k
(
V ⊗k Vj

) p̃ j
// S⊗k Vj // Vj // 0 .

Since the image of f : X −→ M j is contained in that of

p j :
(
S⊗k

(
V ⊗k Vj

))G −→ M j ,

the image of f̃ is contained in that of p̃ j. But X̃ is projective, so there
exists g̃ : X̃ −→ S ⊗k

(
V ⊗k Vj

)
such that f̃ = p̃ j g̃. Set g = g̃G ; then

f = p j g, proving the claim in this case.
For j = 0, the argument is essentially the same; if f : X −→ m is

any homomorphism from a MCM R-module X to the maximal ideal
of R, then the composition X −→ m −→ R lifts to a homomorphism
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f̃ : X̃ −→ S of projective S#G-modules. The image of f̃ is contained in
the image of p̃0 : S ⊗k V −→ S, so again there exists g̃ : X̃ −→ S ⊗k V
making the obvious diagram commute, and f factors through p0. �

It follows from Proposition 13.22 and §3 of Chapter 6 that the AR
quivers for the Kleinian singularities (An), (Dn), (E6), (E7), and (E8)
are (after replacing pairs of opposing arrows by undirected edges) the
corresponding extended ADE diagrams listed in Table 6.24. Indeed, we
need not even worry about the Auslander-Reiten translate τ: since R
is Gorenstein of dimension two. τ(X ) = (redsyzd

R(Tr X ))∨ ∼= X for every
MCM X .

Glancing back at Example 5.25, we can write down a few more AR
quivers. For instance, let R = k[[u5,u2v,uv3,v5]], the fixed ring of the
cyclic group of order 5 generated by diag(ζ5,ζ3

5). The AR quiver looks
like

[R]

&&

��

M4

88

))

M1oo

��

M3

]]
55

M2oo

VV

where

M1 = R(u4,uv,v3)∼= (u5,u2v,uv3)

M2 = R(u3,v)∼= (u5,u2v)

M3 = R(u2,uv2,v4)∼= (u5,u4v2,u3v4)

M4 = R(u,v2)∼= (u5,u4v2) .

For another example, let R = k[[u8,u3v,uv3,v8]]. The AR quiver is

[R] //

��

M1

!!

}}

M7

==

!!

M2oo

��

M6

OO

// M3

}}

aa

M5

aa

==

M4oo

OO
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where this time

M1 = R(u7,u2v,v3)∼= (u8,u3v,uv3)

M2 = R(u6,uv,v6)∼= (u8,u3v,u2v6)

M3 = R(u5,v)∼= (u8,u3v)

M4 = R(u4,u2v2,v4)∼= (u8,u6v2,u4v4)

M5 = R(u3,uv2,v7)∼= (u8,u6v2,u5v7)

M6 = R(u2,u5v,v2)∼= (u2v6,u5v7,v8)

M7 = R(u,v5)∼= (uv3,v8) .

Before leaving the case of dimension two, we briefly describe how
to compute the AR quiver for an arbitrary two-dimensional normal
domain which is not necessarily a ring of invariants. The short exact
sequence (13.22.3)

0−→
(
S⊗k

2∧
V

)G

−→ (S⊗k V )G
p0−−−→ R −→ k −→ 0

appearing in the proof of Proposition 13.22 is called the fundamental
sequence for R, and contains within it all the information carried by
the entire AR quiver, as the proof of Proposition 13.22 shows. There
is an analog of this sequence for general two-dimensional normal do-
mains.

Assume that (R,m,k) is a complete local normal domain of dimen-
sion 2. Let ω be the canonical module for R. Then we know that
Ext2

R(k,ω)= k, so there is up to isomorphism a unique four-term exact
sequence of the form

0−→ω
a−−→ E b−−→ R −→ k −→ 0

representing a non-zero element of Ext2
R(k,ω). This is known as the

fundamental sequence for R. The module E is easily seen to be MCM
of rank 2.

Let f : X −→ R be a homomorphism of MCM R-modules which is
not a split surjection. Then the image of f is contained in m = imb,
and since Ext1

R(X ,ω)= 0, the pullback diagram

0 // ω // Q

��

// X //

f
��

0

0 // ω a
// E

b
// R
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has split-exact top row. It follows that f factors through b : E −→ R, so
that b is a minimal MCM approximation of the maximal ideal m.

More is true. Recall from Exercise 6.48 that for R-modules M and
N, the reflexive product M ·N is defined by M ·N = (M⊗R N)∨∨, where
−∨ denotes the canonical dual. See [Aus86b] for a proof of the follow-
ing result.

13.23. THEOREM (Auslander). Let (R,m,k) be a two-dimensional
complete local normal domain with canonical module ω. Let

0−→ω−→ E −→ R −→ k −→ 0

be the fundamental sequence for R, and let M be an indecomposable
non-free MCM R-module. Then the induced sequence

(13.23.1) 0−→ω ·M −→ E ·M −→ M −→ 0

is exact. If (13.23.1) is non-split, then it is the AR sequence ending in
M. In particular, if rank M is a unit in R, then (13.23.1) is non-split, so
is an AR sequence. The converse is true if k is algebraically closed. �

Let us return to the ADE singularities. The AR quivers for the
one-dimensional ADE hypersurface singularities can also be obtained
from those in dimension two, together with the explicit matrix factor-
izations for the indecomposable MCM modules listed in §4 of Chap-
ter 6.

For example, consider the one-dimensional (E6) singularity R =
k[[x, y]](x3 + y4), where k is a field of characteristic not 2, 3, or 5. Let
R# = k[[x, y, z]]/(x3 + y4 + z2) be the double branched cover. The matrix
factorizations for the indecomposable MCM R]-modules are all of the
form (zIn −ϕ, zIn +ϕ), where ϕ is one of the matrices ϕ1, ϕ2, ϕ3, ϕ∨

3,
ϕ4, or ϕ∨

4 of 9.22. Flatting those matrix factorizations, i.e. killing z,
amounts to ignoring z entirely and focusing simply on the ϕ j. When we
do this, certain of the matrix factorizations split into non-isomorphic
pairs (as indicated by the anti-diagonal block format of the matrices),
while certain other pairs of matrix factorizations collapse into a single
isomorphism class.

Specifically, we can see that ϕ1 splits into two non-equivalent ma-
trices ([

x y3

y −x2

]
,
[

x2 y3

y −x

])
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forming a matrix factorization, and ϕ2 splits similarly into the matrix
factorization x 0 y2

y x 0
0 0 x

 ,

 x2 y3 −xy2

−xy x2 y3

y2 −xy x2

 .

On the other hand, over R,

ϕ3 =


i y2 0 −x2 0
0 i y2 −xy −x2

x 0 −i y2 0
−y x 0 −i y2

 and ϕ∨
3 =


−i y2 0 −x2 0

0 −i y2 −xy −x2

x 0 i y2 0
−y x 0 i y2


have isomorphic cokernels, as do

ϕ4 =
[

i y2 −x2

x −i y2

]
and ϕ∨

4 =
[−i y2 −x2

x iy2

]
.

Therefore R has 6 non-isomorphic non-free indecomposable MCM mod-
ules, namely

M1a = cok
[

x y3

y −x2

]
, M1b = cok

[
x2 y3

y −x

]
,

M2a = cok

x 0 y2

y x 0
0 0 x

 M2b = cok

 x2 y3 −xy2

−xy x2 y3

y2 −xy x2


M3 = cokϕ3 = cokϕ∨

3

M4 = cokϕ4 = cokϕ∨
4 .

Since each of these modules is self-dual and the AR translate τ is
given by (redsyzR

1 (−∗))∗, we have τ(M1a) = M1b, τ(M2a) = M2b, and
vice versa, while τ fixes M3 and M4. One can compute the irreducible
homomorphisms among these modules and obtain the AR quiver

M1a //

||

M2a
##

R
""

M3
//

cc

{{

M4oo

M1b // M2b

;;

where τ is given by reflection across the horizontal axis.
For completeness, we draw the AR quivers for all the one-dimen-

sional ADE singularities below.

13.24. The extended Coxeter-Dynkin diagram (Ãn) has n+1 nodes.
The splitting/collapsing behavior of the matrix factorizations depends
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on the parity of n. When n = 2m is even, we find

R // •oo
// · · ·oo

// •oo ee

with m+1 vertices. The AR translate τ is the identity. When n = 2m+1
is odd, the quiver is

•
zzR // •oo

// · · ·oo
// •oo

$$

::

•
dd

with m+2 vertices. Here τ is reflection across the horizontal axis.

13.25. The extended diagram (D̃n) also has n+1 nodes, and again
the quiver depends on the parity of n. When n = 2m is even, every
non-free MCM module splits, and the quiver looks like

• // • //

��

��

•

��

· · · · · · • // • //

��

•

��

�� ��

R
��

· · · · · · a
��

b
��

c

gg

d

jj

• // •

]]

// •

]]

· · · · · · • // • //

]]

•

]]

77 44

with 4m+1 vertices. The translate τ is given by reflection in the hori-
zontal axis for those vertices not on the axis, swaps a and d, and swaps
b and c. When n = 2m+1 is odd, the two “legs” at the opposite end of
the (Dn) diagram from the free module collapse into a single module,
giving the quiver

• // • //

��

��

•

��

· · · · · · • // • //

��

•

��

��

R
��

· · · · · · a

��

__

• // •

]]

// •

]]

· · · · · · • // • //

]]

•

]]

??

with 4m vertices. Again, τ is reflection across the horizontal axis.

13.26. We saw above the the quiver for the one-dimensional (E6)
singularity has the form

• //

��

•
��

R
��

a //

__

��

boo

• // •
??

with 7 vertices and τ given by reflection across the horizontal axis.
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13.27. In the (E7) case, every non-free indecomposable splits when
flatted, giving 15 vertices in the AR quiver for the one-dimensional
singularity.

•

��

��

•oo

��

•oo

��

a b



TT
•oo

��

•oo

��

•oo

R

��•

DD

•oo

DD

•oo

DD

JJ

�� •oo

DD

•oo

DD

•oo

The translate is reflection across the horizontal axis for every vertex
except a and b, which are interchanged by τ.

13.28. For the (E8) singularity, once again every non-free indecom-
posable splits when flatted.

•

��

��

•oo

��

•oo

��

•oo

��

•oo

��

a b



TT
•oo

��

•oo

R

��•

DD

•oo

DD

•oo

DD

•oo

DD

•oo

DD

JJ

�� •oo

DD

•oo

Here there are 17 vertices; the translate is reflection across the hori-
zontal axis and interchanges a and b.

13.29. EXAMPLE. Let A = k[[t3, t4, t5]]. Then A is a finite birational
extension of the (E6) singularity R = k[[x, y]]/(x3 + y4) ∼= k[[t3, t4]], so
has finite CM type by Theorem 4.13. In fact, A is isomorphic to the
endomorphism ring of the maximal ideal of R. By Lemma 4.9 every
indecomposable MCM R-module other than R itself is actually a MCM
A-module, and HomR(M, N) = HomA(M, N) for all non-free MCM R-
modules M and N. Thus the AR quiver for A is obtained from the
one for R by erasing [R] and all the arrows into and out of [R]. As
R-modules, A ∼= (t4, t6), so the quiver is the one below.

[A] // •
��

a //

]]

��

boo

• // •
??
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§4. Exercises

13.30. EXERCISE. Prove that a short exact sequence 0 −→ N −→
E −→ M −→ 0 is split if and only if every homomorphism X −→ M fac-
tors through E, or equivalently the sequence has the lifting property
with respect to all modules.

13.31. EXERCISE. Let R = D/(tn), where (D, t) is a complete DVR.
Then the indecomposable finitely generated R-modules are

D/(t), D/(t2), . . . , D/(tn)= R .

Compute the AR sequences for each of the indecomposables, directly
from the definition. (Hint: start with n = 2.)

13.32. EXERCISE. Prove, mimicking the proof of Proposition 13.2,
that (13.1.1) is an AR sequence ending in M if and only if it is an AR
sequence starting from N. (Hint: Given ψ : N −→Y , it suffices to show
that the short exact sequence obtained from the pushout is split. If not,
use the lifting property to obtain an endomorphism α of N such that
either α is an isomorphism and splits ψ, or α−1N is an isomorphism
and splits (13.1.1).)

13.33. EXERCISE. Assume that 0−→ N i−→ E
p−−→ M −→ 0 is a non-

split short exact sequence of MCM modules satisfying the lifting prop-
erty to be an AR sequence ending in M. Prove that M is indecompos-
able.

13.34. EXERCISE. This exercise shows that if R is an Artinian local
ring and M is an indecomposable R-module with an AR sequence

0−→ N −→ E −→ M −→ 0 ,

then N ∼= (Tr M)∨.

(a) Let P1 −→ P0 −→ X −→ 0 be an exact sequence with P0 and P1
finitely generated projective, and let Z be an arbitrary finitely
generated R-module. Use the proof of Proposition 12.9 to show
the existence of an exact sequence

0−→HomR(X , Z)−→HomR(P0, Z)−→HomR(P1, Z)−→Tr X⊗R Z −→ 0

and conclude that we have an equality of lengths

`(HomR(X , Z))−`(HomR(Z, (Tr X )∨))
= `(HomR(P0, Z))−`(HomR(P1, Z)) .
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(b) Let σ : 0 −→ A
f−−→ B

g−−→ C −→ 0 be an exact sequence of finitely
generated R-modules, and define the defects of σ on an R-module
X by

σ∗(X )= cok[HomR(B, X )−→HomR(A, X )]

σ∗(X )= cok[HomR(X ,B)−→HomR(X ,C)] .

Show that `(σ∗(X )) = `(σ∗((Tr X )∨)) for every X . Conclude that
the following two conditions are equivalent:

(i) every homomorphism X −→ C factors through g;
(ii) every homomorphism A −→ (Tr X )∨ factors through f .

(c) Prove that if 0−→ N −→ E −→ M −→ 0 is an AR sequence for M,
then N ∼= (Tr M)∨. (Hint: let h : N −→ Y be given with Y inde-
composable and not isomorphic to (Tr M)∨. Apply the previous
part to X =Tr(Y ∨).)

13.35. EXERCISE. Prove that rad(M, N)/rad2(M, N) is annihilated
by the maximal ideal m, so is a finite-dimensional k-vector space. Your
proof will actually show that the quotient is annihilated by the radical
of EndR(M) (acting on the right) and the radical of EndR(N) (acting on
the left).

13.36. EXERCISE ([Eis95, A.3.22]). If σ : A −→ B −→ C −→ 0 is an
exact sequence, prove that (there exists a choice of Tr M such that) the
sequence

0 // HomR(Tr M, A) // HomR(Tr M,B) // HomR(Tr M,C)

// M⊗R A // M⊗R B // M⊗R C // 0

is exact. In other words, Tr can be thought of as measuring the non-
exactness of M⊗R − and, if we set N =Tr M, of HomR(N,−).

13.37. EXERCISE. Recall that an inclusion of modules A ⊂ B is pure
if M⊗R A −→ M⊗R B is injective for all R-modules M. If σ is as in the
previous exercise with A −→ B pure, then prove that

0−→HomR(N, A)−→HomR(N,B)−→HomR(N,C)−→ 0

is exact for every finitely presented module N. Conclude that if C
is finitely presented, then σ splits. (See Exercise 7.23 for a different
proof.)





CHAPTER 14

Countable Cohen-Macaulay Type

We shift directions now, and focus on a representation type men-
tioned in passing in earlier chapters: countable type.

14.1. DEFINITION. A Cohen-Macaulay local ring (R,m) is said to
have countable Cohen-Macaulay type if it admits only countably many
isomorphism classes of maximal Cohen-Macaulay modules.

(By Theorem 2.2, it is equivalent to assume that there are only
countably many indecomposable MCM modules, up to isomorphism.)

The property of countable type has received less attention than
finite type, and correspondingly less is known about it. There is how-
ever an analogue of Auslander’s theorem (Theorem 14.3), as well as
a complete classification (Theorem 14.16) of complete hypersurface
singularities over an uncountable field with countable CM type, due
to Buchweitz-Greuel-Schreyer [BGS87]. This has recently been re-
visited by Burban-Drozd [BD08, BD10]; we present here their ap-
proach, which echoes nicely the material in Chapter 4. They use a con-
struction similar to the conductor square to prove that the (A∞) and
(D∞) hypersurface singularities k[[x, y, z]]

/
(xy) and k[[x, y, z]]

/
(x2 y−

z2) have countable type. The material of Chapters 8 and 9 can then be
used to show that, in any dimension, the higher-dimensional (A∞) and
(D∞) singularities are the only hypersurfaces with countably infinite
CM type. Apart from these results, there are a few examples due to
Schreyer (see Section §4), but much remains to be done.

§1. Structure

The main structural result on CM local rings of countable CM type
was conjectured by Schreyer in 1987 [Sch87, Section 7]. He predicted
that an analytic local ring R over the complex numbers having count-
able type has at most a one-dimensional singular locus, that is, Rp

is regular for all p ∈ Spec(R) with dim(R/p) > 1. In this section we
prove Schreyer’s conjecture more generally for all CM local rings sat-
isfying a souped-up version of prime avoidance [Bur72, Lemma 3];
see also [SV85]. In particular, this property holds if either the ring is

237
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complete or the residue field is uncountable. Some assumption of un-
countability is necessary to avoid the degenerate case of a countable
ring, which has only countably many isomorphism classes of finitely
generated modules!

14.2. LEMMA (Countable Prime Avoidance). Let A be a Noetherian
ring satisfying either of these conditions.

(i) A is complete local, or
(ii) there is an uncountable set of elements {uλ}λ∈Λ of A such that

uλ−uµ is a unit of A for every λ 6=µ.
Let {pi}∞i=1 be a countable set of prime ideals of R, and I an ideal with
I ⊆⋃∞

i=1pi. Then I ⊆ pi for some i.

Notice that the second condition is satisfied if, for example, (A,m) is
local with A/m uncountable. In fact the proof will show that when (ii)
is verified the ideals pi need not even be prime.

We postpone the proof to the end of this section.

14.3. THEOREM. Let (R,m) be an excellent CM local ring of count-
able CM type. Assume that R satisfies countable prime avoidance. Then
the singular locus of R has dimension at most one.

PROOF. Set d = dimR, and assume that the singular locus of R
has dimension greater than one. Since R is excellent, SingR is a
closed subset of Spec(R), defined by an ideal J such that dim(R/J)> 2.
Consider the set Ω consisting of prime ideals p 6= m such that p =
AnnR(Exti

R(M, N)) for some i > 1 and MCM R-modules M, N. Then
of course Ω is a countable set, and each p ∈ Ω contains J. Applying
countable prime avoidance, we find an element r ∈m\

⋃
p∈Ωp. Choose

a minimal prime q of J + (r); since dim(R/J)> 2 we have q 6=m, and
q ∉Ω.

Set M = syzR
d (R/q) and N = syzR

d+1(R/q), and consider the ideal
a = AnnR

(
Ext1

R(M, N)
)
. Clearly q is contained in a, as Ext1

R(M, N) ∼=
Extd+1

R (R/q, N). Since q contains the defining ideal J, the localization
Rq is not regular, so the residue field Rq/qRq has infinite projective di-
mension and Ext1

R(M, N)q 6= 0. Therefore a⊆ q, and we see that q ∈Ω,
a contradiction. �

14.4. REMARKS. With a suitable assumption of prime avoidance
for sets of cardinality ℵn, the same proof shows that if R has at most
“ℵm−1 CM type,” then the singular locus of R has dimension at most
m.

Theorem 14.3 implies that for an excellent CM local ring of count-
able CM type, satisfying countable prime avoidance, there are at most
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finitely many non-maximal prime ideals p1, . . . ,pn such that Rpi is not a
regular local ring. Each of these localizations has dimension d−1. Nat-
urally, one would like to know more about these Rpi . Peeking ahead
at the examples later on in this chapter, we find that in each of them,
every Rpi has finite CM type! Whether or not this holds in general
is still an open question. The next result gives partial information:
at least each Rpi has countable type. It is a nice application of MCM
approximations (Chapter 11).

14.5. THEOREM. Let (R,m) be a CM local ring with a canonical
module. If R has countable CM type, then Rp has countable CM type
for every p ∈Spec(R).

PROOF. Let p ∈ Spec(R) and suppose that {Mα} is an uncountable
family of finitely generated R-modules such that the localized modules{

Mα
p

}
are non-isomorphic MCM Rp-modules. For each α there is by

Theorem 11.17 a MCM approximation of Mα

(14.5.1) χα : 0−→Yα −→ Xα −→ Mα −→ 0

with Xα MCM and injdimR Yα < ∞. Since there are only countably
many non-isomorphic MCM modules, there must be uncountably many
short exact sequences

(14.5.2) χβ : 0−→Y β −→ X −→ Mβ −→ 0

where X is a fixed MCM module.
Localize at p; since Mβ

p is MCM over Rp and Y β
p has finite injective

dimension, Ext1
R(Mβ,Y β)p ∼=Ext1

Rp
(Mβ

p ,Y β
p )= 0 by Proposition 11.3. In

particular, the extension χβ splits when localized at p. This implies
that Mβ

p | Xp for uncountably many β, which cannot happen by Theo-
rem 2.2. �

The results above, together with the examples in Section §4, sug-
gest a reasonable question:

14.6. QUESTION. Let R be a complete local Cohen-Macaulay ring of
dimension at least one, and assume that R has an isolated singularity.
If R has countable CM type, must it have finite CM type?

Here is the proof we omitted earlier. We follow [SV85] closely.

PROOF OF COUNTABLE PRIME AVOIDANCE. First we consider the
case of a complete local ring (A,m). Suppose that I 6⊆ pi for each i, but
that I ⊆ ⋃

i pi. Obviously I ⊆ m. Since A is Noetherian, all chains
in Spec(A) are finite, so we may replace each chain by its maximal
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element to assume that there are no inclusions among the pi. Note
that A is complete with respect to the I-adic topology [Mat89, Ex.
8.2].

Construct a Cauchy sequence in A as follows. Choose x1 ∈ I \p1,
and suppose inductively that we have chosen x1, . . . , xr to satisfy

(a) x j ∉ pi, and
(b) xi − x j ∈ I i ∩pi

for all i 6 j 6 r. If xr ∉ pr+1, put xr+1 = xr. Otherwise, take yr+1 ∈
(Ir∩p1∩·· ·∩pr)\pr+1 (this is possible since there are no containments
among the pi) and set xr+1 = xr + yr+1. In either case, we have

(c) xr+1 ∉ pi for i6 r+1, and
(d) xr+1 − xr ∈mr+1 ∩p1 ∩·· ·∩ pr, so that if i < r+1 then xi − xr+1 ∈

mi ∩pi.
By condition (d), {x1, x2, . . . } is a Cauchy sequence, so converges to x ∈ A.
Since xi − xs ∈ pi for all i6 s, and xs −→ x, we obtain xi − x ∈ pi for all i,
since pi is closed in the I-adic topology [Mat89, Thm. 8.14]. Therefore
x ∉ pi for all i, but x ∈ I, a contradiction.

Now let {uλ}λ∈Λ be an uncountable family of elements of A as in (ii)
of Lemma 14.2. Take generators a1, . . . ,ak for the ideal I, and for each
λ ∈Λ set

zλ = a1 +uλa2 +u2
λa3 +·· ·+uk−1

λ ak ,

an element of I. Since {pi} is countable, and I ⊆⋃
i pi, there exist some

j > 1 and uncountably many λ ∈ Λ such that zλ ∈ p j. In particular
there are distinct elements λ1, . . . ,λk such that zλi ∈ p j for i = 1, . . . ,k.

The k×k Vandermonde matrix

P =
(
u j−1
λi

)
i, j

has determinant
∏

i 6= j(uλi −uλ j ), so is invertible. But

P
(
a1 · · · ak

)T = (
zλ1 · · · zλk

)T ,

so (
a1 · · · ak

)T = P−1 (
zλ1 · · · zλk

)T ,

which implies I = (a1, . . . ,ak)⊆ p j. �

§2. Burban-Drozd triples

Our goal in this section and the next is to classify the complete
equicharacteristic hypersurface singularities of countable CM type in
characteristic other than 2. They are the “natural limits” (A∞) and
(D∞) of the (An) and (Dn) singularities. This classification is originally
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due to Buchweitz-Greuel-Schreyer [BGS87]; they construct all the in-
decomposable MCM modules over the one-dimensional (A∞) and (D∞)
hypersurface singularities, and use the property of countable simplic-
ity (Definition 9.1) to show that no other one-dimensional hypersur-
faces have countable type. They then use the double branched cover
construction of Chapter 8 to obtain the result in all dimensions.

We modify this approach by describing a special case of some re-
cent results of Burban and Drozd [BD10], which allow us to construct
all the indecomposable MCM modules over the surface singularities
rather than over the curves. In addition to its satisfying parallels with
our treatment of hypersurfaces of finite CM type in Chapters 6 and 9,
this method is also pleasantly akin to the “conductor square” construc-
tion in Chapter 4. It also allows us to write down, in a manner analo-
gous to §4 of Chapter 9, a complete list of the indecomposable matrix
factorizations over the two-dimensional (A∞) and (D∞) hypersurfaces.

14.7. NOTATION. Throughout this section we consider a reduced,
CM, complete local ring (R,m) of dimension 2 which is not normal.
(The assumption that R is reduced is no imposition, thanks to The-
orem 14.3.) We will impose further assumptions later on, cf. 14.12.
Since normality is equivalent to both (R1) and (S2) by Proposition A.9,
this means that R is not regular in codimension one. Let S be the in-
tegral closure of R in its total quotient ring. Since R is complete and
reduced, S is a finitely generated R-module (Theorem 4.6), and is a
direct product of complete local normal domains, each of which is CM.

Let c = (R :R S) = HomR(S,R) be the conductor ideal as in Chap-
ter 4, the largest common ideal of R and S. Set R = R/c and S = S/c.

14.8. LEMMA. In the notation above, the following properties hold.

(i) The conductor ideal c is a MCM module over both R and S.
(ii) The quotients R and S are one-dimensional CM (possibly non-

reduced) rings with R ⊆ S.
(iii) The diagram

R �
�

//

����

S

����

R �
�

// S

is a pullback diagram of ring homomorphisms.

PROOF. Since c = HomR(S,R), Exercise 5.37 implies that c has
depth 2 when considered as an R-module. Since R ⊆ S is a finite ex-
tension, c is also MCM over S.
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The conductor c defines the non-normal locus of SpecR. Since for a
height-one prime p of R, Rp is normal if and only if it is regular, and R
is not regular in codimension one, we see that c has height at most one
in R. On the other hand, R is reduced, so its localizations at minimal
primes are fields, and it follows that c has height exactly one in R.
Thus dimR = 1, and, since R,→S is integral, S is one-dimensional as
well. Since c has depth 2, the quotients R and S have depth 1 by the
Depth Lemma.

The third statement is easy to check. �

Recall from the exercises to Chapter 6 that the reflexive product N ·
M = (N⊗R M)∨∨ of two R-modules M and N is a MCM R-module, where
−∨ = HomR(−,ωR). In the special case N = S, the reflexive product S ·
M inherits an S-module structure and so is a MCM S-module. Recall
also that for any (not necessarily reflexive) S-module X , there is an
exact sequence (Exercise 14.31)

(14.8.1) 0−→ tor(X )−→ X −→ X∨∨ −→ L −→ 0 ,

where tor(X ) denotes the torsion submodule of X and L is an S-module
of finite length.

Let M be a MCM R-module. Set M = M/cM and S ·M = (S ·M)/c(S ·
M), modules over R and S, respectively. By Exercise 14.30, applied
to R and to Rp, respectively, we have M

∨∨ ∼= M/ tor(M) and (S · M)p ∼=
(Sp⊗Rp Mp)/ tor(Sp⊗Rp Mp).

Finally, let A and B be the total quotient rings of R and S, respec-
tively. We are thus faced with a commutative diagram of ring homo-
morphisms

(14.8.2)

R �
�

//

��

S

����

R �
�

//
� _

��

S� _

��

A �
�

// B

in which the top square is a pullback. Furthermore, the bottom row
is an Artinian pair in the sense of Chapter 3, and a MCM R-module
yields a module over the Artinian pair, as we now show.

14.9. LEMMA. Keep the notation established so far, and let M be a
MCM R-module.

(i) We have B = A⊗R S, that is, B = {non-zerodivisors}−1 S. In par-
ticular B is a finitely generated A-module.
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(ii) The natural homomorphism of B-modules

θM : B⊗A (A⊗R M)
∼=−−→ B⊗S (S⊗R M)−→ B⊗S (S ·M)

is surjective.
(iii) The natural homomorphism of A-modules

A⊗R M −→ B⊗A (A⊗R M)
θM−−→ B⊗S (S ·M)

is injective.

PROOF. For the first statement, set C = U−1S. Any b ∈ B can be
written b = c

v where c ∈ C and v is a non-zerodivisor of S. Since C is
Artinian, there is an integer n such that Cvn = Cvn+1, say vn = dvn+1.
Then vn(1−dv)= 0 so that dv = 1 in B. This shows that b = dc ∈ C.

The exact sequence (14.8.1), with N = S⊗R M, shows that the cok-
ernel of the natural homomorphism S⊗R M −→ S ·M has finite length.
Hence that cokernel vanishes when we tensor with B and θM is sur-
jective.

To prove (iii), set N = (S⊗R M)/ tor(S⊗R M). Then the natural map
M −→ N sending x ∈ M to 1⊗ x is injective. It follows that the restric-
tion cM −→ cN is also injective. In fact, it is also surjective: for any
a ∈ c, s ∈ S, and x ∈ M, we have

s(s⊗ x)= as⊗ x = 1⊗asx

in the image of cM, since as ∈ c.
Since N is torsion-free, we have an exact sequence

0−→ N −→ N∨∨ −→ L −→ 0

where the duals (−)∨ are computed over S and L is an S-module of
finite length. It follows that the cokernel of the restriction cN,→cN∨∨

also has finite length. Consider the composition g : M −→ N −→ N∨∨

and the induced diagram

0 // cM //

f
��

M //

g
��

M //

h
��

0

0 // cN∨∨ // N∨∨ // N∨∨ // 0

with exact rows, where f is the restriction of g to cM. Since g is injec-
tive and the cokernel of f has finite length, the Snake Lemma implies
that kerh has finite length as well. Thus A⊗R h : A⊗R M −→ A⊗R N∨∨

is injective. Finally we observe that A ⊗R h is the natural homomor-
phism in (iii), since (S ·M)p ∼= (Sp⊗Rp Mp)/ tor(Sp⊗Rp Mp) for all primes
p minimal over c. �
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14.10. DEFINITION. Keeping all the notation introduced so far in
this section, consider the following category of Burban-Drozd triples
BD(R). The objects of BD(R) are triples (N,V ,θ), where

• N is a MCM S-module,
• V is a finitely generated A-module, and
• θ : B⊗A V −→ B⊗S N is a surjective homomorphism between

B-modules such that the composition

V −→ B⊗A V θ−→ B⊗S N

is injective.
The induced map of A-modules V −→ B⊗S N is called a gluing map.

A morphism between two triples (N,V ,θ) and (N ′,V ′,θ′) is a pair
( f ,F) such that f : V −→ V ′ is a homomorphism of A-modules and
F : N −→ N ′ is a homomorphism of S-modules combining to make the
diagram

B⊗A V θ
//

1⊗ f
��

B⊗S N

1⊗F
��

B⊗A V ′
θ′
// B⊗S N ′

commutative.

The category of Burban-Drozd triples is finer than the category
of modules over the Artinian pair A,→B, since the homomorphism F
above must be defined over S rather than just over B. In particular,
an isomorphism of pairs ( f ,F) : (V , N) −→ (V ′, N ′) includes as part of
its data an isomorphism of S-modules F : N −→ N ′, of which there are
fewer than there are isomorphisms of B-modules B⊗S N −→ B⊗S N ′.

14.11. THEOREM (Burban-Drozd). Let R be a reduced CM complete
local ring of dimension 2 which is not an isolated singularity. Let F be
the functor from MCM R-modules to BD(R) defined on objects by

F(M)= (S ·M, A⊗R M,θM) .

Then F is an equivalence of categories.

Lemma 14.9 shows that the functor F is well-defined. The proof
that it is an equivalence is somewhat technical. For the applications
we have in mind, a more restricted version suffices.

14.12. ASSUMPTIONS. We continue to assume that R is a reduced,
CM, complete local ring of dimension two and that S 6= R is its integral
closure in the total quotient ring. Let c be the conductor and R = R/c,
S = S/c. We impose two additional assumptions.
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(i) Assume that S is a regular ring. Since R is Henselian, this
is equivalent to S being a direct product of regular local rings.
Every MCM S-module is thus projective.

(ii) Assume that R = R/c is also a regular local ring, that is, a DVR.
It follows that S is a free R-module, and even more, that a
finitely generated S module is MCM if and only if it is free over
R. Also, the total quotient ring A of R is a field.

Under these simplifying assumptions, we define a category of mod-
ified Burban-Drozd triples BD′(R).

14.13. DEFINITION. Keep the assumptions established in 14.12. A
modified Burban-Drozd triple (N, X , θ̃) consists of the following data:

• N is a finitely generated projective S-module;
• X ∼= R

(n)
is a free R module of finite rank; and

• θ̃ : X −→ N = N⊗S S is a split injection of R-modules such that
in the induced commutative square

A⊗R X
A⊗R θ̃

//

��

A⊗R N = (A⊗R S)⊗S N

B⊗R X // B⊗S N

the lower horizontal arrow is a split surjection. (The right-
hand vertical arrow comes from Lemma 14.9(i).)

A morphism between modified triples (N, X , θ̃) and (N ′, X ′, θ̃′) is a pair
( f : X −→ X ′, F : N −→ N ′) such that f : X −→ X ′ is a homomorphism
between free R-modules and F : N −→ N ′ is a homomorphism of S-
modules fitting into a commutative diagram

B⊗R X //

1⊗ f
��

B⊗S N

1⊗F
��

B⊗R X ′ // B⊗S N ′

where the horizontal arrows are induced by θ̃ and θ̃′, respectively.

Observe that if (N, X , θ̃) is a modified Burban-Drozd triple, then
(N, A⊗R X ,B⊗R θ̃) is a Burban-Drozd triple.

14.14. LEMMA. Assume the hypotheses of 14.12, and let M be a
MCM R-module. Then

F (M)=
(
S ·M, M

∨∨
, θ̃M

)
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is a modified Burban-Drozd triple, where θ̃M : M
∨∨ −→ S ·M is the nat-

ural map.

PROOF. Since S is a regular ring of dimension 2, the reflexive S-
module S ·M is in fact projective. Furthermore, the natural homomor-
phism of R-modules M −→ S ·M is obtained by applying HomR(−, M)
to the short exact sequence 0 −→ c−→ R −→ R −→ 0. In particular, we
have the short exact sequence

(14.14.1) 0−→ M −→ S ·M −→ E −→ 0 ,

where E = Ext1
R(R, M). Since E is annihilated by c, it is naturally a

R-module, and has depth one over R by the Depth Lemma applied
to (14.14.1). Since R is a DVR by assumption, this implies that E is a
free R-module. The induced exact sequence of R-modules

M −→ S ·M −→ E −→ 0 ,

where overlines indicate passage modulo c, is thus split exact on the
right.

The projective S-module S ·M is torsion-free over R, so there is a
commutative diagram

M //

""

S ·M

(M)∨∨
θ̃M

;;

where as usual −∨ is the canonical dual over R. Since M
∨∨ = M/ tor(M)

by Exercise 14.31, we have A⊗R M = A⊗R (M)∨∨, so that

A⊗R θ̃M : A⊗R M
∨∨ −→ A⊗R S ·M = B⊗S S ·M

is injective by Lemma 14.9(iii). This shows that the kernel of θ̃M is
torsion, hence zero as M

∨∨
is torsion-free. We therefore have the split-

exact sequence of R-modules

0−→ M
∨∨ θ̃M−−−→ S ·M −→ E −→ 0 .

In the induced commutative diagram

A⊗R M
∨∨

&&

A⊗R θ̃M
// A⊗R S ·M = B⊗S N

B⊗R M
∨∨

66
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the northeasterly arrow is surjective by Lemma 14.9(ii), and is even
split surjective since B⊗S N is projective over B. �

We now define a functor G from BD′(R) to MCM R-modules which
is inverse to F on objects, still under the assumptions 14.12. Let
(N, X , θ̃) be an object of BD′(R). Let π : N −→ N = N/cN be the nat-
ural projection, and define M by the pullback diagram

(14.14.2)

M //

��

N

π
��

X
θ̃

// N

of R-modules. Since θ̃ is a split injection of torsion-free modules over
the DVR R, its cokernel is an R-module of depth 1. This cokernel is
isomorphic to the cokernel of M −→ N, and it follows that depthR M =
2, so that M is a MCM R-module. Define

G (N, X , θ̃)= M .

14.15. THEOREM. The functors F and G are inverses on objects,
namely, for a MCM R-module M and a modified Burban-Drozd triple
(N, X , θ̃), we have

GF (M)∼= M

and
FG (N, X , θ̃)∼= (N, X , θ̃) .

PROOF. For the first assertion, it suffices to show that

M //

��

S ·M
π
��

(M)∨∨
θ̃

// S ·M

is a pullback diagram. We have already seen that the homomorphisms
M −→ S ·M and (M)∨∨ −→ S ·M have the same cokernel, identified as
Ext1

R(R, M). It follows from the Snake Lemma that

ker
(
M −→ (M)∨∨

)∼= ker
(
S ·M −→ S ·M

)
.

From this it follows easily that M is the pullback of the diagram above.
For the converse, let (N, X , θ̃) be an object of BD′(R) and let M be

defined by the pullback (14.14.2). Then cok(M −→ N) is isomorphic to



248 14. COUNTABLE COHEN-MACAULAY TYPE

cok
(
θ̃ : X −→ N

)
, and is in particular an R-module. The Snake Lemma

applied to the diagram

0 // cM //
� _

��

M //
� _

��

M //

��

0

0 // cN // N // N // 0

gives an exact sequence

0−→ ker(M −→ N)−→ cok(cM −→ cN)−→ cok(M −→ N) .

This shows that cok(cM −→ cN) is annihilated by c2, so in particular is
a torsion R-module. Now the commutative diagram

0 // cM //
� _

��

M // M //

��

0

0 // cN // M // X // 0

implies that M −→ X is surjective with torsion kernel. Therefore X ∼=
M/ tor(M)∼= (M)∨∨.

The inclusion M,→N induces a homomorphism S · M −→ N of re-
flexive S-modules, so in particular of reflexive R-modules. It suffices
by Exercise 14.39 to prove that this is an isomorphism in codimension
1 in R, that is, (S · M)p −→ Np is an isomorphism for all height-one
primes p ∈ SpecR. Over Rp, the localization of (14.14.2) is still a pull-
back diagram.

Mp
//

��

(S ·M)p // Np

��

(M)p // Np

Since (S · M)p ∼= (Sp ⊗Rp Mp)/ tor(Sp ⊗Rp Mp) and the bottom line is a
module over the Artinian pair A,→B, we can use the machinery of
Chapter 4 to see that (S ·M)p ∼= Np. �

§3. Hypersurfaces of countable CM type

We now apply Theorem 14.15 to obtain the complete classification
of indecomposable MCM modules over the two-dimensional (A∞) and
(D∞) complete hypersurface singularities, and show in particular that
(A∞) and (D∞) have countably infinite CM type in all dimensions.
Then we will establish the following result of Knörrer and Buchweitz-
Greuel-Schreyer:
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14.16. THEOREM. Assume that k is an uncountable algebraically
closed field of characteristic different from 2, and let R be the hyper-
surface k[[x, y, x2, . . . , xd]]/( f ), where 0 6= f ∈ (x, y, x2, . . . , xd)2. These are
equivalent:

(i) R has countably infinite CM type;
(ii) R is a countably simple singularity which is not simple, i.e. there

is a countably infinite number of ideals L of k[[x, y, x2, . . . , xd]]
such that f ∈ L2; and

(iii) R ∼= k[[x, y, x2, . . . , xd]]/(g+x2
2+·· ·+x2

d), where g ∈ k[x, y] is one of
the following:

(A∞) g = x2; or
(D∞) g = x2 y.

Observe that the equations defining the (A∞) and (D∞) hypersur-
face singularities are natural limiting cases of the (An) and (Dn) equa-
tions as n −→∞, since high powers of the variables are small in the
m-adic topology. As we shall see, the same is true of the matrix factor-
izations over these singularities.

By Knörrer’s Theorem 8.20, we may reduce the proof of the impli-
cation (iii) =⇒ (i) of Theorem 14.16 to the case of dimension d = 2.
Thus we prove in Propositions 14.17 and 14.19 that the hypersurface
singularities defined by x2 + z2 and x2 y+ z2, respectively, have count-
ably infinite CM type.

14.17. PROPOSITION. Let R = k[[x, y, z]]/(x2 + z2) be an (A∞) hyper-
surface singularity with k an algebraically closed field of character-
istic other than 2. Let i ∈ k be a square root of −1. Let M be an
indecomposable non-free MCM R-module. Then M is isomorphic to
cok(zI−ϕ, zI+ϕ), where ϕ is one of the following matrices over k[[x, y]]:

• (
ix

)
or

(−ix
)
; or

•
(−ix y j

0 ix

)
for some j> 1.

In particular R has countable CM type.

PROOF. For simplicity in the proof we replace x by ix to assume
that

R = k[[x, y, z]]/(z2 − x2) .
The integral closure S of R is then

S = R/(z− x)×R/(z+ x)

with the normalization homomorphism ν : R −→ S = S1 ×S2 given by
the diagonal embedding ν(r)= (r, r). In particular, S is a regular ring.
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Put another way, S is the R-submodule of the total quotient ring
generated by the orthogonal idempotents

e1 = z+ x
2z

∈ S1 and e2 = z− x
2z

∈ S2 ,

which are the identity elements of S1 and S2 respectively. In these
terms, ν(r)= r(e1 + e2) for r ∈ R.

The conductor of R in S is the ideal c= (x, z)R = (x, z)S, so that

R = k[[x, y, z]]/(x, z)∼= k[[y]]

is a DVR, and S ∼= R×R is a direct product of two copies of R. The in-
clusion ν : R −→ S is again diagonal, ν(r) = (r, r). Finally, the quotient
field A of R is k((y)), which embeds diagonally into B = k((y))× k((y)).
Thus all the assumptions of 14.12 are verified, and we may apply The-
orem 14.15.

Let (N, X , θ̃) be an object of BD′(R), so that N ∼= S(p)
1 ⊕S(q)

2 for some

p, q> 0, while X ∼= R
(n)

for some n and θ̃ : X −→ N is a split injection.
The gluing morphism θ : B⊗R X −→ B⊗S N is thus a linear transfor-
mation of A-vector spaces B(n) −→ B(p)⊕B(q). More precisely, θ̃ defines
a pair of matrices

(θ1,θ2) ∈ Mp×n(A)×Mq×n(A)

representing an embedding

θ =
(
θ1
θ2

)
: A(n) −→ B(p) ⊕B(q)

such that θ is injective (has full column rank) and both θ1 and θ2 are
surjective (full row rank). Thus in particular we have max(p, q)6 n6
p+ q.

Two pairs of matrices (θ1,θ2) and (θ′1,θ′2) define isomorphic modi-
fied Burban-Drozd triples if and only if there exist isomorphisms

f : A(n) −→ A(n)

F1 : S(p)
1 −→ S(p)

1

F2 : S(q)
2 −→ S(q)

2

such that as homomorphisms B(n) −→ B(p) and B(n) −→ B(q) we have

θ′1 = F−1
1 θ1 f

θ′2 = F−1
2 θ2 f .

See Exercise 14.37 for a guided proof of the next lemma.

14.18. LEMMA. The indecomposable objects of BD′(R) are
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(i)
(
S1,R, ((1),;)

)
and

(
S2,R, (;, (1))

)
(ii)

(
S1 ×S2,R, ((1), (1))

)
(iii)

(
S1 ×S2,R,

(
(1), (y j)

))
and

(
S1 ×S2,R,

(
(y j), (1)

))
for some j> 1.

Now we derive the matrix factorizations corresponding to the mod-
ified Burban-Drozd triples listed above. The pullback diagram corre-
sponding to the triple

(
S1,R, ((1),;)

)
M //

��

S1

��

R (
1;

) // S1

clearly gives M ∼= S1 = cok(z− x, z+ x), the first component of the inte-
gral closure. Similarly, the modified triple

(
S2,R, (;, (1))

)
yields M ∼=

S2 = cok(z+ x, z− x).
The diagonal map ((1), (1)) : R −→ S1 × S2 obviously defines the

free module R. By symmetry, it suffices now to consider the modified
Burban-Drozd triple (S1 ×S2,R, ((1), (y j))). The pullback diagram

M //

��

S1 ×S2

��

R ( 1
y j

) // S1 ×S2

defines M as the module of ordered triples of polynomials

( f (y), g1(x, y, x), g2(x, y,−x)) ∈ R×S1 ×S2

such that f − g1 ∈ cS1 and y j f − g2 ∈ cS2. This is equal to the R-
submodule of S generated by c= (x, z)= (z+x, z−x) and e1+y j e2, where
again e1 = (z+ x)/2z and e2 = (z− x)/2z are idempotent. Multiplying by
the non-zerodivisor (2z) j = ((z− x)+ (z+ x)) j to knock the generators
down into R, we find

(x, z, e1 + y j e2)S ∼= (2z) j
(
z+ x, z− x,

z+ x
2z

+ y j z− x
2z

)
=

(
(z+ x) j+1, (z− x) j+1, (2z) j

( z+ x
2z

) j
+ y j(2z) j

( z− x
2z

) j
)

=
(
(z+ x) j+1, (z− x) j+1, (z+ x) j + (z− x) j y j

)
=

(
(z− x) j, (z+ x) j + (z− x) j y j

)
.
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The matrix factorization((
z+ x y j

0 z− x

)
,
(
z− x −y j

0 z+ x

))
provides a minimal free resolution of this ideal and finishes the proof.

�

As an aside, we note that the restriction on the characteristic of k
could be removed by working instead with the hypersurface defined by
xz instead of x2 + z2. In characteristic not two, of course the hypersur-
face singularities are isomorphic, and k[[x, y, z]]/(xz) can be shown to
have countable type in all characteristics.

14.19. PROPOSITION. Let R = k[[x, y, z]]/(x2 y+ z2) be a (D∞) hyper-
surface singularity, where k is a field of arbitrary characteristic. Let M
be an indecomposable non-free MCM R-module. Then M is isomorphic
to cok(zI −ϕ, zI +ϕ) for ϕ one of the following matrices over k[[x, y]].

•
(

0 −y
x2 0

)
•

(
0 −xy
x 0

)

•


−xy 0
−y j+1 xy

x 0
y j −x

 for some j> 1 ;

•


−xy 0
−y j x

x 0
y j −xy

 for some j> 1 .

In particular R has countable CM type.

PROOF. In this case, the integral closure of R is obtained by adjoin-
ing the element t = z

x of the quotient field, so S = R
[ z

x
]
. The maximal

ideal of R is then (x, y, z)R = (x, t2, tx)R and that of S is (x, t)S. In par-
ticular, S is a regular local ring. The conductor is now c = (x, z)R =
(x, tx)S = xS, so that R = R/(x, z) ∼= k[[t2]] and S = S/(x) ∼= k[[t]] are
both DVRs, with ν : R −→ S the obvious inclusion. The Artinian pair
A = k((t2))−→ B = k((t)) is thus a field extension of degree 2.

Let (N, X , θ̃) be an object of BD′(R). The integral closure S being
regular local, N ∼= S(n) is a free S-module, while X ∼= R

(m)
is a free R-

module. The gluing map θ : B⊗A V ∼= B(m) −→ B(n) ∼= B⊗S N is thus
simply an n×m matrix over B with full row rank. The condition that
the composition A(m) −→ B(n) be injective amounts to writing θ = θ0 +
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tθ1 and requiring
(
θ0
θ1

)
: A(m) −→ A(2n) ∼= B(n) to have full column rank

as a matrix over A. In particular we have n6m6 2n.
Two n×m matrices θ,θ′ over B define isomorphic modified Burban-

Drozd triples if and only if there exist isomorphisms

f : A(m) −→ A(m) and F : S(n) −→ S(n)

such that, when considered as matrices over B, we have

θ′ = F−1θ f .

In other words, we are allowed to perform row operations over S = k[[t]]
and column operations over A = k((t2)).

14.20. LEMMA. The indecomposable objects of BD′(R) are

(i)
(
S,R, (1)

)
(ii)

(
S,R, (t)

)
(iii)

(
S,R

(2)
, (1 t)

)
(iv)

(
S(2),R

(2)
,
( 1 t

tm 0
))

for some m> 1.

We leave the proof of Lemma 14.20 as Exercise 14.38.
The MCM R-module corresponding to

(
S,R, (1)

)
is given by the

pullback

M //

��

S

��

R // S

where the bottom line is the given inclusion of A = k((t2)) into B =
k((t)), so is clearly the free module R. In (S,R, (t)), the natural in-
clusion is replaced by multiplication by t. The pullback M is the R-
submodule of S generated by c= (x, z) and t = z

x . Multiplying through
by the non-zerodivisor x, we find

M ∼= (x2, xz, z)R

= (x2, z)R

∼= cok
((

z y
−x2 z

)
,
(

z −y
x2 z

))
.

The modified Burban-Drozd triple
(
S,R, (1 t)

)
is defined by the iso-

morphism θ : A (1 t)−−−→ B, so corresponds to the integral closure S, which



254 14. COUNTABLE COHEN-MACAULAY TYPE

has matrix factorization((
z xy
−x z

)
,
(
z −xy
x z

))
.

Finally, let m> 1 and let M be the R-module defined by the pull-
back diagram

M //

��

S2

��

R
(2) (

1 t
tm 0

)// S(2)
.

Then M is the R-submodule of S(2) generated by cS(2) and the elements(
1
tm

)
,
(

t
0

)
.

Substitute t = z
x to see that the generators are therefore(
x
0

)
,
(
z
0

)
,
(
0
x

)
,
(
0
z

)
,
(

1
zm/xm

)
, and

(
z/x
0

)
.

Notice that the second generator is a multiple of the last. Multiplica-
tion by x on the first component and xm on the second is injective on
S2, so M1 is isomorphic to the module generated by(

x2

0

)
,
(

0
xm+1

)
,
(

0
xmz

)
,
(

x
zm

)
, and

(
z
0

)
.

Observe that (
x2

0

)
= x

(
x

zm

)
−

(
0

xzm

)
,

so we may replace the first generator by
( 0

xzm
)
, getting

M =
〈(

0
xzm

)
,
(

0
xm+1

)
,
(

0
xmz

)
,
(

x
zm

)
,
(
z
0

)〉
.

At this point we distinguish two cases. If m = 2 j is even, then using
the relation xy2 =−z2 in R,

xzm = xz2 j = xx2 j y j = xm+1 y j

up to sign, so the first generator is a multiple of the second. If m = 2 j+1
is odd, then

xzm = xz2 j+1 = xx2 j y j z = xm+1 y j z
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again up to sign, so that again the first generator is a multiple of the
second. In either case, M is generated by〈(

x
zm

)
,
(

0
xmz

)
,
(
z
0

)(
0

xm+1

)
,
〉

.

Now it’s easy to check that when m is odd, say m = 2 j + 1 for some
j> 0,

M ∼= cok




z −xy 0
z −y j+1 x

x 0 z
y j+1 −xy z

 ,


z xy 0

z y j+1 −x
−x 0 z

−y j+1 xy z




and in case m is even, say m = 2 j for some j> 1,

M ∼= cok




z −xy 0
z −y j+1 xy

x 0 z
y j −x z

 ,


z xy

z y j+1 −xy
−x 0 z
−y j x z




(after a permutation of the generators). �

Together with Theorem 8.20, Propositions 14.17 and 14.19 show
that the (A∞) and (D∞) hypersurface singularities have countable CM
type in all dimensions. To show that these are the only ones and com-
plete the proof of Theorem 14.16, we need the following classification
of countably simple singularities (the proof of which is considerably
simpler than the corresponding classification for simple singularities
on pages 143–148).

14.21. THEOREM. Let k be an algebraically closed field of charac-
teristic different from 2, and let R = k[[x, y]]/( f ) be a one-dimensional
complete hypersurface singularity over k. Assume k is uncountable.
If R is a countably simple but not simple singularity, then either R ∼=
k[[x, y]]/(x2) or R ∼= k[[x, y]]/(x2 y).

PROOF. By Lemma 9.3, we see that e(R)6 3 and f ∉ (α,β2)3 for ev-
ery α,β ∈ (x, y). If in addition R is reduced, then by Remark 9.13 it is a
simple singularity. Hence we may assume that in the irreducible fac-
torization f = uf e1

1 · · · f er
r , with u a unit and the f i distinct irreducibles,

we have e i > 2 for at least one i. Say e1> 2. Since f is not divisible by
any cube (by Lemma 9.3(iia)) we must have e1 = 2. Since the multiplic-
ity of R is at most 3, we must have r6 2 and that each f i has non-zero
linear term. Make the linear change of variable sending

p
uf1 to x,

so that now f = x2 f e2
2 with e2 = 0 or 1. Now if e2 = 0 we have f = x2,
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while if e2 = 1 we make the change of variables sending f2 to y, so that
f = x2 y. �

Now we finish the proof of the main theorem.

PROOF OF THEOREM 14.16. If R = k[[x, y, x2, . . . , xd]]/( f ) has count-
ably infinite CM type, then R is a countably simple singularity but not
simple by Theorem 9.2.

To prove that countably simplicity implies one of the forms listed
in item (iii), we may, as in the proof of Theorem 9.8, reduce to the case
of dimension one, where Theorem 14.21 finishes.

Finally, Propositions 14.17 and 14.19 show that the (A∞) and (D∞)
singularities have countably infinite CM type, completing the proof.

�

We remarked above that the equations defining the (A∞) and (D∞)
hypersurface singularities, and even the matrix factorizations over
them, are “natural limits” of the cases (An) and (Dn). This suggests
the following question.

14.22. QUESTION. Must every CM local ring of countable CM type
be a “natural limit” of a “series of singularities” of finite CM type? For
those that are, are the indecomposable MCM modules “limits” of MCM
modules over singularities in the series?

To address the question, of course, the first order of business must
be to give meaning to the phrases in quotation marks. This is problem-
atic, as Arnold remarked [Arn81]: “Although the series undoubtedly
exist, it is not at all clear what a series of singularities is.”

§4. Other examples

Besides the hypersurface examples of the last section, very few
non-trivial examples of countable CM type are known. In this section
we present a few, taken from Schreyer’s survey article [Sch87].

In dimension one, we have the following example, which will return
triumphantly in Chapter 17.

14.23. EXAMPLE. Let k be an arbitrary field, and consider the one-
dimensional (D∞) hypersurface singularity R = k[[x, y]]/(x2 y) over k.
Set E =EndR(m), where m= (x, y) is the maximal ideal. Then we claim
that

E ∼= k[[x, y, z]]/(yz, x2 − xz, xz− z2)
∼= k[[a,b, c]]/(ab,ac, c2) .
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In particular E is local, and it follows from Proposition 4.14 that R has
countable CM type.

That the two alleged presentations of E are isomorphic is a simple
matter of a linear change of variables:

a = z , b = y , c = x− z .

To show that in fact E is isomorphic to A = k[[x, y, z]]/(yz, x2−xz, xz−
z2), note that the element x+ y of R is a non-zerodivisor, and that the
fraction z := x2

x+y is in EndR(m) but not in R. Now E = HomR(m,R)
since m does not have a free direct summand, and it follows by duality
over the Gorenstein ring R that E/R ∼= Ext1

R(R/m,R) ∼= k. Therefore
E = R[z]. Since

z2 = x2(x+ y)2

(x+ y)2 = x2 ∈m ,

E is local. One verifies the relations yz = 0 and x2 = xz = z2 in E. Thus
we have a surjective homomorphism of R-algebras A −→ E. Since R is
a subring of E, and the inclusion R,→E factors through A, we see that
R is also a subring of A, and that the surjection A −→ E fixes R.

The induced homomorphism A/R −→ E/R is still surjective, and in
fact is bijective since A/R is simple as well. It follows from the Five
Lemma that A −→ E is an isomorphism.

By Lemma 4.9, the indecomposable MCM E-modules are precisely
the non-free indecomposable MCM R-modules. These turn out to be
exactly the cokernels of the following matrices over R = k[[x, y]]/(x2 y):

(y); (x2); (x); (xy)(
x
y j −x

)
;

(
xy
y j −xy

)
;

(
x
y j −xy

)
;

(
xy
y j −x

)
for j> 1. To see this, note that, for each of the R#-modules M of Propo-
sition 14.19, M[ decomposes as a direct sum of two modules. These
are the cokernels of the matrices on the list above. One can argue di-
rectly that each of these modules is indecomposable. (In characteristic
different from two, indecomposability follows from Corollary 8.19.) By
Proposition 8.18, the list is complete.

For two-dimensional examples, we note that Herzog’s result Propo-
sition 6.2 implies the following.

14.24. PROPOSITION. Let S be a two-dimensional CM complete lo-
cal ring which is Gorenstein in codimension one. (For example, S could
be one of the two-dimensional (A∞) and (D∞) hypersurface singulari-
ties.) Let G be a finite group with order invertible in S, acting by linear
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changes of variables on S. Set R = SG . If S has countable CM type,
then R has countable CM type. �

14.25. EXAMPLE. Fix an integer r > 2. R be the two-dimensional
(A∞) hypersurface R = k[[x, y, z]]/(xy), and let the cyclic group Z/rZ
act on R, the generator sending (x, y, z) to (x,ζr y,ζr z), where ζr is a
primitive rth root of unity. (Here k is an algebraically closed field
of characteristic prime to r.) The invariant subring is generated by
x, yr, yr−1z, . . . , zr (see Exercise 5.35), and is thus isomorphic to the quo-
tient of k[[t0, t1, . . . , tr, x]] by the 2×2 minors of(

t0 · · · tr−1 0
t1 · · · tr x

)
.

14.26. EXAMPLE. Fix an odd integer r = 2m+1, and let R be the
two-dimensional (D∞) hypersurface k[[x, y, z]]/(x2 y− z2), where k is a
field with characteristic prime to r. Let r = 2m+ 1 be an odd posi-
tive integer, and let Z/rZ act on R by the action sending (x, y, z) 7→
(ζ2

r x,ζ−1
r y,ζm+2

r z).
The ring of invariants is complicated to describe in general; see

Exercise 5.36. If m = 1, it is generated by x3, xy2, y3, z and hence is
isomorphic to

k[[a,b, c, z]]
/

I2

(
a z2 b
z2 b c

)
.

If m = 2, there are 7 generating invariants

x5, x3 y, x3z, xy2, xyz, y5, y4z ,

and 15 relations among them. When m = 4, the greatest common divi-
sor of m+2 and 2m+1 is no longer 1, and things get really weird.

14.27. REMARK. As Schreyer points out, the phenomenon observed
in Question 14.22 repeats here. The one-dimensional example E is
obtained as a limit of the endomorphism rings of the maximal ideals
of the (Dn) hypersurface singularities:

EndDn(m)∼= k[[x, y, z]]
/

In ,

where In is the ideal of 2×2 minors of
(

y x−z 0
x−z yn z

)
.

Similarly, for Example 14.25 we may take the limit of the quotients
of k[[t0, t1, . . . , tr+1]] by the 2×2 minors of(

t0 · · · tr−1 tn
r

t1 · · · tr tr+1

)
,
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and for Example 14.26 with m = 1, we take the quotient of k[[a,b, c,d]]
by the 2×2 minors of (

d2 +an c b
b d2 a

)
.

As assured by Theorem 7.19, both of these are invariant rings of a
finite group acting on power series, the first for a cyclic group action
Cnr−n+1,n, and the second by a binary dihedral D2+3n,2+2n (cf. [Sch87,
Rie81]).

These examples add some strength to Question 14.22. We also
mention the related question, also first asked by Schreyer in [Sch87]:

14.28. QUESTION. Is every CM local ring of countable CM type a
quotient of one of the (A∞) or (D∞) hypersurface singularities by a finite
group action?

Burban and Drozd have recently announced a negative answer to
this question [BD10]. Namely, set

Am,n = k[[x1, x2, y1, y2, z]]
/

(x1 y1, x1 y2, x2 y1, x2 y2, x1z− xn
2 , y1z− ym

2 ) .

Then Am,n has countable CM type for every n,m> 0. For n = m this
ring is isomorphic to a ring of invariants of the (A∞) hypersurface, but
for m 6= n it is not.

§5. Exercises

14.29. EXERCISE. Let R =Q[x, y, z](x,y,z)
/

(x2). The completion R̂ =
Q[[x, y, z]]

/
(x2) has a two-dimensional singular locus and therefore has

uncountable CM type. Show that only countably many indecompos-
able R̂-modules are used in direct-sum decompositions of modules of
the form R̂ ⊗R M, for MCM R-modules M. Thus the set U in the
proof of Theorem 10.1 is properly contained in the set of all MCM R̂-
modules.

14.30. EXERCISE. Let R be a one-dimensional CM local ring with
canonical module ω, and let M be a finitely generated R-module. Prove
that M∨∨ ∼= M/ tor(M).

14.31. EXERCISE. Let R be a two-dimensional local ring which is
Gorenstein on the punctured spectrum. Let M be a finitely generated
R-module. Prove that there is an exact sequence

0−→ tor(M)−→ M
σM−−→ M∗∗ −→ L −→ 0 ,
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where σM is the biduality homomorphism, defined by σM(m)( f )= f (m),
and L is a module of finite length. If R is CM with canonical module
ω, prove that there is also an exact sequence

0−→ tor(M)−→ M
τM−−→ M∨∨ −→ L′ −→ 0 ,

where τM is again the corresponding evaluation homomorphism and
L′ also has finite length.

14.32. EXERCISE. Let R be a reduced local ring satisfying Serre’s
condition (S2) and let M and N be two finitely generated R-modules.
Assume that N is reflexive. Prove that

HomR(M, N)=HomR(M∗∗, N) .

If in addition R is CM with canonical module ω, then

HomR(M, N)=HomR(M∨∨, N) .

(Hint: first reduce to the torsion-free case.)

14.33. EXERCISE. Let R be a reduced CM two-dimensional local
ring with canonical module ω. Assume that R is Gorenstein in codi-
mension one. Prove that there is a natural isomorphism M∨∨ −→ M∗∗.

14.34. EXERCISE. Let R be a reduced Noetherian ring and assume
that the integral closure S is a finitely generated R-module. Let c be
the conductor. Prove that S =EndR(c).

14.35. EXERCISE. Let R and S be as in 14.7 and let N be a finitely
generated S-module. Prove that

HomS(HomS(N,S),S)∼=HomR(HomR(N,R),R) .

14.36. EXERCISE. Let R be a CM local ring and M a reflexive R-
module which is locally free in codimension one. Let N be an arbitrary
finitely generated R-module, and let M · N denote the reflexive prod-
uct of M and N (cf. Exercise 6.48). Show that M · N ∼= HomR(M∗, N).
Conclude that S ·N ∼=HomR(c, N) in the setup of 14.7.

14.37. EXERCISE. Prove Lemma 14.18, that the modified Burban-
Drozd triples listed there constitute a full set of representatives for the
indecomposables of BD′(R), along the following lines.

• The listed forms are pairwise non-isomorphic and cannot be
further decomposed.

• Every object of BD′(R) splits into direct summands with either
n = p = q or n = p+ q. (Consider the complement of (kerθ1)+
ker(θ2) in A(n).)
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• In the case n = p+ q, the object further splits into direct sum-
mands with either n = p or n = q. Any triple with n = p or
n = q can be completely diagonalized, giving one of the factors
of the integral closure.

14.38. EXERCISE. Prove Lemma 14.20, that the modified Burban-
Drozd triples listed there form a full set of representatives for the in-
decomposables of BD′(R), along the following lines.

• The listed forms are pairwise non-isomorphic and cannot be
further decomposed.

• The m×n matrix θ can be reduced (using the allowable moves:
row operations over S and column operations over A) to the
block form

td1 Is1 A1,2 · · · A1,ν A1,ν+1
td2 Is2 · · · A2,ν A2,ν+1

. . .
...

...
tdν Isν Aν,ν+1


where

– d1 < d2 < ·· · < dν and d1 = 0 or 1.
– Each entry of A i, j has order in t at least di+1 for 16 i6 ν

and 16 j6 ν+1.
– Each entry of A i, j has order in t at most d j for 16 i 6 ν

and 16 j6 ν.
• If A1, j = 0 for all j = 2, . . . ,ν+1, then either (1) or (t) is a direct

summand of θ and we are done by induction on the number of
rows.

• If A1, j 6= 0 for some j6 ν, write A1, j = td1B1, j for some matrix
B1, j with entries in k[[t]]. Show that we may assume B1, j has
entries in k[[t2]], and then diagonalize over k[[t2]] to assume
B1, j =

(
Is′ 0
0 0

)
. If s′ = 0, return to the previous step, while if

s′ > 0, split off one of(
1 t
0 td j

)
or

(
t t2

0 td j

)
.

• Consider two cases for each of the above matrices: d j = 1 ver-
sus d j 6= 1 in the first matrix, and d j = 2 versus d j 6= 2 in the
second. Split off one of the forms listed in Lemma 14.20 in
each case.

• Finally, if A1, j = 0 for all j = 2, . . . ,ν but A1,ν+1 6= 0, then one of
(1), (t), (1 t), or (t t2)∼ (1 t) is a direct summand of θ.
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14.39. EXERCISE. Generalize Lemma 5.11 as follows. Let R be a
reduced ring satisfying Serre’s condition (S2), and let f : M −→ N be
a homomorphism of R-modules, each of which satisfies (S2). Then f
is an isomorphism if and only if fp : Mp −→ Np is an isomorphism for
every height-one prime p of R.



CHAPTER 15

The Brauer-Thrall Conjectures

In a brief abstract published in the 1941 Bulletin of the AMS,
Brauer announced that he had found sufficient conditions for a finite-
dimensional algebra A over a field k to have infinitely many non-
isomorphic indecomposable finitely generated modules [Bra41]. Some
years later, Thrall claimed similar results [Thr47]: he wrote that
Brauer had in fact given three conditions, each sufficient to ensure
that A has indecomposable modules of arbitrarily high k-dimension,
and he gave a fourth sufficient condition. These were stated in terms
of the so-called “Cartan invariants” [ANT44, p. 106] of the rings A,
A/J (A), A/J (A)2, etc. Neither Brauer nor Thrall ever published the
details of their work, leaving it to Thrall’s student Jans to publish
them. Jans attributes the following conjectures [Jan57] to both Brauer
and Thrall. Say that a finite-dimensional k-algebra A has bounded
representation type if the k-dimensions of indecomposable finitely gen-
erated A-modules are bounded, and strongly unbounded representa-
tion type if A has infinitely many pairwise non-isomorphic modules of
k-dimension n for infinitely many n.

15.1. CONJECTURE (Brauer-Thrall Conjectures). Let A be a finite-
dimensional algebra over a field k.

I. If A has bounded representation type then A actually has finite
representation type.

II. Assume that k is infinite. If A has unbounded representation
type, then A has strongly unbounded representation type.

Under mild hypotheses, both of these conjectures are now theo-
rems. Brauer-Thrall I was proved by Roı̆ter [Roı̆68], while Brauer-
Thrall II for perfect fields k is due to Nazarova and Roı̆ter [NR73].
See [Rin80] or [Gus82] for some history on these results. (It’s per-
haps interesting to note that Auslander gave a proof of Roı̆ter’s theo-
rem for arbitrary Artinian rings [Aus74]—with length standing in for
k-dimension—and that this is where “almost split sequences” made
their first appearance.)

263
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We import the definition of bounded type to the context of MCM
modules almost verbatim. Recall that the multiplicity of a finitely gen-
erated module M over a local ring R is denoted e(M).

15.2. DEFINITION. We say that a CM local ring R has bounded CM
type provided there is a bound on the multiplicities of the indecompos-
able MCM R-modules.

If an R-module M has constant rank r, then it is known that e(M)=
re(R) (see Appendix A, §2). Thus for modules with constant rank, a
bound on multiplicities is equivalent to a bound on ranks.

The first example showing that that bounded and finite type are
not equivalent in the context of MCM modules, that is, that Brauer-
Thrall I fails, was given by Dieterich in 1980 [Die81]: Let k be a field
of characteristic 2, let A = k[[x]], and let G be the two-element group.
Then the group algebra AG has bounded but infinite CM type. Indeed,
note that AG ∼= k[[x, y]]/(y2) (via the map sending the generator of the
group to y−1). Thus AG has multiplicity 2 but is not reduced, whence
AG has bounded but infinite CM type by Theorem 4.18. In fact, as we
saw in Chapter 14, k[[x, y]]/(y2) has (countably) infinite CM type for
every field k.

Theorem 4.10 says, in part, that if an analytically unramified lo-
cal ring (R,m,k) of dimension one with infinite residue field k fails to
have finite CM type, then R has |k| indecomposable MCM modules
of every rank n. Thus, for these rings, finite CM type and bounded
CM type are equivalent, just as for finite-dimensional algebras, and
moreover Brauer-Thrall II even holds for these rings. In this chap-
ter we present the proof, due independently to Dieterich [Die87] and
Yoshino [Yos87], of Brauer-Thrall I for all complete, equicharacteris-
tic, CM isolated singularities over a perfect field (Theorem 15.20) and
show how to use the results of the previous chapters to weaken the hy-
pothesis of completeness to that of excellence. We also give a new proof
(independent of the one in Chapter 4) that Brauer-Thrall II holds for
complete one-dimensional reduced rings with algebraically closed re-
sidue field (Theorem 15.27). The latter result uses Smalø’s “inductive
step” (Theorem 15.26) for building infinitely many indecomposables in
a higher rank from infinitely many in a lower one. As another appli-
cation of Smalø’s theorem we observe that Brauer-Thrall II holds for
rings of uncountable CM type.

§1. The Harada-Sai lemma

We will reduce the proof of the first Brauer-Thrall conjecture to
a statement about modules of finite length, namely the Harada-Sai
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Lemma 15.4. In this section we give Eisenbud and de la Peña’s 1998
proof [EdlP98] of Harada-Sai, and in the next section we show how to
extend it to MCM modules. The Lemma gives an upper bound on the
lengths of non-zero paths in the Auslander-Reiten quiver. To state it,
we make a definition.

15.3. DEFINITION. Let R be a commutative ring and let

(15.3.1) M1
f1−−→ M2

f2−−→ ·· · fs−1−−−−→ Ms

be a sequence of homomorphisms between R-modules. We say (15.3.1)
is a Harada-Sai sequence if

(i) each Mi is indecomposable of finite length;
(ii) no f i is an isomorphism; and

(iii) the composition fs−1 fs−2 · · · f1 is non-zero.

Fitting’s Lemma (Exercise 1.25) implies that, in the special case
where Mi = M and f i = f are constant for all i, the longest possible
Harada-Sai sequence has length `(M)−1, where as usual `(M) denotes
the length of M. In general, the Harada-Sai Lemma gives a bound on
the length of a Harada-Sai sequence in terms of the lengths of the
modules.

15.4. LEMMA. Let (15.3.1) be a Harada-Sai sequence such that the
length of each Mi is bounded above by b. Then s6 2b −1.

In fact we will prove a more precise statement, which determines
exactly which sequences of lengths `(Mi) are possible in a Harada-Sai
sequence.

15.5. DEFINITION. The length sequence of a sequence (15.3.1) of
modules of finite length is the integer sequence

λ= (`(M1),`(M2), . . . ,`(Ms)) .

We define special integer sequences as follows:

λ(1) = (1)

λ(2) = (2,1,2)

λ(3) = (3,2,3,1,3,2,3)

and, in general, λ(b) is obtained by inserting b at the beginning, the
end, and between every two entries of λ(b−1). Alternatively,

λ(b+1) = (λ(b) +1,1,λ(b) +1) ,

where 1 is the sequence of all 1s. Notice that λ(b) is a list of 2b − 1
integers.
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We say that one integer sequence λ of length n embeds in another
integer sequence µ of length m if there is a strictly increasing function
σ : {1, . . . ,n}−→ {1, . . . ,m} such that λi =µσ(i).

Lemma 15.4 follows from the next result.

15.6. THEOREM. There is a Harada-Sai sequence with length se-
quence λ if and only if λ embeds in λ(b) for some b.

PROOF. First let

(15.6.1) M1
f1−−→ M2

f2−−→ ·· · fs−1−−−−→ Ms

be a Harada-Sai sequence with length sequence λ = (λ1, . . . ,λs). Set
b = max{λi}. If b = 1, then each Mi is simple. As the composition is
non-zero and no f i is an isomorphism, the length of the sequence must
be 1. Thus λ= (1) embeds in λ(1) = (1). Suppose then that b > 1.

If two consecutive entries of λ are equal, say λi = λi+1, then we
may insert some indecomposable summand of im( f i) between Mi and
Mi+1, chosen so that the composition is still non-zero. This gives a new
Harada-Sai sequence, one step longer. Thus we may assume that no
two consecutive λi are equal.

Observe that no composition of two consecutive f j is an isomor-
phism; indeed, this would force both to split, contradicting the inde-
composability of M j.

Let λ′ be the integer sequence gotten from λ by deleting every oc-
currence of b. Then λ′ is the length sequence of the Harada-Sai se-
quence obtained by “collapsing” (15.6.1): for each Mi having length
equal to b, delete Mi and replace the pair of homomorphisms f i and
f i+1 by the composition f i+1 f i : Mi−1 −→ Mi+1. By induction λ′ embeds
into λ(b−1). Since every second element of λ(b) is b and the b’s in λ

never repeat, this can be extended to an embedding λ−→λ(b).
To prove the other direction, it suffices by the same “collapsing”

argument to show that there is a Harada-Sai sequence with λ(b) for its
length sequence. For this we refer to [EdlP98], where Eisenbud and
de la Peña construct such sequences over the ring k[x, y]/(xy). �

§2. Faithful systems of parameters

The goal of this section is to prove an analog of the Harada-Sai
Lemma 15.4 for MCM modules. We will reduce to the case of finite
length modules by passing to the quotient by a particularly nice regu-
lar sequence: one that preserves indecomposability, non-isomorphism,
and even non-split short exact sequences of MCM modules.
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Throughout, (R,m,k) is a CM local ring of dimension d. We will
need to impose additional restrictions later on; see Theorem 15.19 for
the full list.

15.7. DEFINITION. Let x = x1, . . . , xd be a system of parameters for
R. We say x is a faithful system of parameters if for every pair M, N
of finitely generated R-modules with M MCM, xExt1

R(M, N)= 0.

In what follows, we write x2 for the system of parameters x2
1, . . . , x2

d.
Here is the basic property of faithful systems of parameters that makes
them well suited to our purposes. It’s interesting to observe the simi-
larity of this statement to that of Guralnick’s Lemma 1.11. The state-
ment could even be given the same form: a commutative rectangle
consisting of two squares, the bottom of which also commutes, though
the top square might not.

15.8. PROPOSITION. Let x= x1, . . . xd be a faithful system of param-
eters, and let M and N be MCM R-modules. For every homomorphism
ϕ : M/x2M −→ N/x2N, there exists ϕ̃ ∈ HomR(M, N) such that ϕ and ϕ̃

induce the same homomorphism M/xM −→ N/xN.

PROOF. Our goal is the case i = 0 of the following statement: there
exists a homomorphism

ϕi : M/
(
x2

1, . . . x2
i
)
M −→ N/

(
x2

1, . . . , x2
i
)
N

such that ϕi ⊗R R/(x)=ϕ⊗R R/(x). We prove this by descending induc-
tion on i, taking ϕd =ϕ for the base case i = d.

Assume that ϕi+1 has been constructed. Then it suffices to find
a homomorphism ϕi : M/

(
x2

1, . . . x2
i
)
M −→ N/

(
x2

1, . . . , x2
i
)
N with the fol-

lowing stronger property:

ϕi ⊗R R/
(
x2

1, . . . , x2
i , xi+1

)=ϕ⊗R R/
(
x2

1, . . . , x2
i , xi+1

)
,

for then of course killing x1, . . . , xi, xi+2, . . . , xd we obtain ϕi ⊗R R/(x) =
ϕ⊗R R/(x).

Set yi = x2
1, . . . , x2

i and zi = x2
1, . . . , x2

i , xi+1. Then we have a commu-
tative diagram with exact rows (as N is MCM and xi+1 is an R-regular
element)

0 // N/yiN
x2

i+1
//

xi+1
��

N/yiN // N/yi+1N //

��

0

0 // N/yiN
xi+1
// N/yiN // N/ziN // 0 .
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Apply HomR(M,−) to obtain a commutative exact diagram

HomR(M, N/yiN) // HomR(M, N/yi+1N) //

��

Ext1
R(M, N/yiN)

xi+1
��

HomR(M, N/yiN) // HomR(M, N/ziN) // Ext1
R(M, N/yiN) .

By the definition of a faithful system of parameters, the right-hand
vertical map is zero. We have ϕi+1 living in HomR(M, N/yi+1N) in the
middle of the top row, and an easy diagram chase delivers ϕi in the
top-left corner such that ϕi ⊗R R/(zi)∼=ϕi+1 ⊗R R/(zi). �

Here are the main consequences of Proposition 15.8. The first and
third corollaries are sometimes called “Maranda’s Theorem,” having
first been proven by Maranda [Mar53] in the case of the group ring
of a finite group over the ring of p-adic integers, and extended by
Higman [Hig60] to arbitrary orders over complete discrete valuation
rings.

15.9. COROLLARY. Let x be a faithful system of parameters for R,
and let M and N be MCM R-modules. Suppose that ϕ : M/x2M −→
N/x2N is an isomorphism. Then there exists an isomorphism ϕ̃ : M −→
N such that ϕ̃⊗R R/(x)=ϕ⊗R R/(x).

PROOF. Proposition 15.8 gives us the homomorphism ϕ̃; it remains
to see that ϕ̃ is an isomorphism. Since ϕ̃ is surjective modulo x2, it is
at least surjective by NAK. Similarly, applying the Proposition to ϕ−1,
we find that there is a surjection ϕ̃−1 : N −→ M. By Exercise 4.25, the
surjections ϕ̃−1ϕ̃ and ϕ̃ϕ̃−1 are both isomorphisms, so ϕ̃ and ϕ̃−1 are
as well. �

15.10. COROLLARY. Let x be a faithful system of parameters for R,
and let s : 0 −→ N i−→ E

p−−→ M −→ 0 be a short exact sequence of MCM
modules. Then s is non-split if and only if s⊗R R/(x2) is non-split.

PROOF. Sufficiency is clear: a splitting for s immediately gives a
splitting for s ⊗R R/(x2). For the other direction, suppose p = p ⊗R
R/(x2) is a split epimorphism. Then there exists ϕ : M/x2M −→ E/x2E
such that pϕ is the identity on M/x2M. Let ϕ̃ : M −→ E be the lifting
guaranteed by Proposition 15.8. Then (pϕ̃)⊗R R/(x) is the identity on
M/xM, so pϕ̃ is an isomorphism. Thus s is split. �

15.11. COROLLARY. Assume that R is Henselian. Let x be a faithful
system of parameters for R, and let M be a MCM R-module. Then M is
indecomposable if and only if M/x2M is indecomposable.
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PROOF. Again, we have only to prove one direction: if M decom-
poses non-trivially, then so must M/x2M by NAK. For the other direc-
tion, assume that M is indecomposable. Then EndR(M) is a nc-local
ring since R is Henselian (see Chapter 1). We have a commutative
diagram

EndR(M) //

τ
%%

EndR(M/x2M)

π
xx

EndR(M/xM)
where each map is the natural one induced by tensoring with R/(x)
or R/(x2). Let e ∈ EndR(M/x2M) be an idempotent; we’ll show that e
is either 0 or 1, so that M/x2M is indecomposable. The image π(e) of
e in EndR(M/xM) is still idempotent, and is contained in τ(EndR(M))
by Proposition 15.8. Since EndR(M) is nc-local, so is its homomorphic
image τ(EndR(M)), so π(e) is either 0 or 1.

If π(e) = 0, then e⊗R R/(x) = 0, so that e(M/x2M) ⊆ x(M/x2M). But
e is idempotent, so that im(e) = im(e2) ⊆ im(x2) = 0 and so e = 0. If
π(e)= 1, then the same argument applies to 1− e, giving e = 1. �

To address the existence of faithful systems of parameters, con-
sider a couple of general lemmas. We leave the proof of the first as an
exercise. The second is an easy special case of [Wan94, Lemma 5.10].

15.12. LEMMA. Let Γ be a ring, I an ideal of Γ, and Λ= Γ/I. Then
AnnΓ I annihilates Ext1

Γ(Λ,K) for every Γ-module K . �

15.13. LEMMA. Let Γ be a ring, I an ideal of Γ, and Λ=Γ/I. Let

(15.13.1) L
ϕ−−→ M

ψ−−→ N

be an exact sequence of Γ-modules. Then the homology H of the complex

(15.13.2) HomΓ(Λ,L)
ϕ∗−−−→HomΓ(Λ, M)

ψ∗−−−→HomΓ(Λ, N)

is annihilated by AnnΓ I.

PROOF. Let K = kerϕ and X = imϕ, and let η : L −→ X be the sur-
jection induced by ϕ. Then applying HomΓ(Λ,−), we see that the coho-
mology in the middle of (15.13.2) is equal to the cokernel of

HomΓ(Λ,η) : HomΓ(Λ,L)−→HomΓ(Λ, X ) .

This cokernel is also a submodule of Ext1
Γ(Λ,K), so we are done by the

previous lemma. �

We will apply Lemma 15.13 to the homological different HT(R) of
a homomorphism T −→ R, where R is as above a CM local ring and T
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is a regular local ring. Recall (from e.g. Appendix B) that if A −→ B
is a homomorphism of commutative rings, we let µ : B⊗A B −→ B be
the diagonal map defined by µ(b⊗b′)= bb′, and we set J = kerµ. The
homological different HA(B) is then defined to be

HA(B)=µ(AnnB⊗AB J ) .

Notice that for any two B-modules M and N, HomA(M, N) is natu-
rally a B ⊗A B-module via the rule [ϕ(b ⊗ b′)](m) = ϕ(bm)b′ for any
ϕ ∈ HomA(M, N), m ∈ M, and b,b′ ∈ B. Since for any B⊗A B-module
X , HomB⊗AB(R, X ) is the submodule of X annihilated by J , and J is
generated by elements of the form b⊗1−1⊗b, we see that

HomB⊗AB(B,HomA(M, N))∼=HomB(M, N)

for all M, N. This is in particular an isomorphism of B⊗A B-modules,
where the action of B⊗A B on HomB(M, N) is via µ.

15.14. PROPOSITION. Let R be a CM local ring and assume T ⊆ R
is a regular local ring such that R is a finitely generated T-module.
Then HT(R) annihilates Ext1

R(M, N) for every MCM R-module M and
arbitrary R-module N.

PROOF. Let 0 −→ N −→ I0 −→ I1 −→ I2 −→ ·· · by an injective reso-
lution of N over R. Since M is MCM over R, it is finitely generated
and free over T, and the complex

HomT(M, I0)
ϕ−−→HomT(M, I1)

ψ−−→HomT(M, I2)

is exact. Apply HomR⊗T R(R,−); by the discussion above the result is

HomR(M, I0)
ϕ∗−−−→HomR(M, I1)

ψ∗−−−→HomR(M, I2) .

The homology H of this complex is naturally Ext1
R(M, N), and is by

Lemma 15.13 annihilated by AnnR⊗T R J . Since the R ⊗T R-module
structure on these Hom modules is via µ, we see that the homological
different HT(R)=µ(AnnR⊗T R J ) annihilates Ext1

R(M, N). �

Put H(R) = ∑
T HT(R), where the sum is over all regular local sub-

rings T of R such that R is a finitely generated T-module. It follows
immediately from Proposition 15.14 that H(R) annihilates Ext1

R(M, N)
whenever M is MCM.

Let us now introduce a more classical ideal, the Jacobian ideal. Let
T be a Noetherian ring and R a finitely generated T-algebra. Then
R has a presentation R = T[x1, . . . , xn]/( f1, . . . , fm) for some n and m.
The Jacobian ideal of R over T is the ideal JT(R) in R generated by
the maximal minors of the Jacobian matrix (∂ f i/∂x j)i j. We set J(R) =
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T JT(R), where again the sum is over all regular subrings T of R over

which R is module-finite.
One can see ([Wan94, Prop. 5.8] or Exercise 15.34) that JT(R) ⊆

HT(R) for every T, so that J(R)⊆H(R). Thus we have

15.15. COROLLARY. Let R be a CM local ring and let J(R) be the
Jacobian ideal of R. Then J annihilates Ext1

R(M, N) for every pair of
R-modules M, N with M MCM. �

There are two problems with this result. The first is the question
of whether any regular local subrings T as in the definition of J(R)
actually exist. Luckily, Cohen’s Structure Theorems assure us that
when R is complete and contains its residue field k, there exist plenty
of regular local rings T = k[[x1, . . . , xd]] over which R is module-finite.

The second problem is that J(R) may be trivial if the residue field
is not perfect.

15.16. REMARK. If R is a hypersurface R = k[x1, . . . , xd]/( f (x)), then
J(R) is the ideal of R generated by the partial derivatives ∂ f /∂xi of
f . If k is not perfect, this ideal can be zero. For example, suppose
that k is an imperfect field of characteristic p, and let α ∈ k \ kp. Put
R = k[x, y]/(xp−αyp). Then J(R)= 0. Note that R is a one-dimensional
domain, so is an isolated singularity. Thus in particular J does not
define the singular locus of R.

To address this second problem, we appeal to Nagata’s Jacobian
criterion for smoothness of complete local rings [GD64, 22.7.2] (see
also [Wan94, Props. 4.4 and 4.5]).

15.17. THEOREM. Let (R,m,k) be an equidimensional complete lo-
cal ring containing its residue field k. Assume that k is perfect. Then
the Jacobian ideal J(R) of R defines the singular locus: for a prime
ideal p, Rp is a regular local ring if and only if J(R) 6⊆ p. �

This immediately gives existence of faithful systems of parame-
ters, and our extension of the Harada-Sai Lemma to MCM modules.
We leave the details of the proof of existence as an exercise (Exer-
cise 15.35).

15.18. THEOREM (Yoshino). Let (R,m,k) be a complete CM local
ring containing its residue field k. Assume that k is perfect and that R
has an isolated singularity. Then R admits a faithful system of param-
eters. �

15.19. THEOREM (Harada-Sai for MCM modules). Let R be a com-
plete equicharacteristic CM local ring with perfect residue field and
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an isolated singularity. Let x be a faithful system of parameters for
R. Let M0, M1, . . . , M2n be indecomposable MCM R-modules, and
let f i : Mi −→ Mi+1 be homomorphisms that are not isomorphisms. If
`(Mi/x2Mi)6 n for all i = 0, . . . ,2n, then f2n−1 · · · f2 f1 ⊗R R/(x2)= 0.

PROOF. Set M̃i = Mi/x2Mi and f̃ i = f i ⊗R R/(x2). Then M̃0
f̃0−−→

. . .
�f2n−1−−−−−→�M2n is a sequence of indecomposable R/(x2)-modules, each of

length at most n, in which no f̃ i is an isomorphism. It is too long to be
a Harada-Sai sequence, however, so we conclude f2n · · · f2 f1⊗R R/(x2)=
0. �

§3. Proof of Brauer-Thrall I

In this section we prove the following theorem, proved in the com-
plete case by Dieterich [Die87] and Yoshino [Yos87] independently.
See also [PR90] and [Wan94]. Our proof follows [Yos90] closely.

15.20. THEOREM (Dieterich, Yoshino). Let (R,m,k) be an excellent
equicharacteristic CM local ring with perfect residue field k. Then R
has finite CM type if and only if R has bounded CM type and at most
an isolated singularity.

Of course one direction of the theorem follows immediately from
Auslander’s Theorem 7.12, and requires no hypotheses on R other
than Cohen-Macaulayness. The content of the theorem is that bounded
type and isolated singularity together imply finite type.

We begin by considering the case where R is complete and the re-
sidue field k is algebraically closed, and at the end of the section we
show how to relax these restrictions. When k is algebraically closed
and R is complete and has at most an isolated singularity, we have ac-
cess to the Auslander-Reiten quiver of R, as well as to faithful systems
of parameters. In this case, we will prove

15.21. THEOREM. Let (R,m,k) be a complete equicharacteristic CM
local ring with algebraically closed residue field k. Assume that R has
at most an isolated singularity. Let Γ be the AR quiver of R and Γ◦ a
non-empty connected component of Γ. If Γ◦ has bounded multiplicities,
that is, there exists an integer B such that e(M) 6 B for all [M] ∈ Γ◦,
then Γ=Γ◦ and Γ is finite. In particular R has finite CM type.

Let us be precise about what it means for Γ◦ to be a connected com-
ponent. We take it to mean that Γ◦ is closed under irreducible homo-
morphisms, meaning that if X −→ Y is an irreducible homomorphism
between indecomposable MCM modules, then [X ] ∈ Γ◦ if and only if
[Y ] ∈Γ◦.
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Here is the strategy of the proof. Assume that Γ◦ is a connected
component of Γ with bounded multiplicities. We will show that for any
[M] and [N] in Γ, if either of [M] or [N] is in Γ◦ then there is a path
from [M] to [N] in Γ, and furthermore that such a path can be chosen
to have bounded length. To do this, we assume no such path exists and
derive a contradiction to the Harada-Sai Lemma 15.19.

We fix notation as in Theorem 15.21, so that (R,m,k) is a complete
equicharacteristic CM local ring with algebraically closed residue field
k and with an isolated singularity. Let Γ be the AR quiver of R. By
Theorem 15.18 there exists a faithful system of parameters x for R.
We say that a homomorphism ϕ : M −→ N between R-modules is non-
trivial modulo x2 if ϕ⊗R R/(x2) 6= 0. Abusing notation slightly, we also
say that a path in Γ is non-trivial modulo x2 if the corresponding com-
position of irreducible maps is non-trivial modulo x2.

15.22. LEMMA. Fix a non-negative integer n. Let M and N be inde-
composable MCM R-modules and ϕ : M −→ N a homomorphism which
is non-trivial modulo x2. Assume that there is no directed path in Γ
from [M] to [N] of length < n which is non-trivial modulo x2. Then the
following two statements hold.

(i) There is a sequence of homomorphisms

M = M0
f1−−→ M1

f2−−→ ·· · fn−−→ Mn
g−−→ N

with each Mi indecomposable, each f i irreducible, and the com-
position gfn · · · f1 non-trivial modulo x2.

(ii) There is a sequence of homomorphisms

M h−−→ Nn
gn−−−→ Nn−1

gn−1−−−−→ ·· · g1−−−→ N0 = N

with each Ni indecomposable, each g i irreducible, and the com-
position g1 · · · gnh non-trivial modulo x2.

PROOF. We prove part (ii); the other half is similar.
If n = 0, then we may simply take h = ϕ : M −→ N. Assume there-

fore that n > 0, there is no directed path of length < n from [M] to
[N] which is non-trivial modulo x2, and that we have constructed a
sequence of homomorphisms

M h−−→ Nn−1
gn−1−−−−→ ·· · g1−−−→ N0 = N

with each Ni indecomposable, each g i irreducible, and the composition
g1 · · · gn−1h non-trivial modulo x2. We wish to insert an indecompos-
able module Nn into the sequence, extending it by one step. There are
two cases, according to whether or not Nn−1 is free.
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If Nn−1 is not free, then there is an AR sequence 0 −→ τ(Nn−1) i−→
E

p−−→ Nn−1 −→ 0 ending in Nn−1. Since there is no path from [M] to
[N] of length n−1, we see that h is not an isomorphism, so is not a
split surjection since M and Nn−1 are both indecomposable. Therefore
h factors through E, say as M α−−→ E

p−−→ Nn−1. Write E as a direct sum
of indecomposable MCM modules E = ⊕r

i=1 E i, and decompose α and
q accordingly, M

αi−−→ E
pi−−→ Nn−1. Each pi is irreducible by Proposi-

tion 13.16, and there must exist at least one i such that g1 · · · gn−1 piαi
is non-trivial modulo x2. Set Nn = E i and gn = pi, extending the se-
quence one step.

If Nn−1 is free, then Nn−1
∼= R, and the image of M is contained in

m since h is not an isomorphism. Let 0 −→ Y i−→ X
p−−→ m −→ 0 be a

minimal MCM approximation of m. (If dimR 6 1, we take X =m and
Y = 0.) The homomorphism h : M −→ m factors through X as M α−−→
X

p−−→ m. Decompose X = ⊕r
i=1 X i where each X i is indecomposable,

and write p =∑r
i=1 pi, where pi : X i −→m. By Proposition 13.18, each

composition X i
pi−−→m,→R is an irreducible homomorphism, and again

we may choose i so that the composition g1 · · · gn−1 piαi is non-trivial
modulo x2. �

15.23. LEMMA. Let Γ◦ be a connected component of the AR quiver
Γ, and assume that `(M/x2M)6m for every [M] in Γ◦. Let ϕ : M −→ N
be a homomorphism between indecomposable MCM R-modules which
is non-trivial modulo x2, and assume that either [M] or [N] is in Γ◦.
Then there is a directed path of length < 2m from [M] to [N] in Γ which
is non-trivial modulo x2. In particular, both [M] and [N] are in Γ◦ if
either one is.

PROOF. Set n = 2m, and assume that [N] is in Γ◦. If there is no
directed path of length < n from [M] to [N], then by Lemma 15.22
there is a sequence of homomorphisms

M h−−→ Nn
gn−−−→ Nn−1

gn−1−−−−→ ·· · g1−−−→ N0 = N

with each Ni indecomposable, each g i irreducible, and the compo-
sition g1 · · · gnh non-trivial modulo x2. Since Γ◦ is connected, each
[Ni] is in Γ◦, so that `(Ni/x2Ni) 6 m for each i. By the Harada-Sai
Lemma 15.19, g1 · · · gn is trivial modulo x2, a contradiction.

A symmetric argument using the other half of Lemma 15.22 takes
care of the case where [M] is in Γ◦. �

We are now ready for the proof of Brauer-Thrall I in the complete
case. Keep notation as in the statement of Theorem 15.21.
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PROOF OF THEOREM 15.21. We have e(M) 6 B for every [M] in
Γ◦. Choose t large enough that mt ⊆ (x2), where x is the faithful system
of parameters guaranteed by Theorem 15.18. Then (see Theorem A.21)
`(M/x2M)6 tdimRB for every [M] in Γ◦. Set m = tdimRB.

Let M be any indecomposable MCM module such that [M] is in
Γ◦. By NAK, there is an element z ∈ M \ x2M. Define ϕ : R −→ M by
ϕ(1) = z; then ϕ is non-trivial modulo x2. By Lemma 15.23, [R] is in
Γ◦, and is connected to [M] by a path of length < 2m in Γ◦.

Now let [N] be arbitrary in Γ. The same argument shows that
there is a homomorphism ψ : R −→ N which is non-trivial modulo x2,
whence [N] is in Γ◦ as well, connected to [R] by a path of length < 2m.
Thus Γ = Γ◦, and since Γ is a locally finite graph (Remark 13.19) of
finite diameter, Γ is finite. �

To complete the proof of Theorem 15.20, we need to know that
for R an excellent isolated singularity with perfect residue field, the
hypotheses ascend along a gonflement making the residue field al-
gebraically closed, and thence to the completion, and the conclusion
descends back down to R. We have verified most of these details in
previous chapters, and all that remains is to assemble the pieces.

PROOF OF BRAUER-THRALL I (THEOREM 15.20). Let R be as in
the statement of the theorem, so that R is excellent and equicharac-
teristic, with perfect residue field. If R has finite CM type, then R has
at most an isolated singularity by Theorem 7.12, and of course R has
bounded CM type.

For the converse, we may assume that dim(R) > 0, since by Theo-
rem 3.3 bounded and finite CM type are equivalent for Artinian rings.
Then R is reduced, by Proposition A.8. Let b bound the multiplic-
ities of the indecomposable MCM R-modules. Choose a gonflement
(R,m,k) −→ (S,n,K), where K is the algebraic closure of k. Consider
the flat local homomorphisms

(15.23.1) R −→ S −→ Sh −→ Ŝ .

By Propositions 10.15 and 10.7, Sh is excellent and has at most an
isolated singularity, and now Proposition 10.9 implies that Ŝ has at
most an isolated singularity.

Let N be an arbitrary indecomposable MCM Ŝ-module. Using
Propositions 10.5, 10.7 and 10.15, and Corollary 10.11, we see that
N is weakly extended from a MCM R-module M, say N ⊕ X ∼= Ŝ⊗R M.
Write M =V1⊕·· ·⊕Vt, where the Vi are indecomposable. Then N⊕X ∼=
(Ŝ ⊗R V1)⊕ ·· · ⊕ (Ŝ ⊗R Vt). By KRS, N | Ŝ ⊗R Vi for some i and hence
eS(N) 6 eS(Ŝ ⊗Vi). But eS(Ŝ ⊗R Vi) = eR(Vi) by Exercise 10.24. We
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have shown that b bounds the multiplicities of the indecomposable
MCM Ŝ-modules. Thus S has bounded CM type, and hence (Theo-
rem 15.21) finite CM type. Finally, Theorem 10.1 shows that R has
finite CM type. �

One cannot completely remove the hypothesis of excellence in The-
orem 15.20. For example, let S be any one-dimensional analytically
ramified local domain. It is known [Mat73, pp. 138–139] that there
is a one-dimensional local domain R between S and its quotient field
such that e(R) = 2 and R̂ is not reduced. Then R has bounded but
infinite CM type by Theorem 4.18, and of course R has an isolated
singularity.

§4. Brauer-Thrall II

Let (R,m,k) be a complete local ring with isolated singularity and
with algebraically closed residue field k. The second Brauer-Thrall
conjecture, transplanted to the context of MCM modules, states that
if R has infinite CM type then there is an infinite sequence of positive
integers n1 < n2 < n3 < . . . with the following property: for each i there
are infinitely many non-isomorphic indecomposable MCM R-modules
of multiplicity ni.

Dieterich [Die87] verified Brauer-Thrall II for hypersurface singu-
larities k[[x0, . . . , xd]]/( f ) where char(k) 6= 2. Popescu and Roczen gen-
eralized Dieterich’s results to excellent Henselian local rings [PR90]
and to characteristic two in [PR91].

In Chapter 4 we proved a strong version of Brauer-Thrall II for one-
dimensional rings. Here we give a less computational proof (with mild
restrictions). This proof uses an inductive step, due to Smalø [Sma80],
for concluding, from the existence of infinitely many indecomposable
modules of a given multiplicity, infinitely many of a higher multiplicity.
This inductive step works in any dimension.

Smalø’s theorem also confirms Brauer-Thrall II for isolated singu-
larities of uncountable CM type, as we point out at the end of the sec-
tion. Smalø’s result is quite general, and we feel it deserves to be better
known.

We need two lemmas to control the growth of multiplicity as one
walks through an AR quiver. The first is a general fact about Betti
numbers [Avr98, Lemma 4.2.7].

15.24. LEMMA. Let (R,m,k) be a CM local ring of dimension d and
multiplicity e, and let M be a finitely generated R-module. Then

µR(syzR
n+1(M))6 (e−1)µR(syzR

n (M))



§4. BRAUER-THRALL II 277

for all n > d−depth M.

PROOF. We may replace M by syzR
d−depth M(M) to assume that M

is MCM. We may also assume that the residue field k is infinite, by
passing if necessary to an elementary gonflement R′ = R[t]m[t], which
preserves the multiplicity of R and number of generators of syzygies
of M. In this case (see Appendix A, §2), there exists an R-regular and
M-regular sequence x = x1, . . . , xd such that e(R) = e(R/(x)) = `(R/(x)),
and we have µR(syzR

n (M)) = µR/(x)(syzR/(x)
n (M ⊗R R/(x))). We are thus

reduced to the case where R is Artinian of length e.
In a minimal free resolution F• of M, we have syzR

n+1(M)⊆mFn, so
that

(e−1)µR(syzR
n (M))= `(mFn)

> `(syzR
n+1(M))

>µR(syzR
n+1(M)) ,

for all n> 1. �

15.25. LEMMA. Let (R,m) be a complete CM local ring with alge-
braically closed residue field, and assume that R has an isolated sin-
gularity. Then there exists a constant c = c(R) such that if X −→ Y is
an irreducible homomorphism of MCM R-modules, then e(X )6 ce(Y )
and e(Y )6 ce(X ).

PROOF. Recall from Chapter 13 that the Auslander-Reiten trans-
late τ is given by τ(M)=HomR(redsyzR

d Tr M,ω), where ω is the canon-
ical module for R and d = dim(R). We first claim that

(15.25.1) e(τ(M))6 e(e−1)d+1 e(M) ,

where e = e(R) is the multiplicity of R. To see this, it suffices to prove
the inequality for e(syzR

d (Tr M)), since redsyz is a direct summand of
syz and dualizing into the canonical module preserves multiplicity. By
Lemma 15.24, we have only to prove that e(Tr M)6 e(e−1)e(M). Let
F1 −→ F0 −→ M −→ 0 be a minimal free presentation of M, so that
F∗

0 −→ F∗
1 −→Tr M −→ 0 is a free presentation of Tr M. Then

e(Tr M)6 e(F∗
1 )= e µR(syzR

1 (M))6 e(e−1)µR(M)6 e(e−1)e(M) ,

finishing the claim.
Now to the proof of the lemma. We may assume that X and Y are

indecomposable. First suppose that Y is not free. Then there is an AR
sequence

0−→ τ(Y )−→ E −→Y −→ 0
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ending in Y , and X is a direct summand of E by Proposition 13.16.
Then

e(E)= e(τ(Y ))+e(Y )

6 [e(e−1)d+1 +1]e(Y )

so e(X )6 [e(e−1)d+1 +1]e(Y ).
Now suppose that Y is free, so that Y ∼= R. Then X is a direct sum-

mand of the minimal MCM approximation E of the maximal ideal m
by Proposition 13.16, so e(X )6 e(E), and in particular e(X ) is bounded
in terms of e(R).

The other inequality is similar. �

15.26. THEOREM (Smalø). Let (R,m) be a complete CM local ring
with algebraically closed residue field, and assume that R has an iso-
lated singularity. Assume that {Mi | i ∈ I} is an infinite family of pair-
wise non-isomorphic indecomposable MCM R-modules of multiplicity
b. Then there exists an integer b′ > b, a positive integer t, and a sub-
set J ⊆ I with |J| = |I| such that there is a family

{
N j

∣∣ j ∈ J
}

of pair-
wise non-isomorphic indecomposable MCM R-modules of multiplicity
b′. Furthermore there exist non-zero homomorphisms M j −→ N j, each
of which is a composition of t irreducible homomorphisms.

PROOF. Set s = 2b −1. First observe that since the AR quiver of R
is locally finite, there are at most finitely many Mi such that there is
a chain of strictly fewer than s irreducible homomorphism starting at
Mi and ending at the canonical module ω. Deleting these indices i, we
obtain J′ ⊆ I.

Each Mi is MCM, so HomR(Mi,ω) is non-zero for each remaining
Mi. By NAK, there exists ϕ ∈HomR(Mi,ω) which is non-trivial modulo
x2. Hence by Lemma 15.22 there is a sequence of homomorphisms

Mi = Ni,0
f i,1
// Ni,1

f i,2
// · · · // Ni,s−1

f i,s
// Ni,s

g
// ω

with each Ni, j indecomposable, each f i, j irreducible, and the composi-
tion g i f i,s · · · f i,1 non-trivial modulo x2.

By the Harada-Sai Lemma 15.19, not all the Ni, j can have mul-
tiplicity less than or equal to b. So there exists J′′ ⊆ J′, of the same
cardinality, and t6 s such that e(Ni,t)> b for all i.

Applying Lemma 15.25 to the irreducible homomorphisms connect-
ing Mi to Ni,t, we find that

b < e(Ni,t)6 ct e(Ni,0)= ctb



§4. BRAUER-THRALL II 279

for some constant c depending only on R. There are thus only finitely
many possibilities for e(Ni.t) as i ranges over J′′, and we take J′′′ ⊆ J′′
such that e(Ni,t)= b′ > b for all i ∈ J′′′.

There may be some repetitions among the isomorphism classes of
the Ni,t. However, for any indecomposable MCM module N, there are
only finitely many M with chains of irreducible homomorphisms of
length t from M to N, so each isomorphism class of Ni,t occurs only
finitely many times. Pruning away these repetitions, we finally obtain
J = J′′′′ ⊆ I as desired. �

In Theorem 4.10 we proved a strong form of Brauer-Thrall II for the
case of a one-dimensional analytically unramified local ring (R,m,k).
Here we indicate how one can use Smalø’s theorem to give a much
less computational proof of strongly unbounded CM type when R is
complete and k is algebraically closed.

15.27. THEOREM. Let (R,m,k) be a complete reduced CM local ring
of dimension one with algebraically closed residue field k. Suppose
that R does not satisfy the Drozd-Roı̆ter conditions (DR1) and (DR2)
of Chapter 4. Then, for infinitely many positive integers n, there exist
|k| pairwise non-isomorphic indecomposable MCM R-modules of mul-
tiplicity n.

PROOF. It will suffice to show that R has infinitely many non-
isomorphic faithful ideals, for then an easy argument like that in Ex-
ercise 4.31 produces infinitely many non-isomorphic ideals that are
indecomposable as R-modules, and, consequently, infinitely many of
some fixed multiplicity. By Construction 4.1 it will suffice to produce
an infinite family of pairwise non-isomorphic modules Vt ,→ R/c over
the Artinian pair (R/c ,→ R/c). We follow the argument in the proof
of [Wie89, Proposition 4.2]. Using Lemmas 3.10 and 3.11 and Propo-
sition 3.12, we can pass to the Artinian pair A := (k ,→ D), where ei-
ther (i) dimk(D)> 4 or (ii) D ∼= k[x, y]/(x2, xy, y2). It is easy to see that
if U and V are distinct rings between k and D then the A-modules
U ,→ D and V ,→ D are non-isomorphic. Therefore we may assume
that there are only finitely many intermediate rings. The usual proof
of the primitive element theorem then provides an element α ∈ D such
that D = k[α]. This rules out (ii), so we may assume that dimk(D)> 4.

For each t ∈ k, let I t be the k-subspace of D spanned by 1 and
α+ tα2. By Exercise 15.37, there are infinitely many non-isomorphic
A-modules I t ,→ D as t varies over k. �

In higher dimensions, one cannot hope to prove the base case of
Brauer-Thrall II by constructing an infinite family of MCM ideals. At
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least for hypersurfaces, there are lower bounds on the ranks of stable
MCM modules (Corollary 15.29 below). These bounds depend on the
following theorem of Bruns [Bru81, Corollary 2]:

15.28. THEOREM (Bruns). Let R be a commutative Noetherian ring
and M a finitely generated R-module which is free of constant rank r.
Let N be a second syzygy of M, and set s = rank N. If M is not free, then
the codimension of the non-free locus of M is 6 r+ s+1. �

15.29. COROLLARY. Let (R,m) be a hypersurface ring, and suppose
that the singular locus of R is contained in a closed set of codimension
c. Let M be a non-zero stable MCM module of constant rank r. Then
r> 1

2 (c−1).

PROOF. Since R is a hypersurface and M is stable MCM, Proposi-
tion 8.6 says that the second syzygy of M is isomorphic to M. Moreover,
the non-free locus of M is contained in the singular locus of R by the
Auslander-Buchsbaum formula. Therefore c is less than or equal to
the codimension of the non-free locus of M. The inequality in Theo-
rem 15.28 now gives the inequality c6 2r+1. �

15.30. COROLLARY. Let (R,m) be a hypersurface ring, and assume
R is an isolated singularity of dimension d. Let M be a non-zero stable
MCM module of constant rank r. Then r> 1

2 (d−1). �

This bound is probably much too low. In fact, Buchweitz, Greuel
and Schreyer [BGS87] conjecture that r > 2d−2 for isolated hyper-
surface singularities. Still, the bound given in the corollary rules out
MCM ideals once the dimension exceeds three.

Suppose, for example, that R = C[[x0, x1, x2, x3, x4]]/(x4
0 + x5

1 + x2
2 +

x2
3 + x2

4). This has uncountable CM type, by the results of Chapters 9
and 14. Every MCM ideal of R, however, is principal, by the Corollary
above. On the other hand, since R has uncountable CM type there
must be some positive integer r for which there are uncountably many
indecomposable MCM modules of rank r. Of course this works when-
ever we have uncountable CM type:

15.31. PROPOSITION. Let (R,m,k) be a CM local ring with uncount-
able CM type. Then Brauer-Thrall II holds for R. �

Using the structure theorem for hypersurfaces of countable CM
type, we can recover Dieterich’s theorem [Die87], as long as the ground
field is uncountable:
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15.32. THEOREM (Dieterich). Let (R,m,k) be a complete hypersur-
face singularity which is an isolated singularity. Assume k is uncount-
able, algebraically closed, and of characteristic different from two. If R
has infinite CM type, then Brauer-Thrall II holds for R.

PROOF. Since R is an isolated singularity and does not have finite
CM type, Theorem 14.16 ensures that R has uncountable CM type. �

§5. Exercises

15.33. EXERCISE. Prove Lemma 15.12: For any ring Γ and any
quotient ring Λ = Γ/I, the annihilator AnnΓ I annihilates Ext1

Γ(Λ,K)
for every Γ-module K .

15.34. EXERCISE. Let R be a Noetherian ring and T a subring over
which R is finitely generated as an algebra. Prove that JT(R)⊆HT(R).

15.35. EXERCISE. Fill in the details of the proof of Theorem 15.18:
show by induction on j that there exist regular local subrings T1, . . . ,T j
and elements xi ∈ JTi (R) such that x1, . . . , x j is part of a system of pa-
rameters. For the inductive step, use prime avoidance.

15.36. EXERCISE. Suppose that x = x1, . . . , xd is a faithful system
of parameters in a local ring R. Prove that R has at most an isolated
singularity.

15.37. EXERCISE. Let k be an infinite field and D a k-algebra with
46 d := dimk(D)<∞. Assume there is an element α ∈ D such that D =
k[α]. For t ∈ k, let I t = k+k(α+ tα2), and consider the (k ,→ D)-modules
I t ,→ D. For fixed t ∈ k, show that there are at most two elements u ∈ k
for which Iu ,→ D and I t ,→ D are isomorphic as (k ,→ D)-modules. (It
is helpful to treat the cases d = 4 and d > 4 separately.)





CHAPTER 16

Finite CM Type in Higher Dimensions

The results of Chapters 3, 4, and 7 give clear descriptions of the
CM local rings of finite CM type in small dimension. For dimension
greater than two, much less is known. Gorenstein rings of finite CM
type are characterized by Theorem 9.15, but there are only two non-
Gorenstein examples of dimension greater than two in the literature.
In this chapter we describe these examples, and also present the theo-
rem of Eisenbud and Herzog that these examples, together with those
of the previous chapters, encompass all the homogeneous CM rings of
finite CM type.

§1. Two examples

We give in this section the two known examples of non-Gorenstein
Cohen-Macaulay local rings of finite CM type in dimension at least 3.
They are taken from [AR89]. We also quote two theorems from [AR89]
to the effect that each example is the only one of its kind.

First we strengthen Brauer-Thrall I, Theorem 15.21, slightly for
non-Gorenstein rings.

Let (R,m,k) be a complete equicharacteristic CM local ring with
algebraically closed residue field k, and assume that R has an isolated
singularity. It follows from Theorem 15.21 that if C = {M1, . . . , Mr} is
a finite set of indecomposable MCM R-modules which is closed un-
der irreducible homomorphisms (i.e. for an irreducible homomorphism
X −→ Y between indecomposable MCM modules, we have X ∈ C if
and only if Y ∈ C ), then R has finite CM type and C contains all
the indecomposables. When R is not Gorenstein, a slightly weaker
condition suffices. Say that a set C of indecomposable MCM mod-
ules is closed under AR sequences if for each indecomposable non-
free module M ∈ C , and each indecomposable module N ∈ C not iso-
morphic to the canonical module ω, all indecomposable summands
of the terms in the AR sequences 0 −→ τ(M) −→ E −→ M −→ 0 and
0−→ N −→ E′ −→ τ−1(N)−→ 0 are in C .

16.1. PROPOSITION. Let (R,m,k) be a complete equicharacteristic
CM local ring with algebraically closed residue field k and with an

283
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isolated singularity. Assume that R is not Gorenstein. If C is a set of
indecomposable MCM R-modules which contains R and the canonical
module ω, and is closed under AR sequences, then C is closed under
irreducible homomorphisms. If in addition C is finite, then R has finite
CM type.

PROOF. The last sentence follows from the ones before by Theo-
rem 15.21.

Let f : X −→Y be an irreducible homomorphism with X and Y in-
decomposable MCM R-modules. Assume that Y ∈C ; the other case is
dual. We may assume that X 6∼= ω. If Y 6∼= R, then there is an AR se-
quence ending in Y : 0 −→ τY −→ E

p−−→ Y −→ 0. By Proposition 13.16,
f is a component of p, so in particular X | E. Since C is closed under
AR sequences, X ∈C .

If Y ∼= R, then Y 6∼=ω. There is thus an AR sequence beginning in Y :
0 −→ Y −→ E −→ τ−1Y −→ 0. By Exercise 16.8, f : X −→ Y induces an
irreducible homomorphism τ−1 f : τ−1X −→ τ−1Y . Since τ−1Y 6∼= R, the
first case implies that τ−1X ∈C , whence X ∈C and we are done. �

16.2. EXAMPLE. Let S = k[[x, y, z,u,v]] and put R = S/(yv− zu, yu−
xv, xz − y2), where k is an algebraically closed field of characteristic
different from 2. Then R has finite CM type.

Define matrices over S

ψ= [
yv− zu yu− xv xz− y2] and ϕ=

x y
y z
u v

 ,

so that the entries ofψ are the 2×2 minors of ϕ, and we have R = cokψ.
Then the S-free resolution of R is a Hilbert-Burch type resolution

0 // S(2) ϕ
// S(3) ψ

// S // R // 0 .

In particular, R has depth 3. The regular sequence x, v, z − u is a
system of parameters, so R is CM. Since the characteristic of k is not
2, the Jacobian criterion (Theorem 15.17) implies that R is an isolated
singularity, whence in particular a normal domain.

The canonical module ω = Ext2
S(R,S) is presented over R by the

transpose of the matrix ϕ. This is easily checked to be isomorphic to
the ideal (u,v). (The natural map from ω to (−v,u) is surjective and
has kernel of rank zero, so is an isomorphism.)

Set I = (x, y,u) and J = (x, y, z). Each is an ideal of height one in
R, with quotient a power series ring of dimension 2, so is a MCM R-
module. We also have I ∼= redsyzR

1 (ω) and J ∼= I∨ = HomR(I,ω). By
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Exercise 16.10, we have I ∼= ω∗ as well. Therefore, in the class group
Cl(R), we have [ω]=−[I].

Let us compute the AR translates

τ(−)= redsyzR
3 (Tr(−))∨ ∼= (redsyzR

1 (−∗))∨ ,

by (12.3.2). We have

τ(I)= redsyzR
1 (I∗)∨ ∼= redsyzR

1 (ω)∨ ∼= I∨ = J .

Similarly
τ(ω)= redsyzR

1 (ω∗)∨ ∼= redsyzR
1 (I)∨ .

Set M = redsyzR
1 (I)∨, a MCM R-module of rank 2 which is indecompos-

able by Proposition 13.4, so that τ(ω) = M. To finish the AR trans-
lates, note that J∗ is isomorphic to the ideal (x,u2) and that J ∼=
redsyzR

1
(
(x,u2)

)
, whence τ(J)= J∨ ∼= I. Finally τ(M)= (I∗)∨ = R.

The syzygy module M∨ = redsyzR
1 ((x, y,u)) is generated by the fol-

lowing six elements of R(3): the Koszul relations

z1 =
 0
−u
y

 , z2 =
−u

0
x

 , z3 =
−y

x
0

 ,

and the three additional relations

z4 =
 0
−v
z

 , z5 =
−v

0
y

 , z6 =
−z

y
0

 .

Define homomorphisms f : ω−→ M∨, g : ω−→ M∨, and h : I −→ M∨ by

f (u)= z1 , f (v)= z4 ,
g(u)= z2 , g(v)= z5 ,

h(x)= z3 , h(y)= z6, h(u)= (−v u 0
)T

One checks easily that f , g, and h are well-defined, and that the sum
( f , g,h) : ω(2)⊕ I −→ M∨ is surjective. Letting H be the kernel, we have,
in the divisor class group Cl(R),

[H]= 2[ω]⊕ I − [M∨]=−[I]− [redsyzR
1 (I)]=−[I]+ [I]= 0 .

Moreover, [H] has rank 1 and therefore is isomorphic to R. Thus we
have a non-split short exact sequence

(16.2.1) 0−→ R −→ω(2) ⊕ I −→ M∨ −→ 0 .

Dualizing gives another non-split short exact sequence

(16.2.2) 0−→ M −→ R(2) ⊕ J −→ω−→ 0 .
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To show that these are both AR sequences, it suffices to prove that
the stable endomorphism ring EndR(ω) is isomorphic to k. Indeed, in
that case Proposition 13.7 reads

Ext1
R(ω,τ(ω))∼=HomR(EndR(ω),ER(k))= k

so that any non-split extension in Ext1
R(ω, M) represents the AR se-

quence.
Since ωI ′ = (x, y, z,u,v) for I ′ = ( x

u , y
u ,1) ∼= I, Exercise 16.9 implies

that multiplication by any r ∈ (x, y, z,u,v) factors through a free mod-
ule. Thus EndR(ω) = k, and both (16.2.1) and (16.2.2) are AR se-
quences.

For the AR sequence ending in J, note that we already have an
arrow M −→ J in the AR quiver. The AR sequence ending in J has
rank-one modules on both ends, so the middle term has rank two. The
middle term is thus isomorphic to M, and we have the AR sequence

0−→ I −→ M −→ J −→ 0 .

We also have an arrow I −→ M∨, so we must have M ∼= M∨. Finally, the
AR quiver is already known to contain arrows J −→ω and R −→ I, so
the AR sequence ending in I is

0−→ J −→ R⊕ω−→ I −→ 0 .

The set {R,ω, I, J, M} is thus closed under AR sequences, so that R has
finite CM type by Proposition 16.1, and the AR quiver looks like the
one below.

ω

xx

�� ��

I

��

R

99

//
//

J

ee

FF

M

ee

XX
XX

The ring of Example 16.2 is an example of a scroll. Let (m1, . . . ,mr)
be positive integers with m1>m2> · · ·>mr, and consider a matrix of
indeterminates

X =
[

x1,0 · · · x1,m1−1
x1,1 · · · x1,m1

· · · xr,0 · · · xr,mr−1
xr,1 · · · xr,mr

]
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over an infinite field k. The quotient ring R = k[[xi j]]
/

I2(X ) by the ideal
of 2×2 minors of X is called a (complete) scroll of type (m1, . . . ,mr).
Replacing the power series ring k[[xi j]] by the polynomial ring k[xi j]
gives the graded scrolls. In either case, R is a CM normal domain of
dimension r+1 and has an isolated singularity.

If r = 1, then the complete scroll R is isomorphic to the invariant
ring k[[um,um−1v, . . . ,vm]], so has finite CM type by Theorem 6.3. If R
has type (1,1), then R ∼= k[[x, y, z,w]]/(xy− zw) is a three-dimensional
(A1) hypersurface singularity, so again has finite CM type. The ring of
Example 16.2 is of type (2,1). These are the only examples with finite
CM type:

16.3. THEOREM (Auslander-Reiten). Let R be a complete or graded
scroll of type different from (m), (1,1), and (2,1). Then R has infinite
CM type. �

Auslander and Reiten prove Theorem 16.3 by constructing an infi-
nite family of rank-two graded MCM modules over the graded scrolls
k[xi j]

/
I2(X ). For example, assume that R is a graded scroll of type

(n,1), with n > 3. Then R is the quotient of the polynomial ring
k[x0, . . . , xn,u,v] by the 2×2 minors of the matrix(

x0 · · · xn−1 u
x1 · · · xn v

)
so is a three-dimensional normal domain. Set A = (x2

0, x0x1, . . . , x0xn)
and B = (x2

0, x0x1, . . . , x0xn−1, x0u). Then both A and B are indecompos-
able MCM R-modules of rank one. For λ ∈ k, let Mλ be the submodule
of R(2) generated by the vectors a j = (x0x j−1,0) for 1 6 j 6 n, an+1 =
(x0u,0), a j = (0, x0x j−n−2) for n+26 j6 2n, a2n+1 = (x0u, x0xn−1), and

a2n+2 = (x1u+λx0v, x0xn). Then we have a natural inclusion B
β−−→ Mλ

and a surjection Mλ
α−−→ A.

Auslander and Reiten show that for each λ the sequence 0 −→
B

β−−→ Mλ
α−−→ A −→ 0 is exact, so that Mλ is MCM. Furthermore an

isomorphism f : Mλ −→ Mµ induces an isomorphism between the cor-
responding extensions, which forces λ= µ. The modules {Mλ}λ∈k thus
form an infinite family of rank-two MCM modules.

The case of type (m1,m2, . . . ,mr) with m2 +·· ·+mr > 2 is handled
similarly.

Here is the other example of this section.

16.4. EXAMPLE. Let R be the invariant ring of Example 5.24, so
that k is a field of characteristic different from 2, S = k[[x, y, z]], G is
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the cyclic group of order 2 with the generator acting on V = kx⊕ky⊕kz
by negating each variable, and R = SG = k[[x2, xy, xz, y2, yz, z2]]. Then
R has finite CM type.

Let k denote the trivial representation of G, and k− the other ir-
reducible representation. Note that V ∼= k−(3). The Koszul complex

0−→ S⊗k

3∧
V −→ S⊗k

2∧
V −→ S⊗k V −→ S −→ k −→ 0

resolves k both over S and over the skew group ring S#G. Replacing
V by k−(3) and writing S− = S⊗k k−, we get

(16.4.1) 0−→ S− −→ S(3) −→ S−(3) −→ S −→ k −→ 0 .

Tensor with k− to obtain an exact sequence

(16.4.2) 0−→ S −→ S−(3) −→ S(3) −→ S− −→ k− −→ 0 .

As in Example 5.24, we find that the fixed submodule S−G is the R-
submodule of S generated by (x, y, z). In particular, we have S ∼= SG ⊕
S−G as R-modules. Since S is Gorenstein, we must have HomR(S,ω)∼=
S, where ω is the canonical module for R. In particular R ⊕S−G ∼=
ω⊕ (S−G)∨. As R is not Gorenstein, this implies that ω∼= S−G .

Applying (−)G to the resolution of k− gives an exact sequence of
R-modules

0−→ R −→ω(3) −→ R(3) −→ω−→ 0 .

Set M = redsyzR
1 (ω), the kernel in the middle of this sequence, so that

we have two short exact sequences

0−→ R −→ω(3) −→ M −→ 0 ,

0−→ M −→ R(3) −→ω−→ 0 .

By the symmetry of the Koszul complex, the canonical dual of the first
sequence is isomorphic to the second, so that M∨ ∼= M. Furthermore
the square of the fractional ideal ω = (x, y, z)R is isomorphic to the
maximal ideal of R, so that ω∗ =ω. These allow us to compute the AR
translates

τ(ω)= (redsyzR
1 (ω∗))∨ ∼= M∨ ∼= M

and
τ(M)= (redsyzR

1 (M∗))∨ ∼=ω∨ = R .

As in the previous example, the fact that ω2 = (x2, xy, xz, y2, yz, z2) is
the maximal ideal of R implies that EndR(ω)∼= k, so that Ext1

R(ω, M) is
one-dimensional and

0−→ M −→ R(3) −→ω−→ 0
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is the AR sequence for ω. Dualizing gives

0−→ R −→ω(3) −→ M −→ 0 ,

the AR sequence for M.
The set of MCM modules {R,ω, M} is thus closed under AR se-

quences, so that R has finite CM type by Proposition 16.1, and the
AR quiver is below.

R ////// ω

�� ����

M

XXXX XX

As with the earlier example, the ring of Example 16.4 is the only
one of its kind with finite CM type. The proof is more involved than in
the earlier case; see [AR89].

16.5. THEOREM (Auslander-Reiten). Let S = k[[x1, . . . , xn]], where k
is an algebraically closed field and n> 3. Let G be a finite non-trivial
group acting faithfully on S, such that |G| is invertible in k. Then the
invariant ring R = SG is of finite CM type if and only if n = 3 and G is
the group of order two, where the generator sends each variable to its
negative. �

§2. Classification for homogeneous CM rings

Together with the results of previous chapters, the examples of the
previous section exhaust the known CM complete local rings of finite
CM type. There is no complete classification known. For homogeneous
CM rings, however, there is such a classification, due to Eisenbud and
Herzog [EH88].

Let k be an algebraically closed field of characteristic zero, and
let R =⊕∞

n=0 Rn be a positively graded k-algebra, generated in degree
one and with R0 = k. We call such an R a homogeneous ring. We
further say that a CM homogeneous ring R has finite CM type if, up
to isomorphism and shifts of the grading, there are only finitely many
graded MCM R-modules.

16.6. THEOREM (Eisenbud-Herzog). Let R be a CM homogeneous
ring. Then R has finite CM type if and only if R is isomorphic to one of
the rings in the following list.

(i) k[x0, . . . , xn] for some n> 0;
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(ii) k[x0, . . . , xn]/(x2
0 +·· ·x2

n) for some n> 0;
(iii) k[x]/(xm) for some m> 1;
(iv) k[x, y]/(xy(x+ y)), a graded (D4) hypersurface singularity;
(v) k[x, y, z]/(xy, yz, xz);

(vi) k[x0, . . . , xm]
/

I2
[ x0 ··· xm−1

x1 ··· xm

]
, a graded scroll of type (m) for some

m> 1;
(vii) k[x, y, z,u,v]

/
I2

[ x y u
y z v

]
, a graded scroll of type (2,1); and

(viii) k[x, y, z,u,v,w]
/

I2(A), where A is the generic symmetric 3× 3
matrix

A =
x y z

y u v
z v w

 .

The rings in (vii) and (viii) are homogeneous versions of the rings
in Examples 16.2 and 16.4. In particular

k[x, y, z,u,v,w]
/

I2(A) ∼= k[x2, xy, xz, y2, yz, z2]

as non-homogeneous rings, though the ring on the right is not gener-
ated in degree one.

The classification follows from verifying Conjecture 7.21 for CM
homogeneous domains:

16.7. THEOREM. Let R be a CM homogeneous domain of finite CM
type. Then for any maximal regular sequence x of elements of degree
1 in R, the quotient R′ = R/(x) satisfies dimk R′

n 6 1 for all n > 2. In
particular, if R is not Gorenstein then R has minimal multiplicity, i.e.

e(R)=µR(m)−dimR+1 ,

where m=⊕∞
n=1 Rn is the irrelevant maximal ideal of R.

Artinian homogeneous rings satisfying the condition dimk R′
n 6 1

for all n> 2 are called stretched [Sal79]. Equivalently, Re−t 6= 0, where
e = e(R) is the multiplicity and t = dimk R1 is the embedding dimension
of R.

PROOF OF THEOREM 16.6, ASSUMING THEOREM 16.7. Assume
R is not the polynomial ring. If R has dimension zero, then by Theo-
rem 3.3 it is a principal ideal ring, so isomorphic to k[x]/(xm) for some
m> 1. If dimR = 1, then by the graded version of Theorem 4.13 R is
a finite birational extension of an ADE hypersurface singularity; the
only homogeneous rings among these are (ii) with n = 1, (iv), and (v).

Now assume that R has dimension at least 2. If R is Gorenstein,
then by Theorem 9.16 it is an ADE hypersurface singularity of mul-
tiplicity 2. Since R is homogeneous, this implies that R is the (A1)
hypersurface of (ii). Thus we may assume that R is not Gorenstein.
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By Theorem 7.12, R is an isolated singularity. In particular, by
Serre’s criterion (Proposition A.9) R is a normal domain and has mini-
mal multiplicity by Theorem 16.7. The homogeneous domains of min-
imal multiplicity are classified by the Del Pezzo-Bertini Theorem (see
for example [EH87]). The ones with isolated singularities are

(a) (A1) hypersurface rings k[x0, . . . , xn]/(x2
0 +·· ·+ x2

n);
(b) graded scrolls of arbitrary type (m1, . . . ,mr); and
(c) the ring of (viii).

Each ring in the first and third classes has finite CM type, while the
only graded scrolls of finite CM type are those of type (m), (1,1) (also
an (A1) hypersurface), and (2,1) by Theorem 16.3. �

We sketch the proof that CM homogeneous rings of finite CM type
are stretched. Let x = x1, . . . , xd be a maximal regular sequence of ele-
ments of degree one in R, set R′ = R/(x), and assume that dimk R′

c >
2 for some c > 2. For each u ∈ R′

c, let Lu = R′/(u), and set Mu =
redsyzR

d (Lu). Then each Mu is a graded MCM R-module. Eisenbud
and Herzog show:

(a) there is an upper bound on the ranks of the Mu;
(b) each Mu has a unique (up to scalar multiple) generator fu of

degree d, and all other generators have degree > d; and
(c) if we denote by fu the image of fu in Mu/xMu, then AnnR( fu) =

AnnR(Lu).

See the Exercises for proofs of these assertions. Assuming them, we
can show that R is of infinite CM type. Indeed, if Mu ∼= Mu′ for u,u′ ∈
R′

c, then Mu/xMu ∼= Mu′ /xMu′ , via an isomorphism taking R fu to R fu′ .
It follows that the annihilators of Lu and Lu′ are equal, and in particu-
lar (u)= (u′) as ideals of R′. But since dimk R′

c> 2, there are infinitely
many ideals of the form (u) for u ∈ R′

c. The bound on the ranks of the
Mu thus implies that R has infinite CM type.

§3. Exercises

16.8. EXERCISE. In the notation of Proposition 16.1, let 0−→ N −→
E −→ τ−1N −→ 0 be an AR sequence and f : N −→ Z a homomorphism
between indecomposable MCM modules with Z 6∼=ω. Prove that there
is an induced homomorphism τ−1 f : τ−1N −→ τ−1Z, and that τ−1 f is
irreducible if f is.

16.9. EXERCISE. Let R be a Noetherian domain and I an ideal of
R. Assume that there is a fractional ideal J of R such that IJ ⊆ R.
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Show that multiplication by an element r ∈ IJ, as a homomorphism
I −→ I, factors through a free R-module.

16.10. EXERCISE. Let L = (a,b) be a two-generated ideal of a ring
R. Assume L contains a non-zerodivisor, and let L−1 = {α ∈ K | αL ⊆ R},
where K is the total quotient ring. Prove that there is a short exact

sequence 0 −→ L−1

[
b−a

]
−−−−→ R(2) [a b]−−−→ L −→ 0, so that L−1 is isomorphic

to syzR
1 (L). Prove that L−1 ∼= L∗.

16.11. EXERCISE. In the setup of the proof of Theorem 16.7, prove
item (a), that the ranks of the modules Mu are bounded, by showing
that the lengths of Lu are bounded and that

rank(redsyzd
R(L))6 `(L)rank(redsyzR

d (k))

for a module L of finite length.

16.12. EXERCISE. Prove (b) from the proof of Theorem 16.7 by con-
structing a comparison map between the R-free resolution F• of Lu
and the Koszul complex K• on the regular sequence x. Show by induc-
tion on i that the induced maps K i/mRK i −→ Fi/mRFi are all injective,
so that K• is a direct summand of F•. Finally, show that the minimal
generators of the quotient Fi/K i are all in degrees > i.

16.13. EXERCISE. Continuing the notation of Exercise 16.12, prove
that the kernel of the map Mu/xMu −→ Fd−1/xFd−1 is isomorphic to
the dth Koszul homology of x on Lu, which is Lu. Conclude that the
generator fu of Kd/xKd has annihilator equal to that of Lu.



CHAPTER 17

Bounded CM Type

In this chapter we classify the complete equicharacteristic hyper-
surface rings of bounded CM type with residue field of characteristic
not equal to 2. It is an astounding coincidence that the answer turns
out to be precisely the same as in Chapter 14: The hypersurface rings
of bounded but infinite type are the (A∞) and (D∞) hypersurface sin-
gularities in all positive dimensions. Note that the families of ideals
showing (countable) non-simplicity in Lemma 9.3 for certain classes
of hypersurface rings do not give rise to indecomposable modules of
large rank; thus there does not seem to be a way to use the results of
Chapter 14 to demonstrate unbounded CM type directly.

We also classify the one-dimensional complete CM local rings con-
taining an infinite field and having bounded CM type. There is only
one additional isomorphism type, which we have seen already in Ex-
ample 14.23. The explicit classification, together with the results of
Chapter 2, allows us to show that bounded type descends from the
completion in dimension one.

§1. Hypersurface rings

To classify the complete hypersurface rings of bounded CM type,
we must use Knörrer’s results from Chapter 8 to reduce the problem
to the case of dimension one. Recall (Definition 15.2) that bounded CM
type was defined in terms of multiplicities of indecomposable MCM
modules. It will be more convenient in what follows to find bounds on
the minimal number of generators of MCM modules; luckily, this is the
same as bounding their multiplicity. We leave the proof of this fact as
an exercise (Exercise 17.12).

17.1. LEMMA. Let A be a CM local ring. Then R has bounded CM
type if and only if there is an integer b such that µR(M)6 b for each
indecomposable MCM R-module M. �

17.2. PROPOSITION. Let R = S/( f ) be a complete equicharacteristic
hypersurface singularity, where S = k[[x0, . . . xd]] and f is a non-zero
non-unit of S. Set R# = S[z]/( f + z2), the double branched cover of R.

293
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(i) If R] has bounded CM type, then R has bounded CM type.
(ii) If the characteristic of k is not 2, then the converse holds as well.

More precisely, if µR(M)6 B for each indecomposable MCM R-
module, then µR](N) 6 2B for each indecomposable MCM R]-
module N.

PROOF. Assume that R] has bounded CM type, and let B bound
the minimal number of generators of MCM R]-modules. Let M be an
indecomposable non-free MCM R-module. Then by Proposition 8.15
M][ ∼= M ⊕ syzR

1 (M), so M is a direct summand of M][. Decompose
M] into indecomposable MCM R]-modules, M] ∼= N1 ⊕ ·· · ⊕ Nt. Then
M][ ∼= N1

[⊕·· ·⊕Nt
[, and by KRS M is a direct summand of some N j

[.
Since µR(N j

[)=µR](N j) for each j, we have µR(M)6B.
For the converse, assume that µR(M)6B for every indecomposable

MCM R-module M, and let N be an indecomposable non-free MCM
R]-module. By Proposition 8.18, N[] ∼= N ⊕ syzR]

1 (N). Decompose N[

into indecomposable MCM R-modules, N[ ∼= M1 ⊕·· ·⊕Ms. Then N[] ∼=
M1

]⊕·· ·⊕Ms
]. By KRS again, N is a direct summand of some M j

]. It
will suffice to show that µR](M j

])6 2B for each j.
By (ii) of Lemma 8.17, M j is stable, and we have

µR](M]
j)=µR(M j

][)=µR(M j)+µR(syzR
1 (M))

by Proposition 8.15. But since M j is a MCM R-module, all of its Betti
numbers are equal to µR(M j) by Proposition 8.6. Thus µR(M j

][) =
2µR(M j) 6 2B. If, on the other hand, M j = R, then M j

] ∼= R], and
so µR](M j

])= 1. �

Our next concern is to show that a hypersurface ring of bounded
CM type has multiplicity at most two, as long as the dimension is at
least two. This is a corollary of the following impressive theorem due
to Kawasaki [Kaw96, Theorem 4.1], proven originally in the graded
case by Herzog and Sanders [HS88]. (A similar result was obtained by
Dieterich [Die87] using a theorem on the structure of the AR quiver of
a complete isolated hypersurface singularity.) Recall that an abstract
hypersurface ring is a Noetherian local ring (A,m) such that the m-adic
completion Â is isomorphic to B/( f ) for some regular local ring B and
non-unit f .

17.3. THEOREM. Let (A,m) be an abstract hypersurface ring of di-
mension d. Assume that the multiplicity e = e(A) is greater than 2.
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Then for each n > e, the module syzA
d+1(A/mn) is indecomposable and

µR

(
syzA

d+1
(
A/mn))

>

(
d+n−1

d−1

)
.

�

We omit the proof. Putting Kawasaki’s theorem together with Her-
zog’s Theorem 9.15, we have the following result.

17.4. PROPOSITION. Let (R,m,k) be a Gorenstein local ring of di-
mension at least two, and assume that R has bounded CM type. Then
R is an abstract hypersurface ring of multiplicity at most 2. �

When the hypersurface ring in Proposition 17.4 is complete and
has an algebraically closed coefficient field of characteristic other then
2, we can show by the same arguments as in Chapter 9 that it is an
iterated double branched cover of a one-dimensional hypersurface ring
of bounded type.

17.5. THEOREM. Let k be an algebraically closed field of charac-
teristic not equal to 2, and let R = k[[x0, . . . , xd]]/( f ), where f is a non-
zero non-unit of the formal power series ring and d > 2. Then R has
bounded CM type if and only if R ∼= k[[x, . . . , xd]]/(g+ x2

2 + ·· · + x2
d) for

some non-zero g ∈ k[[x0, x1]] such that k[[x0, x1]]/(g) has bounded CM
type. �

Notice that assumption that g be non-zero is essential, in view of
Proposition 3.4.

§2. Dimension one

The results of the previous section reduce the problem of classify-
ing hypersurface rings of bounded CM type to dimension one. In this
section we will deal with those one-dimensional hypersurface rings, as
well as the case of non-hypersurface rings of dimension one.

Our problem breaks down according to the multiplicity of the ring.
Recall from Theorem 4.18 that over a one-dimensional CM local ring
of multiplicity 2 or less, every MCM R-module is isomorphic to a direct
sum of ideals of R, whence R has bounded CM type. If on the other
hand R has multiplicity 4 or more, then by Proposition 4.3 R has an
overring S with µR(S) > 4, and then we may apply Theorem 4.2 to
obtain an indecomposable MCM module of constant rank n for every
n> 1.

Now we address the troublesome case of multiplicity three for com-
plete equicharacteristic hypersurface rings. Let R = k[[x, y]]/( f ), where
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k is a field and f ∈ (x, y)3 \ (x, y)4. If R is reduced, we know by Theo-
rem 4.10 that R has bounded CM type if and only if R has finite CM
type, that is, if and only if R satisfies the condition

(DR2) mR+R
R is cyclic as an R-module.

Hence we focus on the case where R is not reduced. Our strategy will
be to build finite birational extensions S of R satisfying the hypothesis
of Theorem 4.2: that µR

(
mS+R

R
)
> 2, or equivalently µR

(
mS
m

)
> 2.

17.6. THEOREM. Let R = k[[x, y]]/( f ), where k is a field and f is a
non-zero non-unit of the formal power series ring k[[x, y]]. Assume that

(i) e(R)= 3;
(ii) R is not reduced; and

(iii) R 6∼= k[[x, y]]/(x2 y).

For each positive integer n, R has an indecomposable MCM module of
constant rank n.

PROOF. We know f has order 3 and that its factorization into ir-
reducibles has a repeated factor. Thus, up to a unit, we have either
f = g3 or f = g2h, where g and h are irreducible elements of k[[x, y]] of
order 1, and, in the second case, g and h are relatively prime. After a
k-linear change of variables we may assume that g = x.

In the second case, if the leading form of h is not a constant multi-
ple of x, then by another change of variable [ZS75, Cor. 2, p. 137] we
may assume that h = y. This is the case we have ruled out in (iii).

Suppose now that the leading form of h is a constant multiple of
x. By Corollary 9.6 to the Weierstrass Preparation Theorem, there
exist a unit u and a non-unit power series q ∈ k[[y]] such that h =
u(x+q). Moreover, q ∈ y2k[[y]] (since the leading form of h is a constant
multiple of x). In summary, there are two cases to consider:

(a) f = x3.
(b) f = x2(x+ q) for some 0 6= q ∈ y2k[[y]].

Let m= (x, y) be the maximal ideal of R. We must show that R has
a finite birational extension S such that µR(S) = 3 and mS/m is not
cyclic as an R-module. We sketch the arguments, leaving the details
to the reader.

In case (a) we put S = R
[

x
y2

]
= R +R x

y2 +R x2

y4 . Clearly µR(S) = 3,

and one checks that mS
m2S+m is two-dimensional over R/m.

Assume now that we are in case (b). One can argue by descending
induction that it suffices to consider the case where q has order 2 in
k[[y]]. Put u = x

y2 , v = x2+qx
y5 , and S = R[u,v]. Once again this can be
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seen to satisfy the assumptions of Theorem 4.2, and this finishes the
proof. �

The argument in the proof of Theorem 17.6 does not apply to the
(D∞) hypersurface singularity R = k[[x, y]]/(x2 y) ∼= k[[u,v]]/(u2v− u3).
One adjoins the idempotent u2

v2 to obtain a ring isomorphic to k[[v]]×
k[[u,v]]/(u2), whose integral closure is k[[v]]×⋃∞

n=1 R
[ u

vn

]
. From this

information one can easily check that mS/m is a cyclic R-module for
every finite birational extension S of (R,m), so we cannot apply Theo-
rem 4.2. However, the calculations in Chapter 14 do indeed verify that
the one-dimensional (A∞) and (D∞) hypersurface rings have bounded
type. Combining this with Theorem 17.6, we have a complete classi-
fication of the complete one-dimensional equicharacteristic hypersur-
face rings of bounded CM type.

17.7. THEOREM. Let k be an arbitrary field, and let R = k[[x, y]]/( f )
be a complete hypersurface ring of dimension one, where f is a non-zero
non-unit. Then R has bounded but infinite CM type if and only if R is
isomorphic either to the (A∞) singularity or to the (D∞) singularity.

Further, if R has unbounded CM type, then R has, for each positive
integer r, an indecomposable MCM module of constant rank r. �

Turning now to the non-hypersurface situation in multiplicity 3,
we have the following structural result for the relevant rings.

17.8. LEMMA. Let (R,m,k) be a one-dimensional local CM ring with
k infinite, and suppose e(R) = µR(m) = 3. Let N be the nilradical of R.
Then:

(i) N2 = 0.
(ii) µR(N)6 2.

(iii) If µR(N)= 2, then m is generated by three elements u, v, w such
that m2 =mu and N = Rv+Rw.

(iv) If µR(N)= 1, then m is generated by three elements u, v, w such
that m2 =mu, N = Rw, and vw = w2 = 0.

PROOF. Since the residue field of R is infinite, we can find a mini-
mal reduction for m, that is, a non-zerodivisor u ∈m such that mn+1 =
umn for all n À 0. Now, using the formula

(17.8.1) µR(J)6 e(R)−e(R/J)

for an ideal J of height 0 in a one-dimensional CM local ring R (The-
orem A.29(ii)), it is straightforward to show (i) and (ii). The other two
assertions are easy as well. �
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17.9. THEOREM. Let k be an infinite field. The following is a com-
plete list, up to k-isomorphism, of the complete, equicharacteristic, CM
local rings of dimension one with bounded but infinite CM type and
with residue field k:

(i) the (A∞) hypersurface singularity k[[x, y]]/(x2) ;
(ii) the (D∞) hypersurface singularity k[[x, y]]/(x2 y) ;

(iii) the endomorphism ring E of the maximal ideal of the (D∞) sin-
gularity, which satisfies

E ∼= k[[x, y, z]]/(yz, x2 − xz, xz− z2)∼= k[[a,b, c]]/(ab,ac, c2) .

Moreover, if (R,m,k) is a one-dimensional, complete, equicharacteristic
CM local ring and R does not have bounded CM type, then R has,
for each positive integer r, |k| pairwise non-isomorphic indecomposable
MCM modules of constant rank r.

PROOF. The (A∞) and (D∞) hypersurface rings have bounded but
infinite CM type by the calculations in Chapter 14. In Example 14.23,
we showed that E has the presentations asserted above, and that E
has countable CM type. More precisely, we used Lemma 4.9 to see that
the indecomposable MCM E-modules are precisely the non-free inde-
composable MCM modules over the (D∞) hypersurface ring, whence E
has bounded but infinite CM type as well.

To prove that the list is complete and to prove the “Moreover”
statement, assume now that (R,m,k) is a one-dimensional, complete,
equicharacteristic CM local ring with k infinite, and that R has infinite
CM type but does not have indecomposable MCM modules of arbitrar-
ily large constant rank. We will show that R is isomorphic to one of
the rings in the statement of the Theorem. As above, we proceed by
building finite birational extensions of R to which we may apply The-
orem 4.2.

If R is a hypersurface ring, Theorem 17.7 tells us that R is iso-
morphic to either k[[x, y]]/(x2) or k[[x, y]]/(x2 y). Thus we assume that
µR(m)> 3. But e(R)6 3 by Theorem 4.2 and we know by Exercise 11.53
that e(R)> µR(m)−dimR +1. Therefore we may assume that e(R) =
µR(m) = 3. Thus we are in the situation of Lemma 17.8. Moreover, we
may assume that R is not reduced, else we are done by Theorem 4.10,
so R has non-trivial nilradical N.

If N requires two generators, then by Lemma 17.8(iii), we can find
elements u, v, w in R such that m = Ru+Rv+Rw, u is a minimal
reduction of m with m2 = mu, and N = Rv+Rw. Put S = R

[
v

u2 , w
u2

]
.

It is easy to verify (by clearing denominators) that {1, v
u2 , w

u2 } is a min-
imal generating set for S as an R-module, and that the images of v

u
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and w
u form a minimal generating set for mS

m . Thus R has indecompos-
ables of arbitrarily large constant rank by Theorem 4.2 and our basic
assumption is violated.

We may therefore assume that N is principal. This is the hard
case of the proof; we sketch the argument, and point to [LW05] for the
details. Using Lemma 17.8(iv), we once again find elements u, v, w in
R such that m = Ru+Rv+Rw, u is again a minimal reduction of m
with m2 =mu, and N = Rw with vw = w2 = 0.

Since v2 ∈ mu ⊂ Ru, we see that R/Ru is a three-dimensional k-
algebra. Further, since

⋂
n(Run)= 0, it follows that R is finitely gener-

ated (and free) as a module over the discrete valuation ring D = k[[u]].
One checks that R = D+Dv+Dw (and therefore {1,v,w} is a basis for
R as a D-module).

In order to understand the structure of R we must analyze the
equation that puts v2 into um. Thus we write v2 = ur(αu+βv+γw),
where r > 1 and α, β, γ ∈ D. Since u is a non-zerodivisor and vw =
w2 = 0, we see immediately that α= 0. Thus we have

v2 = ur (
βv+γw

)
,

with β and γ in D. Moreover, at least one of β and γ must be a unit of
D.

If r > 2, put S = R[ v
u2 , w

u2 ]. This finite birational extension forces
R to have indecomposables of arbitrarily large constant rank by Theo-
rem 4.2, so we must have v2 = u(βv+γw) with β, γ ∈ D and at least one
of β, γ a unit of D. We will produce a hypersurface subring A = D[[g]]
of R such that R =EndA(mA). We will then show that A ∼= k[[x, y]]/(x2 y)
and the proof will be complete.

In the case where γ is not a unit, set A = D[v+w]. Then one can
show that A is a local ring with maximal ideal mA = Au+A(v+w), and
that R is a finite birational extension of A. Since v(v+w)= (v+w)2 and
w(v+w)= 0, we see that v and w are in EndA(mA). Since EndA(mA)/A
is simple (as A is Gorenstein), it follows that R =EndA(mA).

If on the other hand γ is a unit of D, we put A = D[v]⊆ R. Then A is
a local ring with maximal ideal mA = Au+ Av. (The relevant equation
this time is v3 = uβv2.) We have uw = γ−1v2 −γ−1βuv ∈mA. As in the
first case, we conclude that R =EndA(mA).

By Lemma 4.9, A has infinite CM type but does not have indecom-
posable MCM modules of arbitrarily large constant rank. Moreover,
A cannot have multiplicity 2, since it has a finite birational extension
of multiplicity greater than 2. By Theorem 17.7, A ∼= k[[x, y]]/(x2 y), as
desired. �
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§3. Descent in dimension one

In this section we use the classification theorem in the previous
section, together with the results on extended modules in Chapter 2,
to show that bounded CM type passes to and from the completion of an
equicharacteristic one-dimensional CM local ring (R,m,k) with k infi-
nite. Contrary to the situation in Chapter 10, we do not assume that
R is excellent with an isolated singularity; indeed, in dimension one
the latter assumption would make R̂ reduced, in which case finite and
bounded CM type are equivalent by Theorem 4.10. We do, however,
insist that k be infinite, in order to use the crucial fact from §2 that
failure of bounded CM type implies the existence of indecomposable
MCM modules of unbounded constant rank and also to use the explicit
matrices worked out in Proposition 14.19 and Example 14.23 for the
indecomposable MCM modules over k[[x, y]]/(x2 y).

17.10. THEOREM. Let (R,m,k) be a one-dimensional equicharacter-
istic CM local ring with completion R̂. Assume that k is infinite. Then
R has bounded CM type if and only if R̂ has bounded CM type. If R has
unbounded CM type, then R has, for each r, an indecomposable MCM
module of constant rank r.

PROOF. Assume that R̂ does not have bounded CM type. Fix a
positive integer r. By Theorem 17.9 we know that R̂ has an indecom-
posable MCM module M of constant rank r. By Corollary 2.8 there is
a finitely generated R-module N, necessarily MCM and with constant
rank r, such that N̂ ∼= M. Obviously N too must be indecomposable.

Assume from now on that R̂ has bounded CM type. If R̂ has finite
CM type, the same holds for R by Theorem 10.1. Therefore we assume
that R̂ has infinite CM type. Then R̂ is isomorphic to one of the three
rings of Theorem 17.9.

If R̂ ∼= k[[x, y]]/(x2), then e(R) = e(R̂) = 2, and R has bounded CM
type by Theorem 4.18. Suppose for the moment that we have verified
bounded CM type for any local ring S whose completion is isomorphic
to E = k[[x, y, z]]/(yz, x2 − xz, xz − z2). If, now, R̂ ∼= k[[x, y]]/(x2 y), put
S =EndR(m). Then Ŝ ∼= E, whence S has bounded CM type. Therefore
so has R, by Lemma 4.9. Thus we assume that R̂ ∼= E.

Our plan is to examine each of the indecomposable non-free E-
modules and then use Corollary 2.8 to determine exactly which MCM
E-modules are extended from R. As we saw in Example 14.23, those
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indecomposable MCM modules are the cokernels of the following ma-
trices over T = k[[x, y]]/(x2 y):

(y); (x2); (x); (xy);

α=
(

x
y j −x

)
; β=

(
xy
y j −xy

)
; γ=

(
x
y j −xy

)
; δ=

(
xy
y j −x

)
where j is a positive integer. Let P = (x) and Q = (y) be the two min-
imal prime ideals of T. Note that TP

∼= k((y))[x]/(x2) and TQ
∼= k((x)).

With the exception of U := cok(x) and V := cok(xy), each of the E-
modules listed above is locally free at both P and Q. The ranks are
given in the following table.

ϕ rankP cokϕ rankQ cokϕ
(x2) 1 0
(y) 0 1
α 1 0
β 1 2
γ 1 1
δ 1 1

Let M be a MCM R̂-module, and write

(17.10.1) M ∼=
(

a⊕
i=1

A i

)
⊕

(
b⊕

j=1
B j

)
⊕

(
c⊕

k=1
Ck

)
⊕

(
d⊕

l=1
Dl

)
⊕U (e) ⊕V ( f ) ,

where the A i, B j, Ck, Dl are indecomposable generically free modules,
of ranks (1,0), (0,1), (1,1), (1,2) respectively, and again U = cok(x) and
V = cok(xy).

Suppose first that R is a domain. Then M is extended if and only if
a = b+d and e = f = 0. Now the indecomposable MCM R-modules are
those whose completions have (a,b, c,d, e, f ) minimal and non-trivial
with respect to these relations. (We are implicitly using Corollary 1.15
here.) One checks that the possibilities are (0,0,1,0,0,0), (1,1,0,0,0,0),
and (1,0,0,1,0,0), and we conclude that the indecomposable MCM R-
modules have rank 1 or 2.

Next suppose that R is reduced but not a domain. Then R has
exactly two minimal prime ideals, and we see from Corollary 2.8 that
every generically free R̂-module is extended from R; however, neither
U nor V can be a direct summand of an extended module. In this case,
the indecomposable MCM R-modules are generically free, with ranks
(1,0), (0,1), (1,1) and (1,2) at the minimal prime ideals.

Finally, we assume that R is not reduced. We must now consider
the two modules U and V that are not generically free. We will see
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that U = cok(x) is always extended and that V = cok(xy) is extended if
and only if R has two minimal prime ideals. Note that U ∼= Txy= Exy
(the nilradical of E = R̂), while V ∼= Tx = Ex.

The nilradical N of R is of course contained in the nilradical Exy
of R̂. Moreover, since Exy∼= E/(x, z) is a faithful module over E/(x, z)∼=
k[[y]], every non-zero submodule of Exy is isomorphic to Exy. In par-
ticular, NR̂ ∼= Exy. This shows that U is extended.

Next we deal with V . The kernel of the surjective map Ex −→
Exy, given by multiplication by y, is Ex2. Thus we have a short exact
sequence

(17.10.2) 0−→ Ex2 −→V
y−−→U −→ 0 .

Observe that Ex2 = Tx2 ∼= cok(y) is generically free of rank (0,1). Let
K be the common total quotient ring of T and R̂. Then K ⊗E Ex2 is
a projective K-module, and as K is Gorenstein, (17.10.2) splits when
tensored up to K . In particular, this gives

K ⊗E V ∼= (
K ⊗E Ex2)⊕ (K ⊗E U) .

If, now, R has two minimal primes, then every generically free R̂-
module is extended, by Corollary 2.8. In particular Ex2 is extended,
and by Lemma 2.7 so is V . Thus every indecomposable MCM R̂-
module is extended, and R has bounded CM type.

If, on the other hand, R has just one minimal prime ideal, then the
module M in (17.10.1) is extended if and only if a = b+d+ f . The R̂-
modules corresponding to indecomposable MCM R-modules are there-
fore U , V ⊕W , where W is some generically free module of rank (0,1),
and the modules of constant rank 1 and 2 described above. �

What if k is finite? If R (as in Theorem 17.10) has bounded but
infinite CM type, we can take an elementary gonflement (R,m,k) −→
(S,n,`) with ` infinite. We get the homomorphisms R −→ S −→ Sh −→
Ŝ of (15.23.1). Using Proposition 10.6, we see as before that Ŝ must
have bounded but infinite CM type and therefore be isomorphic to one
of the three rings listed in Theorem 17.9. Conversely, if Ŝ has un-
bounded CM type, we know that S has, for each r> 1, an indecompos-
able MCM module of constant rank r. Unfortunately, we don’t know
whether or not these modules are extended from R, or even whether
or not R must have unbounded CM type.

Proving descent of bounded CM type in general seems quite dif-
ficult. Part of the difficulty lies in the fact that, in general, there is
no bound on the number of indecomposable MCM R̂-modules required
to decompose the completion of an indecomposable MCM R-module.



§4. EXERCISES 303

Thus the argument of Theorem 10.1, while sufficient for showing de-
scent of finite CM type, is not enough for bounded CM type.

Here is an example to illustrate. Recall that for a two-dimensional
normal domain, the divisor class group essentially controls which mod-
ules are extended to the completion. Precisely (Proposition 2.15), if R
and R̂ are both normal domains, then a torsion-free R̂-module N is
extended from R if and only if cl(N) is in the image of the natural map
on divisor class groups Cl(R)−→Cl(R̂).

17.11. EXAMPLE. Let R be a complete local two-dimensional nor-
mal domain containing a field, and assume that the divisor class group
Cl(R) has an element α of infinite order. For example, one might take
the ring of Lemma 2.16.

By Heitmann’s theorem [Hei93], there is a unique factorization do-
main A contained in R such that Â = R. Choose, for each integer n,
a divisorial ideal In corresponding to nα ∈ Cl(Â). For each n > 1, let
Mn = In ⊕Nn, where Nn is the direct sum of n copies of I−1. Then Mn
has trivial divisor class and therefore is extended from A by Proposi-
tion 2.15. However, no non-trivial proper direct summand of Mn has
trivial divisor class, and it follows that Mn (a direct sum of n+1 in-
decomposable Â-modules) is extended from an indecomposable MCM
A-module.

It is important to note that the example above does not give a coun-
terexample to descent of bounded CM type, but merely points out one
difficulty in studying descent.

§4. Exercises

17.12. EXERCISE. Let A be a local ring. Prove that there is an up-
per bound on the multiplicities of the indecomposable MCM A-modules
if and only if there is a bound on their minimal numbers of generators.
(See Corollary A.24.)

17.13. EXERCISE. Complete the proof of Theorem 17.6.

17.14. EXERCISE. Show that the argument of Theorem 17.6 does
not apply to R = k[[u,v]]/(u2v−v3), since mS/m is a cyclic R-module for
every finite birational extension S of R.

17.15. EXERCISE. Finish the proof of Lemma 17.8.





APPENDIX A

Basics and Background

Here we collect some basic definitions and results that are neces-
sary but somewhat peripheral to the main themes of the book. Some
of the results are stated without proof; for these, one can find proofs
in [Mat89]. We refer to [Mat89] also for any unexplained terminology.

§1. Depth, syzygies, and Serre’s conditions

Throughout this section we let (R,m,k) be a local ring.

A.1. DEFINITION. Let M be a finitely generated R-module. The
depth of M is given by

depthR M = inf
{
n

∣∣Extn
R(k, M) 6= 0

}
.

Note that depthR 0 = inf(;) = ∞. Conversely, non-zero modules
have finite depth:

A.2. PROPOSITION. Let M be a finitely generated R-module. If M 6=
0, then

(i) depthR M <∞.
(ii) depthR M = sup {n |∃ M-regular sequence (x1, . . . , xn)⊂m}.

(iii) Every maximal M-regular sequence in m has length n.
(iv) depthR M6 dim(R/p) for every p ∈Ass M. In particular, we have

depth M6 dim M6 dimR.
(v) If (S,n) −→ (R,m) is a local homomorphism and R is finitely

generated as an S-module, then depthS M = depthR M.
(vi) If p ∈SpecR, then depthRp

(Mp)= 0 ⇐⇒ p ∈Ass M. �

When the base ring R is clear, or when, e.g. as in item (v) it is
irrelevant, we often omit the subscript and write “depth M”.

Depth is closely related to the absence of torsion.

A.3. DEFINITION. Let A be any commutative ring and M an A-
module. Say that M is torsion-free if every non-zerodivisor in A is a
non-zerodivisor on M. Equivalently, the natural map M −→ K ⊗A M,
where K is the total quotient ring, is injective. At the other extreme, a
module M is torsion provided each element of M is annihilated by some
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non-zerodivisor of R. Equivalently, K ⊗A M = 0. The set of elements
that are annihilated by non-zerodivisors is called the torsion submod-
ule of M and is denoted by tors(M). Clearly M/tors(M) is torsion-free.

The next result is called the Depth Lemma. It follows easily from
the long exact sequence of Ext.

A.4. LEMMA. Let 0 −→ U −→ V −→ W −→ 0 be a short exact se-
quence of finitely generated R-modules.

(i) If depthW < depthV , then depthU = depthW +1.
(ii) depthU >min{depthV ,depthW}.

(iii) depthV >min{depthU ,depthW}. �

See [Mat89, Thm. 19.1] for a proof of the next result, called the
Auslander-Buchsbaum formula. We write pdR M for the projective di-
mension of an R-module M.

A.5. THEOREM (Auslander-Buchsbaum Formula). Let M be an R-
module of finite projective dimension. Then

depth M+pdR M = depthR .

We often use a simple consequence of the Auslander-Buchsbaum
formula: if M is a MCM module over a regular local ring, then M is
free.

A.6. DEFINITION. Let M be a finitely generated module over a lo-
cal ring (R,m), and let n be a non-negative integer. Then M Serre’s
condition (Sn) provided

depthRp
(Mp)>min

{
n,dim(Rp)

}
for every p ∈SpecR.

A.7. WARNING. Our terminology differs from that of EGA [GD65,
Definition 5.7.2] and Bruns-Herzog [BH93, Section 2.1]. Where we
have “dim(Rp)” those authors have “dim(Mp)”. Notice, for example,
that by the EGA definition every finite length module would satisfy
(Sn) for all n, while this is certainly not the case with the definition we
use. Of course, the two conditions agree for the ring itself.

The (Sn) conditions allow characterizations of reducedness and nor-
mality.

A.8. PROPOSITION. The ring R is reduced if and only if the follow-
ing hold.

(i) R satisfies (S1), and
(ii) Rp is a field for every minimal prime ideal p. �

A.9. PROPOSITION (Serre’s criterion). These are equivalent.
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(i) R is a normal domain.
(ii) R satisfies (S2), and Rp is a regular local ring for each prime

ideal p of height at most one. �

We will say that a finitely generated module M over a ring A is an
rth syzygy (of N), provided there is an exact sequence

(A.9.1) 0−→ M −→ Fr−1 −→ ·· · −→ F0 −→ N −→ 0 ,

where N is a finitely generated module and each Fi is a finitely gener-
ated projective A-module.

Syzygies are uniquely defined up to projective direct summands by
Schanuel’s Lemma:

A.10. LEMMA (Schanuel’s Lemma). Let M1 and M2 be rth syzygies
of a finitely generated N over a Noetherian ring A. Then there are
finitely generated projective A-modules G1 and G2 such that M1⊕G2

∼=
M2 ⊕G1.

If R is local and each Fi is chosen minimally, then the resolution
is essentially unique. In particular, the syzygies are unique up to iso-
morphism, and we let syzR

r (N) denote the rth syzygy with respect to a
minimal resolution. We define redsyzR

r (N) to be the reduced rth syzygy,
obtained from syzR

r (N) by deleting all non-zero free direct summands.
Serre’s conditions are closely related to the property of being an

nth syzygy. We explain this now using the following result, which
is proved, but not quite stated correctly, in [EG85]. (Compare with
Proposition 12.7.)

Recall that maximal Cohen-Macaulay modules over Gorenstein lo-
cal rings are reflexive (by, for example, Theorem 11.5).

A.11. THEOREM. Let M be a finitely generated R-module satisfying
Serre’s condition (Sn), where n> 1. Assume

(i) R satisfies (Sn−1), and
(ii) Rp is Gorenstein for every prime p with dim(Rp)6 n−1.

Then there is an exact sequence

(A.11.1) 0−→ M α−−→ F −→ N −→ 0,

in which F is a finitely generated free module and N satisfies (Sn−1).

PROOF. We start with an exact sequence

(A.11.2) 0−→ K −→G −→ M∗ −→ 0,

where G is a finitely generated free module and M∗ = HomR(M,R).
Put F =G∗, and dualize (A.11.2), getting an exact sequence

(A.11.3) 0−→ M∗∗ β−−→ F −→ K∗ −→Ext1
R(M∗,R)−→ 0.



308 A. BASICS AND BACKGROUND

Let σ : M −→ M∗∗ be the canonical map, let α=βσ, and put N = cokα.
To verify exactness of (A.11.1), we just have to show that σ is one-

to-one. Supposing, by way of contradiction, that L = ker(σ) is non-zero,
we choose p ∈ AssL. Then depthLp = 0. Given any minimal prime q,
we know Rq is a zero-dimensional Gorenstein ring (since n> 1), and
Mq is a MCM Rq-module, whence σq is an isomorphism. Thus Lq = 0
for each minimal prime q. In particular, dim(Rp)> 1, so depth(Mp)> 1.
But this contradicts the fact that depth(Lp)= 0.

Let p be a prime of height h. If h6 n−1, we need to show that Np

is MCM. Since Rp is Gorenstein and Mp is MCM, the canonical map
σp is an isomorphism. Also, M∗

p is MCM, so Ext1
Rp

(M∗
p ,Rp) = 0. The

upshot of all of this is that Np
∼= K∗

p . Now (A.11.2) shows that Kp is
MCM, and therefore so is its dual K∗

p .
To complete the proof that N satisfies (Sn−1), we assume now that

h > n. We need to show that depthRp
(Np) > n− 1. Suppose on the

contrary that depthRp
(Np)< n−1. Since depthRp

(Fp)> n−1, the Depth
Lemma A.4, applied to (A.11.1), shows that

depthRp
(Mp)= 1+depthRp

(Np)< n ,

a contradiction. �

A.12. COROLLARY. Let (R,m) be a local ring, M a finitely generated
R-module and n a positive integer. Assume R satisfies Serre’s condition
(Sn) and Rp is Gorenstein for each prime p of height at most n−1. These
are equivalent.

(i) M is an nth syzygy.
(ii) M satisfies (Sn).

PROOF. (i) =⇒ (ii) by the Depth Lemma, and (ii) =⇒ (i) by Theo-
rem A.11. �

A.13. COROLLARY. Let (R,m) be a local ring that satisfies (S2) and
is Gorenstein in codimension one. These are equivalent for a finitely
generated R-module M.

(i) M is reflexive.
(ii) M satisfies (S2).

(iii) M is a second syzygy.

A.14. COROLLARY. Let R be a local normal domain and let M be
a finitely generated R-module. If M is MCM, then M is reflexive. The
converse holds if R has dimension two. �

A.15. COROLLARY. Let (R,m) be a CM local ring of dimension d,
and assume that Rp is Gorenstein for every prime ideal p 6=m. These
are equivalent, for a finitely generated R-module M.
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(i) M is MCM.
(ii) M is a dth syzygy. �

A.16. REMARK. The hypothesis that R be Gorenstein on the punc-
tured spectrum cannot be weakened, at least when R has a canonical
module (or, more generally, a Gorenstein module [Sha70], that is, a
finitely generated module whose completion is a direct sum of copies
of the canonical module ωR̂). Let (R,m) be a d-dimensional CM lo-
cal ring having a canonical module ω. If ω is a dth syzygy, then R is
Gorenstein on the punctured spectrum. To see this, we build an exact
sequence

(A.16.1) 0−→ω−→ F −→ M −→ 0 ,

where F is free and M is a (d − 1)st syzygy. Now let p be any non-
maximal prime ideal. Since Mp is MCM and ωp is a canonical module
for Rp, (A.16.1) splits when localized at p (apply Proposition 11.3). But
then ωp is free, and it follows that Rp is Gorenstein. (We thank Bernd
Ulrich for showing us this argument (cf. also [LW00, Lemma 1.4]).)

§2. Multiplicity and rank

In this section we gather the definitions and basic results on mul-
tiplicity and rank that are used in the body of the text. See Chapter
14 of [Mat89] for proofs.

Throughout we let (R,m,k) be a local ring of dimension d, let I be
an m-primary ideal of R, and let M be a finitely generated R-module.

A.17. DEFINITION. The multiplicity of I on M is defined by

eR(I, M)= lim
n−→∞

d!
nd `R(M/InM),

where `R(−) denotes length as an R-module. In particular we set
eR(M) = eR(m, M) and call it the multiplicity of M. Finally, we denote
e(R)= eR(R) and call it the multiplicity of the ring R.

It is standard that the Hilbert function n 7→ `R(M/In+1M) is even-
tually given by a polynomial in n of degree equal to dim(M). Thus
eR (I,M)

d! is the coefficient of nd in this Hilbert polynomial, and eR(I, M) 6=
0 if and only if dim(M)= d. In particular if d = 0 then eR(I, M)= `R(M)
for any I.

It follows immediately from the definition that if I ⊆ J are two
m-primary ideals, then eR(I, M)> eR(J, M). One case where equality
holds is particularly useful.
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A.18. DEFINITION. Let I ⊆ J be ideals of R (not necessarily m-
primary). We say I is a reduction of J if

In+1 = JIn

for some n> 1. Equivalently, In+k = JkIn for all n À 0 and all k> 1.

The proof of the next result is a short calculation from the defini-
tions.

A.19. PROPOSITION. Let I ⊆ J be m-primary ideals of R such that
I is a reduction of J. Then eR(I, M)= eR(J, M). �

Reductions are often better-behaved ideals. In particular, under
a mild assumption there is a reduction which is generated by a sys-
tem of parameters. (Recall that a system of parameters consists of
d = dim(R) elements generating an m-primary ideal.) See [Mat89,
Theorem 14.14] for a proof.

A.20. THEOREM. Assume that the residue field k is infinite. Then
there exists a system of parameters x1, . . . , xd contained in I such that
(x1, . . . , xd) is a reduction of I. Indeed, if I is generated by a1, . . . ,at,
then the xi may be taken to be “sufficiently general” linear combinations
xi = ∑

r i ja j (for r i j ∈ R avoiding the common zeros of a finite list of
polynomials). Such a reduction is called a minimal reduction. �

The restriction on the residue field is rarely an obstacle in prac-
tice. For many questions, the general case can be reduced to this
one by passing to a gonflement R′ = R[x]mR[x] (see Chapter 10, §3).
Since R −→ R′ is faithfully flat, it is easy to check that the associ-
ation I 7→ IR′ preserves containment, height, number of generators,
and colength if I is m-primary. It thus preserves multiplicities. Since
the residue field of R′ is R′/mR′ = (R[x]/mR[x])mR[x], the quotient field
of (R/m)[x], it is an infinite field.

Theorem A.20 reduces many computations of multiplicity to the
case of ideals generated by systems of parameters. The next results
relate multiplicities over R to multiplicities calculated modulo a sys-
tem of parameters.

A.21. THEOREM. Let x = x1, . . . , xd be a system of parameters con-
tained in I, and set R = R/(x), I = I/(x), and M = M/xM. If xi ∈ Isi for
each i, then

`R(M)= eR(I, M)> s1 · · · sd eR(I, M) .

In particular, if xi ∈ms for all i, then `R(M)> sd eR(M). �
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A.22. COROLLARY. Let (S,n) be a regular local ring and f ∈ S a
non-zero non-unit. Then the multiplicity of the hypersurface ring R =
S/( f ) is the largest integer s such that f ∈ ns. �

The behavior of multiplicity for ideals generated by systems of
parameters is most satisfactory in the Cohen-Macaulay case. This
is [Mat89, Theorems 14.10 and 14.11].

A.23. THEOREM. Let x be a system of parameters for R. Then

`R(M/xM)> eR((x), M) ,

and if x is a regular sequence on M then equality holds. �

Denote by µR(M) the minimal number of generators required for
M.

A.24. COROLLARY. Let (R,m,k) be a local ring and M a MCM R-
module. Then µR(M)6 eR(M).

PROOF. We may assume, by passing to a gonflement, that k is in-
finite. Using Theorem A.20, we obtain a system of parameters x such
that (x) is a reduction of m. Then e(M) = e((x), M) = `R(M/xM) by
Proposition A.19 and Theorem A.23. Finally, we have `R(M/xM) >
`R(M/mM)=µR(M/mM) , and µR(M/mM)=µR(M) by NAK. �

Maximal Cohen-Macaulay modules M for which µR(M) = eR(M)
are said to be maximally generated [BHU87] and are known also as
Ulrich modules [HK87]. It is unknown whether or not every local CM
ring has an Ulrich module.

Here are a few more basic facts on multiplicity.

A.25. PROPOSITION. Let 0 −→ M′ −→ M −→ M′′ −→ 0 be a short
exact sequence of finitely generated R-modules. Then

eR(I, M)= eR(I, M′)+eR(I, M′′) .

�

A.26. PROPOSITION (“Associativity Formula”). We have

eR(I, M)=∑
p
`Rp(Mp) ·eR/p(I,R/p) ,

where the sum is over all minimal primes p of R such that dim(R/p)= d,
and I denotes the image of I in R/p. If in particular R is a domain with
quotient field K , then eR(I, M)= dimK (K ⊗R M) . �

The quantity dimK (K ⊗R M) in Proposition A.26 is known as the
rank of M. We extend this notion as follows.
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A.27. DEFINITION. Let A be a Noetherian ring and N a finitely
generated A-module. Denote by K the total quotient ring of A, ob-
tained by inverting the complement of the associated primes of A.
Say that N has constant rank provided K ⊗A N is a free K-module.
If K ⊗A N ∼= K (r) (equivalently, Np

∼= A(r)
p for every p ∈ Ass A), we say

that N has constant rank r.

The following useful fact follows directly from Proposition A.26.

A.28. PROPOSITION. Let M be a finitely generated R-module with
constant rank r. Then eR(M)= e(R) · r. �

In dimension one, the multiplicity of R carries a great deal of struc-
tural information. The second statement of the next result goes back
to Akizuki [Aki37].

A.29. THEOREM. Assume d = 1.
(i) The multiplicity of R is the minimal number of generators re-

quired for high powers of m.
(ii) If R is Cohen-Macaulay, then e(R) is the sharp bound on µR(I)

as I runs over all ideals of R. Moreover, for every ideal I of R
we have the inequality

µR(I)6 e(R)−e(R/I) .

(iii) If R is Cohen-Macaulay, then e(R) is the sharp bound on µR(S)
for S a finite birational extension of R.

(iv) If R is reduced and the integral closure R is finitely generated
over R, then e(R)=µR(R).

PROOF. Since dim(R) = 1, we have `R(R/mn+1) = en− p for n À 0
and some p ∈ Z. Since also `R(R/mn+1) = `R(R/mn)+µR(mn), part (i)
follows.

For (ii), it will suffice, by (i), to prove the inequality. Noting that
every non-zero ideal of R is an MCM R-module, we have, from Corol-
lary A.24

µR(I)6 eR(I)= e(R)−eR(R/I),
by additivity of multiplicity along exact sequences.

The bound in (ii) is sharp by (i). Every finite birational extension of
R is isomorphic as an R-module to an ideal of R (clear denominators),
and is therefore generated by at most e(R) elements. Proposition 4.3
shows that the bound is sharp.

For (iv) we observe that R is a principal ideal ring, so there exists
a non-zerodivisor x ∈ R such that mR = xR. Thus µR(R)= `R(R/mR)=
`R(R/xR). By Theorem A.23 and Proposition A.19 this is equal to
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eR((x),R) = eR(m,R). Since R is a birational extension of R, it has
constant rank 1, so eR(m,R)= e(R) by Proposition A.28. �

§3. Henselian rings

We gather here a few equivalent conditions for a local ring to be
Henselian. Condition (v) is the definition used in Chapter 1; condi-
tion (i) is one of the classical formulations.

A.30. THEOREM. Let (R,m,k) be a local ring. These are equivalent.
(i) For every monic polynomial f in R[x] and every factorization

f = g0h0 of its image in k[x], where g0 and h0 are relatively
prime monic polynomials, there exist monic polynomials g,h ∈
R[x] such that g ≡ g0 modm, h ≡ h0 modm, and f = gh.

(ii) Every commutative module-finite R-algebra which is an inte-
gral domain is local.

(iii) Every commutative module-finite R-algebra is a direct product
of local rings.

(iv) Every module-finite R-algebra of the form R[x]/( f ), where f is a
monic polynomial, is a direct product of local rings.

(v) For every module-finite R-algebra Λ (not necessarily commuta-
tive) with Jacobson radical J (Λ), each idempotent of Λ/J (Λ)
lifts to an idempotent of Λ.

PROOF. We prove (i) =⇒ (ii) =⇒ (iii) =⇒ (v) =⇒ (iv) =⇒ (i).
(i) =⇒ (ii): Let D be a domain that is module-finite over R, and

suppose D is not local. Then there exist non-units α and β of D such
that α+β = 1. Set S = R[α] ⊆ D; then α and β are still non-units of
S. Since in particular they are not in mS by Lemma 1.7, it follows
that S/mS = k[α] is a non-local finite-dimensional k-algebra. Thus the
minimal polynomial p(x) ∈ k[x] for α is not just a power of a single
irreducible polynomial. Let f ∈ R[x] be a monic polynomial of least
degree with f (α) = 0. Then p divides f ∈ k[x], so that the irreducible
factorization of f involves at least two distinct monic irreducible fac-
tors. Therefore we may write f = g0h0, where g0 and h0 are monic
polynomials of positive degree satisfying gcd(g0,h0) = 1. Lifting this
factorization to R[x], we have f = gh. By the minimality of deg f , we
have g(α) 6= 0 6= h(α), but g(α)h(α)= f (α)= 0 in D, a contradiction.

(ii) =⇒ (iii): Let S be a commutative, module-finite R-algebra.
Then S is semilocal, say with maximal ideals m1, . . . ,mt. Set X i =
{p ∈SpecS | p⊆mi} for i = 1, . . . , t. By applying (ii) to each of the do-
mains S/p, as p runs over SpecS, we see that the sets X i are pairwise
disjoint. Moreover, letting pi j, j = 1, . . . , si, be the minimal prime ideals
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contained in each mi, we see that X i =V (pi1)∪·· ·∪V (pisi ), a closed set.
Thus SpecS is a disjoint union of open-and-closed sets, and (iii) follows.

(iii) =⇒ (v): Let Λ be a module-finite R-algebra, not necessarily
commutative, and let e ∈Λ/J (Λ) satisfy e2 = e. Let α ∈Λ be any lifting
of e, and set S = R[α]. One checks that J (S) = S ∩J (Λ), so that
α2 −α ∈ J (S). As S is a direct product of local rings, the same is
true of S/J (S). The idempotent α ∈ S/J (S) is therefore a sum of some
subset of the primitive idempotents of S/J (S). Each of these primitive
idempotents clearly lifts to S, so α lifts to an idempotent of S, which
lifts e as well.

(v) =⇒ (iv): Suppose S = R[x]/( f ) with f a monic polynomial.
Then S/mS = k[x]/( f ) is a direct product of local finite-dimensional k-
algebras. Since mS ⊆ J (S) by Lemma 1.7, we have S/mS� S/J (S),
so S/J (S) ∼= T1 × ·· · × Tn is also a direct product of local rings T i.
The primitive idempotents of this decomposition lift to idempotents
e1, . . . , en of S, giving a decomposition S = T1 × ·· ·×Tn with Ti = e iS.
Since each T i = Ti/J (S)Ti is local so is each Ti.

(iv) =⇒ (i): Let f ∈ R[x] be monic and let f = g0h0 be a factor-
ization of the image f ∈ k[x] into relatively prime monic polynomials.
Set S = R[x]/( f ), a direct product S1×·· ·×Sn of local rings by assump-
tion. Then S/mS = k[x]/( f ) ∼= k[x]/(g0)× k[x]/(h0) by the Chinese Re-
mainder Theorem, and also S/mS = S1/mS1 × ·· · ×Sn/mSn. After re-
ordering the factors Si if necessary, we may assume that k[x]/(g0) =
S1/mS1×·· ·×Sl /mSl and k[x]/(h0)= Sl+1/mSl+1×·· ·×Sn/mSn for some
l with 1< l < n. Set A = S1×·· ·×Sl , a free R-module of rank deg g0. Let
t ∈ A denote the image of x ∈ S, and let g ∈ R[T] be the characteristic
polynomial of the R-linear operator A −→ A given by multiplication by
t. Note that g = g0 in k[x]. Now g(t) = 0 by the Cayley-Hamilton The-
orem, so we have a surjective homomorphism R[x]/(g) −→ A, which is
in fact an isomorphism by NAK. The map R[x] −→ A factors through
S by construction, so we may write f = gh for some monic h ∈ R[x]. �

A.31. COROLLARY. Let R be a Henselian local ring, let α ∈ R be a
unit, and let n be a positive integer prime to char(k). If α has an nth

root in k, then α has an nth root in R.

PROOF. Let f = xn −α ∈ R[x], and let β be a root of xn −α ∈ k[x].
Write xn −α= (x−β)h(x). The hypotheses imply that xn −α has n dis-
tinct roots, so x−β and h(x) are relatively prime. Since R is Henselian,
we get β̃ ∈ R× and h̃ ∈ R[x] such that xn−α= (x−β̃)h̃. Then β̃n =α. �

A.32. REMARK. For completeness we mention a few more equiva-
lent conditions. The proof of these equivalences is beyond our scope.
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Let (R,m,k) be a local ring. Recall (Definition 10.2) that a pointed étale
neighborhood of R is a flat local R-algebra (S,n), essentially of finite
type, such that mS = n and S/n = k. There is a structure theory for
such extensions [Ive73, III.2]: S is a pointed étale neighborhood of
R if and only if S ∼= (R[x]/( f ))p, where f is a monic polynomial, p is a
maximal ideal of R[x]/( f ) satisfying f ′ ∉ p, and S/pS = R/m.

The following conditions are then equivalent to the ones in Theo-
rem A.30.

(v) If R −→ S is a pointed étale neighborhood, then R ∼= S.
(vi) For every monic polynomial f ∈ R[x] and every α ∈ R such that

f (α) ∈m and f ′(α) ∉m, there exists r ∈ R such that r ≡ αmodm
and f (r)= 0.

(vii) For every system of polynomials f1, . . . , fn ∈ R[x1, . . . , xn] and ev-
ery (α1, . . . ,αn) ∈ R(n) such that f i(α1, . . . ,αn) ∈m and the Jaco-
bian determinant det

[
∂ f i
∂x j

(α1, . . . ,αn)
]

is a unit, there exist ring
elements r1, . . . , rn such that r i ≡ αi modm and f i(r1, . . . , rn) = 0
for all i = 1, . . . ,n.

Condition (vi) (“simple roots lift from k to R”) is also sometimes
used as the definition of Henselianness.





APPENDIX B

Ramification Theory

This appendix contains the basic results we need in the body of
the text on unramified and étale ring homomorphisms, as well as the
ramification behavior of prime ideals in integral extensions. We also
include proofs of the theorem on the purity of the branch locus (The-
orem B.12) and results relating ramification to pseudo-reflections in
finite groups of linear ring automorphisms.

§1. Unramified homomorphisms

Recall that a ring homomorphism A −→ B is said to be of finite type
if B is a finitely generated A-algebra, that is, B ∼= A[x1, . . . , xn]/I for
some polynomial variables x1, . . . , xn and an ideal I. We say A −→ B
is essentially of finite type if B is a localization (at an arbitrary multi-
plicatively closed set) of an A-algebra of finite type.

B.1. DEFINITION. Assume that (A,m,k) −→ (B,n,`) is a local ho-
momorphism of local rings. We say that A −→ B is an unramified local
homomorphism provided

(i) mB = n,
(ii) B/mB is a finite separable field extension of A/m, and

(iii) B is essentially of finite type over A.

If in addition A −→ B is flat, we say it is étale.

B.2. REMARKS. Let A −→ B be a local homomorphism between lo-
cal rings. Let Â and B̂ be the m-adic and n-adic completions of A and B,
respectively. It is straightforward to check that A −→ B is unramified,
respectively étale, if and only if Â −→ B̂ is so.

If A −→ B is an unramified local homomorphism, then B̂ is a finitely
generated Â-module. Indeed, it follows from the complete version of
NAK ([Mat89, Theorem 8.4] or [Eis95, Exercises 7.2 and 7.4]) that
any k = Â/m̂-vector space basis for ` = B̂/n̂ lifts to a set of Â-module
generators for B̂. If, in particular, there is no residue field growth (for
instance, if k is separably or algebraically closed), then Â −→ B̂ is sur-
jective.
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If A −→ B is étale, then B̂ is a finitely generated flat Â-module,
whence B̂ ∼= Â(n) for some n. If in this case k = `, then B̂ = Â.

It’s easy to check that if A −→ B is étale, then A and B share the
same Krull dimension and the same depth. Furthermore, A is regular
if and only if B is regular. For further permanence results along these
lines, we need to globalize the definition.

B.3. DEFINITION. Let A and B be Noetherian rings, and A −→ B
a homomorphism essentially of finite type. Let q ∈ SpecB and set p =
A∩q. We say that A −→ B is unramified at q (or also q is unramified
over A) if and only if the induced map Ap −→ Bq is an unramified local
homomorphism of local rings. Similarly, A −→ B is étale at q if and
only if Ap −→ Bq is an étale local homomorphism. Finally, A −→ B is
unramified, respectively étale, if it is unramified, respectively étale, at
every prime ideal q ∈SpecB.

Here is an easy transitivity property of unramified primes.

B.4. LEMMA. Let A −→ B −→ C be homomorphisms, essentially of
finite type, of Noetherian rings. Let r ∈SpecC and set q= B∩ r.

(i) If r is unramified over B and q is unramified over A, then r is
unramified over A.

(ii) If r is unramified over A, then r is unramified over B.

It is clear that a local homomorphism (A,m) −→ (B,n) essentially
of finite type is an unramified local homomorphism if and only if n
is unramified over A. However, it’s not at all clear that an unrami-
fied local homomorphism is unramified in the sense of Definition B.3.
To reconcile these definitions, we must show that being unramified is
preserved under localization. The easiest way to do this is to give an
alternative description, following [AB59].

B.5. DEFINITION. Let A −→ B be a homomorphism of Noetherian
rings. Define the diagonal map µ : B⊗A B −→ B by µ(b⊗ b′) = bb′ for
all b,b′ ∈ B, and set J = kerµ. Thus we have a short exact sequence of
B⊗A B-modules

(B.5.1) 0 //J //B⊗A B
µ
//B //0 .

B.6. REMARKS.
(i) The ideal J is generated by all elements of the form b⊗1−1⊗b,

where b ∈ B. Indeed, if µ
(∑

j b j ⊗b′
j

)
= 0, then

∑
j b jb′

j = 0, so
that ∑

j
b j ⊗b′

j =
∑

j
(1⊗b′

j)(b j ⊗1−1⊗b j) .
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(ii) The ring B⊗A B, also called the enveloping algebra of the A-
algebra B, has two A-module structures, one on each side. Thus
J also has two different B-structures. However, these two
module structures coincide modulo J 2. The reason is that

J /J 2 = (
(B⊗A B) /J

)⊗B⊗AB J

is a (B⊗A B) /J -module, and (B⊗A B) /J = B. In particular,
J /J 2 has an unambiguous B-module structure.

(iii) The B-module J /J 2 is also known as the module of (relative)
Kähler differentials of B over A, denoted ΩB/A [Eis95, Chap-
ter 16]. It is the universal module of A-linear derivations on
B, in the sense that the map δ : B −→ J /J 2 sending b to b⊗
1−1⊗ b is an A-linear derivation (satisfies the Leibniz rule),
and given any A-linear derivation ε : B −→ M, there exists a
unique B-linear homomorphism J /J 2 −→ M making the ob-
vious diagram commute. In particular we have DerA(B, M) ∼=
HomB(J /J 2, M) for every B-module M. Though it is very im-
portant for a deeper study of unramified maps, will not need
this interpretation in this book.

(iv) If A −→ B is assumed to be essentially of finite type, J is a
finitely generated B⊗A B-module. To see this, first observe that
the question reduces at once to the case where B is of finite type
over A. In that case, if x1, . . . , xn are A-algebra generators for
B, one checks that the elements xi ⊗1−1⊗ xi, for i = 1, . . . ,n,
generate J . It follows that if A −→ B is essentially of finite
type then J /J 2 is a finitely generated B-module.

(v) The term “diagonal map” comes from the geometry. If f : A,→B
is an integral extension of integral domains which are finitely
generated algebras over an algebraically closed field k, then
there is a corresponding surjective map of irreducible varieties
f # : Y −→ X , where X is the maximal ideal spectrum of A and Y
is that of B. In this case, the maximal ideal spectrum of B⊗A B
is the fiber product

Y ×X Y = {
(y1, y2) ∈Y ×Y

∣∣ f #(y1)= f #(y2)
}

.

The map µ : B⊗A B −→ B corresponds to the diagonal embed-
ding µ# : Y −→ Y ×X Y taking y to (y, y). In these terms, J is
the ideal of functions on Y ×X Y vanishing on the diagonal.

B.7. LEMMA. Let A −→ B be a homomorphism of Noetherian rings.
Then the following conditions are equivalent.

(i) B is a projective B⊗A B-module.
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(ii) The exact sequence 0−→J −→ B⊗AB
µ−→ B −→ 0 splits as B⊗AB-

modules.
(iii) µ

(
AnnB⊗AB

(
J

))= B.
If J /J 2 is a finitely generated B-module (for example, if A −→ B is
essentially of finite type), then these are equivalent to

(iv) J is generated by an idempotent.
(v) J /J 2 = 0.

PROOF. (i) ⇐⇒ (ii) is clear.
(ii) ⇐⇒ (iii): The map µ : B⊗A B −→ B splits over B⊗A B if and

only if the induced homomorphism

HomB⊗AB(B,µ) : HomB⊗AB(B,B⊗A B)−→HomB⊗AB(B,B)

is surjective. However, the isomorphism B ∼= (B⊗A B) /J shows that
we have HomB⊗AB(B,B ⊗A B) ∼= AnnB⊗AB(J ), so that µ splits if and
only if HomB⊗AB(B,µ) is surjective, if and only if µ

(
AnnB⊗AB

(
J

))= B.
The final two statements are always equivalent for a finitely gen-

erated ideal. Assume (iv), so that there exists z ∈ J with xz = x for
every x ∈ J . Define q : B⊗A B −→ J by q(x) = xz. Then for x ∈ J , we
have q(x) = x, so that the sequence splits. Conversely, any splitting q
of the map J −→ B⊗A B yields an idempotent z = q(1), so (ii) and (iv)
are equivalent. �

The proof1 of the next result is too long for us to include here, even
though it is the foundation for the theory. See for example [Eis95,
Corollary 16.16].

B.8. PROPOSITION. Suppose that A is a field and B is an A-algebra
essentially of finite type. Then the equivalent conditions of Lemma B.7
hold if and only if B is a direct product of a finite number of fields, each
finite and separable over A.

The condition in the Proposition that B be a direct product of a fi-
nite number of fields, each finite and separable over A, is sometimes
called a “(classically) separable algebra” in the literature. Equiva-
lently, K ⊗A B is a reduced ring for every field extension K of A.

We now relate the equivalent conditions of Lemma B.7 to the defi-
nitions at the beginning of the Appendix.

1Sketch: In the special case where A and B are both fields, one can show that
if B is projective over B ⊗A B then A −→ B is necessarily module-finite. Then a
separability idempotent z ∈ J is given as follows: let α ∈ B be a primitive element,
with minimal polynomial f (x) = (x−α)

∑n−1
i=0 bixi. Then z =

(
1⊗ 1

f ′(α)

)∑n−1
i=0 ai ⊗ bi is

idempotent.
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B.9. PROPOSITION. Let A −→ B be a homomorphism, essentially of
finite type, of Noetherian rings. The following statements are equiva-
lent.

(i) The exact sequence 0−→J −→ B⊗A B
µ−−→ B −→ 0 splits as B⊗A

B-modules.
(ii) B is unramified over A.

(iii) Every maximal ideal of B is unramified over A.

PROOF. (i) =⇒ (ii): Let q ∈ SpecB, and let p= A∩q be its contrac-
tion to A. It is enough to show that Bp/pBp is unramified over the field
Ap/pAp, i.e. is a finite direct product of finite separable field extensions.
By Proposition B.8, it suffices to show that Bp/pBp is a projective mod-
ule over Bp/pBp⊗Ap/pAp Bp/pBp. Let p : B −→ B⊗A B be a splitting for
µ, so that µp = 1B. Set y = p(1). Then µ(y) = 1 and ykerµ= 0; in fact,
the existence of an element y satisfying these two conditions is easily
seen to be equivalent to the existence of a splitting of µ. Consider the
diagram

B⊗A B
f
//

µ

��

Bp⊗Ap Bp
g
//

µ′
��

Bp/pBp⊗Ap Bp/pBp

µ′′
��

B // Bp
// Bp/pBp

in which the horizontal arrows are the natural ones and the verti-
cal arrows are the respective diagonal maps. Put y′′ = gf (y). Then
µ′′(y′′) = 1 and yker(µ′′) = 0, so that µ′′ splits. Since the top-right ring
is also Bp/pBp⊗Ap/pAp Bp/pBp, this shows that Ap/pAp −→ Bp/pBp is un-
ramified.

(ii) =⇒ (iii) is obvious.
(iii) =⇒ (i): Since J is a finitely generated B-module, it suffices

to assume that A −→ B is an unramified local homomorphism of local
rings and show that J =J 2. Once again we reduce to the case where
A is a field and B is a separable A-algebra. In this case Proposition B.8
implies that J =J 2. �

B.10. REMARKS. This proposition reconciles the two definitions of
unramifiedness given at the beginning of the Appendix, since it im-
plies that unramifiedness is preserved by localization. This has some
very satisfactory consequences. One can now use the characterizations
of reducedness and normality in terms of the conditions (Rn) and (Sn)
to see that if A −→ B is étale, then A is reduced, respectively nor-
mal, if and only if B is so. Note that this fact would be false without
the hypothesis that A −→ B is essentially of finite type. Indeed, the
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natural completion homomorphism A −→ Â satisfies (i) and (ii) of Def-
inition B.1, and is of course flat, but there are examples of completion
not preserving reducedness or normality.

Proposition B.9 also allows us to expand our use of language, say-
ing that a prime ideal p ∈ Spec A is unramified in B if the localization
Ap −→ Bp is unramified, that is, every prime ideal of B lying over p is
unramified.

We now define the homological different of the A-algebra B. It is
the ideal of B

HA(B)=µ(
AnnB⊗AB

(
J

))
,

where µ : B ⊗A B −→ B is again the diagonal map. The homological
different defines the branch locus of A −→ B, that is, the primes of B
which are ramified over A, as we now show.

B.11. THEOREM. Let A −→ B be a homomorphism, essentially of
finite type, of Noetherian rings. A prime ideal q ∈ SpecB is unramified
over A if and only if q does not contain HA(B).

PROOF. This fact follows from Proposition B.9 and condition (iii) of
Lemma B.7, together with the observation that formation of J com-
mutes with localization at q and A ∩ q. Precisely, let q ∈ SpecB and
set p= A∩q. Let S be the multiplicatively closed set of simple tensors
u⊗ v, where u and v range over B \ q. Then (B⊗A B)S

∼= Bq⊗A Bq
∼=

Bq⊗Ap Bq and the kernel of the map µ̃ : Bq⊗Ap Bq −→ Bq coincides with(
kerµ

)
S. �

§2. Purity of the branch locus

Turn now to the theorem on the purity of the branch locus. The
proof we give, following Auslander-Buchsbaum [AB59] and Auslan-
der [Aus62], is somewhat lengthy.

For the rest of this Appendix, we will be mainly concerned with
finite integral extensions A −→ B of Noetherian domains. In particular
they will be of finite type. Recall that for a finite integral extension,
we have the “lying over” and “going up” properties; if in addition A
is normal, then we also have “going down” [Mat89, Theorems 9.3 and
9.4]. In particular, in this case we have heightq = height(A ∩ q) for
q ∈SpecB ([Mat89, 9.8, 9.9]).

Recall also that since a normal domain satisfies Serre’s condition
(S2), the associated primes of a principal ideal all have height one
(Proposition A.9). In other words, principal ideals have pure height
one.
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B.12. THEOREM (Purity of the Branch Locus). Let A be a regular
ring and A,→B a module-finite ring extension with B normal. Then
HA(B) is an ideal of pure height one in B. In particular, if A −→ B is
unramified in codimension one, then A −→ B is unramified.

First we observe that the condition “unramified in codimension
one” can be interpreted in terms of the sequence (B.5.1).

Assume A −→ B is a module-finite extension of Noetherian normal
domains. We write B ·B for the reflexive product (B⊗A B)∗∗, where
−∗ = HomB(−,B). Since the B-module B is reflexive, and any homo-
morphism from B⊗A B to a reflexive B-module factors through B ·B,

we see that µ : B⊗A B −→ B factors as B⊗A B −→ B ·B µ∗∗−−→ B.

B.13. PROPOSITION. A module-finite extension of Noetherian nor-
mal domains A −→ B is unramified in codimension one if and only if
µ∗∗ is a split surjection of B⊗A B-modules.

PROOF. If µ∗∗ is a split surjection, then µ∗∗
p is a split surjection for

all primes q of height one in B. For these primes, however, µ∗∗
q = µq

since Bq ⊗Ap Bq = (B ⊗A B)q is a reflexive module over the DVR Bq,
where p = A∩q. Thus µ splits locally at every height-one prime of B,
so A −→ B is unramified in codimension one.

Now assume A −→ B is unramified in codimension one. Let K be
the quotient field of A and L the quotient field of B. Since A −→ B
is unramified at the zero ideal, K −→ L is unramified, equivalently,
a finite separable field extension. In particular, the diagonal map
η : L⊗K L −→ L is a split epimorphism of L⊗K L-modules.

Since B ·B is B-reflexive, it is in particular torsion-free, and so B ·B
is a submodule of L⊗K L. We therefore have a commutative diagram
of short exact sequences

0 // L // L⊗K L
η
// L // 0

0 // J ′ //

OO

B ·B µ∗∗
//

� ?

OO

B //
� ?

OO

0

0 // J //

OO

B⊗A B
µ
//

OO

B // 0

in which the left-hand modules are by definition the kernels, and in
which the top row splits over L⊗K L since L/K is separable. Let ε : L −→
L ⊗K L be a splitting, and let ζ be the restriction of ε to B. It will
suffice to show that ζ(B) ⊆ B ·B, for then ζ will be the splitting of µ∗∗
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we need. For a height-one prime ideal q of B, with p = A ∩ q, we do
have ζq(Bq) ⊆ (Bq⊗Ap Bq)∗∗ = (B⊗A B)q, since A −→ B is unramified in
codimension one. But im(ζ)=⋂

heightq=1 im(ζq) and B =⋂
heightq=1 Bq as

B is normal, so the image of ζ is contained in B ·B and ζ is a splitting
for µ∗∗. �

Following Auslander and Buchsbaum, we shall first prove Theo-
rem B.12 in the special case where B is a finitely generated projective
A-module. In this case the homological different coincides with the
Dedekind different from number theory, which we describe now.

Let A −→ B be a module-finite extension of normal domains. Let K
and L be the quotient fields of A and B, respectively. We assume that
K −→ L is a separable extension. (In the situation of Theorem B.12,
this follows from the hypothesis.) In this case the trace form (x, y) 7→
TrL/K (xy) is a non-degenerate pairing L⊗K L −→ L, and since A −→ B
is integral and A is integrally closed in K we have TrL/K (B)⊆ A. Set

CA(B)= {x ∈ L |TrL/K (xB)⊆ A } ,

and call it the Dedekind complementary module for B/A.It is a frac-
tional ideal of B.

We set DA(B)= (CA(B))−1, the inverse of the fractional ideal CA(B).
This is the Dedekind different of B/A. Since B ⊆ CA(B), we have that
DA(B)⊆ B and DA(B) is an ideal of B. It is even a reflexive ideal since
it is the inverse of a fractional ideal.

The following theorem is attributed to Noether ([Noe50], posthu-
mous) and Auslander-Buchsbaum.

B.14. THEOREM. Let A −→ B be a module-finite extension of Noe-
therian normal domains which induces a separable extension of quo-
tient fields. We have HA(B) ⊆ DA(B), and if B is projective as an A-
module then HA(B)=DA(B).

PROOF. Let K and L be the respective quotient fields of A and B as
in the discussion above. Set L∗ = HomK (L,K) and B∗ = HomA(B, A).
Define

σL : L⊗K L −→HomL(L∗,L)

by σL(x⊗ y)( f ) = xf (y). Then σL restricts to a similarly defined map
σB : B⊗A B −→HomB(B∗,B). It’s straightforward to show that σB is an
isomorphism if B is projective over A; in particular, σL is an isomor-
phism. Its inverse is defined by (σL)−1 ( f ) = ∑

j f (x∗j )⊗ x j, where
{
x j

}
and

{
x∗j

}
are dual bases for L and L∗ over K .
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Consider the diagram

HomB(B∗,B)
iB
//

��

HomA(B∗,B)

��

B⊗A B
σB
oo

µB
//

��

B

��

HomL(L∗,L)
iL

// HomK (L∗,L) L⊗K L
σL
∼=
oo

µL
// L

in which µB and µL are the respective diagonal maps, iB and iL are
inclusions, and the vertical arrows are all induced from the inclusion
of B into L. Now TrL/K (x) = ∑

j x∗j (xx j), so if f ∈ HomL(L∗,L) then we
have f (TrL/K ) =∑

j x j f (x∗j ). Thus the composition of the entire bottom
row, left to right, is given by

µL (σL)−1 iL( f )=µL

(∑
j

f (x∗j )⊗ x

)
=∑

j
f (x∗j )x j = f (TrL/K ) .

It follows that the image of HomB(B∗,B) in L is DA(B).
The module HomA(B∗,B) is naturally a B⊗A B-module via the rule((

b⊗b′) ( f )
)
(g) = bf (g ◦ b′), where the b′ on the right represents the

map on B given by multiplication by that element. Thus σB is a B⊗AB-
module homomorphism. An element HomA(B∗,B) is in the image of iB
if and only if it is a B-module homomorphism, i.e. (b⊗1)( f )= (1⊗b) ( f )
for every b ∈ B. This is exactly saying that f annihilates J = kerµB.
Thus implies that σB

(
AnnB⊗AB

(
J

)) ⊆ im iB. It follows that HA(B) =
µB

(
AnnB⊗AB

(
J

))⊆DA(B).
Finally, if B is projective as an A-module then σB is an isomor-

phism and σB
(
AnnB⊗AB

(
J

))
is equal to the image of iB. Thus HA(B)=

DA(B). �

Next we show that DA(B) has pure height one, so in case they are
equal HA(B) does as well. We need a general fact about modules over
normal domains.

B.15. PROPOSITION. Let A be a Noetherian normal domain. Let

0−→ M −→ N −→ T −→ 0

be a short exact sequence of non-zero finitely generated A-modules in
which M is reflexive and T is torsion. Then AnnA(T) is an ideal of pure
height one in A.

PROOF. This is similar to Lemma 5.11. Let p be a prime ideal min-
imal over the annihilator of T. Then in particular p is an associated
prime of T, so that depthTp = 0. Since M is reflexive, it satisfies (S2),
so that if p has height two or more then Mp has depth at least two.
This contradicts the Depth Lemma.
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�

B.16. COROLLARY. Let A −→ B be a module-finite extension of nor-
mal domains. Assume that the induced extension of quotient fields is
separable. If DA(B) 6= B, then DA(B) is an ideal of pure height one in
B. Consequently, DA(B) = B if and only if A −→ B is unramified in
codimension one.

PROOF. For the first statement, take M = A and N = CA(B) in
Proposition B.15. In the second statement, necessity follows from the
containment HA(B) ⊆DA(B) and Theorem B.11. Conversely, suppose
DA(B)= B. Let q be a height-one prime of B and set p= A∩q. Then Ap

is a DVR and Bp is a finitely generated torsion-free Ap-module, whence
free. Thus HAp(Bp)=DAp(Bp)= (DA(B))p = Bp. By Theorem B.11 Bp is
unramified over Ap, so in particular q is unramified over p. �

B.17. COROLLARY. If, in the setup of Corollary B.16, B is projective
as an A-module, then A −→ B is unramified if and only if it is unrami-
fied in codimension one.

Now we turn to Auslander’s proof of the theorem on the purity of
the branch locus. The strategy is to reduce the general case to the
situation of Corollary B.17 by proving a purely module-theoretic state-
ment.

B.18. PROPOSITION. Let A −→ B be a module-finite extension of
normal domains which is unramified in codimension one. Assume that
A has the following property: If M is a finitely generated reflexive A-
module such that HomA(M, M) is isomorphic to a direct sum of copies
of M, then M is free. Then A −→ B is unramified.

PROOF. Let K −→ L be the extension of quotient fields induced by
A −→ B. Then L is a finite separable extension of K . By [Aus62, Prop.
1.1], we may assume in fact that K −→ L is a Galois extension. (The
proof of this result is somewhat technical, so we omit it.)

We are therefore in the situation of Theorem 5.12! Thus EndA(B) is
isomorphic as a ring to the skew group ring B#G, where G =Gal(L/K).
As a B-module, and hence as an A-module, B#G is isomorphic to a
direct sum of copies of B. By hypothesis, then, B is a free A-module.
Corollary B.17 now says that A −→ B is unramified. �

Auslander’s argument that regular local rings satisfy the condition
of Proposition B.18 seems to be unique in the field; we know of nothing
else quite like it. We being with three preliminary results.
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B.19. LEMMA. Let A be a Noetherian normal domain and let M be
a finitely generated torsion-free A-module. Then

HomA(M, M)∗ ∼=HomA(M∗, M∗) .

PROOF. We have the natural map ρ : M∗ ⊗A M −→ HomA(M, M)
defined by ρ( f ⊗ y)(x) = f (x)y, which is an isomorphism if and only if
M is free; see Exercise 12.25. Dualizing yields ρ∗ : HomA(M, M)∗ −→
(M∗⊗A M)∗ ∼= HomA(M∗, M∗) by Hom-tensor adjointness. Now ρ∗ is
a homomorphism between reflexive A-modules, which is an isomor-
phism in codimension one since A is normal and M is torsion-free. By
Lemma 5.11, ρ∗ is an isomorphism. �

B.20. LEMMA. Let (A,m) be a local ring and f : M −→ N a homo-
morphism of finitely generated A-modules. Assume that fp : Mp −→
Np is an isomorphism for every non-maximal prime p of A. Then
Exti

A( f , A) : Exti
A(N, A) −→ Exti

A(M, A) is an isomorphism for each i =
0, . . . ,depth A−2.

PROOF. The kernel and cokernel of f both have finite length, so
Exti

A(ker f , A) = Exti
A(cok f , A) = 0 for i = 0, . . . ,depth A − 1 [Mat89,

Theorem 16.6]. The long exact sequence of Ext now gives the con-
clusion. �

B.21. PROPOSITION. Let (A,m) be a local ring of depth at least 3
and let M be a reflexive A-module such that

(i) M is locally free on the punctured spectrum of A; and
(ii) pdA M6 1.

If M is not free, then

`
(
Ext1

A(HomA(M, M), A)
)> (rankA M) `

(
Ext1

A(M, A)
)

.

PROOF. Assume that M is not free. We have the natural homomor-
phism ρM : M∗⊗A M −→HomA(M, M), defined by ρM( f ⊗ x)(y)= f (y)x,
which is an isomorphism if and only if M is free; see Remark 12.2. In
particular, ρM is locally an isomorphism on the punctured spectrum of
A, so by Lemma B.20, we have

Ext1
A(M∗⊗A M, A)∼=Ext1

A(HomA(M, M), A) .

Next we claim that there is an injection Ext1
A(M, M),→Ext1

A(M∗⊗A
M, A). Let

(B.21.1) 0−→ F1 −→ F0 −→ M −→ 0

be a free resolution. Dualizing gives an exact sequence

(B.21.2) 0−→ M∗ −→ F∗
0 −→ F∗

1 −→Ext1
A(M, A)−→ 0 ,
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so that TorA
i−2(M∗, M) = TorA

i (Ext1
A(M, A), M) = 0 for all i > 3. In par-

ticular, applying M∗⊗A − to (B.21.1) results in an exact sequence

0−→ M∗⊗A F1 −→ M∗⊗A F0 −→ M∗⊗A M −→ 0 .

Dualizing this yields an exact sequence

HomA(M∗⊗A F0, A)
η−→HomA(M∗⊗A F1, A)−→Ext1

A(M∗⊗A M, A) .

But the homomorphism η is naturally isomorphic to the homomor-
phism HomA(F0, M∗∗) −→ HomA(F1, M∗∗). Since M is reflexive, this
implies that the cokernel of η is isomorphic to Ext1

A(M, M), whence
Ext1

A(M, M),→Ext1
A(M∗⊗A M, A), as claimed.

Next we claim that Ext1
A(M, M) ∼= Ext1

A(M, A)⊗A M. This follows
immediately from the commutative exact diagram

F∗
0 ⊗A M //

ρM
F0
��

F∗
1 ⊗A M //

ρM
F1
��

Ext1
A(M, A)⊗A M //

��

0

HomA(F0, M) // HomA(F1, M) // Ext1
A(M, M) // 0

in which the rows are the result of applying −⊗A M to (B.21.2) and
HomA(−, M) to (B.21.1), respectively, the two vertical arrows ρM

Fi
are

isomorphisms since each Fi is free, and the third vertical arrow is in-
duced by the other two.

Putting the pieces together so far, we have

`
(
HomA(Ext1

A(M, M), A)
)= `(

Ext1
A(M∗⊗A M, A)

)
> `

(
Ext1

A(M, M)
)

= `(
Ext1

A(M, A)⊗A M
)

Set T = Ext1
A(M, A). Then T 6= 0, since T = 0 implies that M∗ is free

by (B.21.2), whence M is free as well, a contradiction. Then we have
an exact sequence

0−→TorA
1 (T, M)−→ T ⊗A F1 −→ T ⊗A F0 −→ T ⊗A M −→ 0 .

The rank of M is equal to rankA F0−rankA F1 by (B.21.1), so counting
lengths shows that

` (T ⊗A M)= (rankA M) `(T)+`
(
TorA

1 (T, M)
)

.

But T is a non-zero module of finite length, so TorA
1 (T, M) 6= 0, and the

proof is complete. �

The next proposition will serve as a road map for Auslander’s proof
of the theorem on the purity of the branch locus.
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B.22. PROPOSITION. Let C be a set of pairs (A, M) where A is a
local ring and M is a finitely generated reflexive A-module. Assume
that

(i) (A, M) ∈C implies (Ap, Mp) ∈C for every p ∈Spec A;
(ii) (A, M) ∈C and depth A6 3 imply that M is free; and

(iii) (A, M) ∈ C , depth A > 3, and M locally free on the punctured
spectrum imply that there exists a non-zerodivisor x in the max-
imal ideal of A such that (A/(x), (M/xM)∗∗) ∈C .

Then M is free over A for every (A, M) in C .

PROOF. If the statement fails, choose a witness (A, M) ∈ C with
M not A-free and dim A minimal. By (ii), depth A > 3, so that by (iii)
we can find a non-zerodivisor x in the maximal ideal of A such that
(A, M

∗∗
) ∈C , where overlines denote passage modulo x and the duals

are taken over A. Since both dim A and dim Ap, for p a non-maximal
prime, are less than dim A, minimality implies that M

∗∗
is A-free and

Mp is Ap-free for every non-maximal p. In particular, Mp is Ap-free
for every non-maximal prime p of A. Thus the natural homomorphism
of A-modules M −→ M

∗∗
is locally an isomorphism on the punctured

spectrum of A. Lemma B.20 then implies

(B.22.1) Exti
A

(M
∗∗

, A)∼=Exti
A

(M, A)

for i = 0, . . . ,depth A−2. In particular, (B.22.1) holds for i = 0 and i = 1
since depth A −2 = depth A −3 > 0. In particular the case i = 1 says
Ext1

A
(M, A)= 0 since M

∗∗
is free.

Now, since M is reflexive, the element x is also a non-zerodivisor
on M, so standard index-shifting ([Mat89, p. 140]) gives Ext1

A(M, A)=
Ext1

A
(M, A) = 0. The short exact sequence 0 −→ A x−→ A −→ A −→ 0

induces the long exact sequence containing

Ext1
A(M, A) x−→Ext1

A(M, A)−→Ext1
A(M, A)= 0

so that Ext1
A(M, A) = 0 by NAK. In particular HomA(M, A) ∼= M∗ from

the rest of the long exact sequence. But HomA(M, A)=HomA(M, A) as
well, so M∗ ∼= (M)∗. Since M is A-free, this shows that M∗ is free over
A, and since x is a non-zerodivisor on M∗ it follows that M∗ is A-free.
Thus M is A-free, which contradicts the choice of (A, M) and finishes
the proof. �

B.23. PROPOSITION. Let C be the set of all pairs (A, M) in which
(A,mA) is a regular local ring and M is a reflexive A-module with
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HomA(M, M) ∼= M(n) for some n. Then C satisfies the conditions of
Proposition B.22. Thus M is free over A for every such (A, M).

PROOF. The fact that C satisfies (i) follows from the isomorphism
HomRp(Mp, Mp)∼=HomR(M, M)p and the fact that regularity localizes.

For (ii), we note that reflexive modules over a regular local ring
of dimension 6 2 are automatically free. Therefore M is locally free
on the punctured spectrum; also, we may assume that dim A = 3. Fi-
nally, the Auslander-Buchsbaum formula gives pdA M 6 1; we want
to show pdA M = 0. Observe that n = rankA(M) (by passing to the
quotient field of A), so Ext1

A(HomA(M, M), A) ∼= Ext1
A(M(rankA M), A) ∼=

Ext1
A(M, A)(rankA M). Thus by Proposition B.21 M is free.
As for (iii), let (A, M) ∈C with dim A > 3 and M locally free on the

punctured spectrum. Let x ∈mA \m2
A be a non-zerodivisor on A, hence

on M as well since M is reflexive. Applying HomA(M,−) to the short
exact sequence 0−→ M x−→ M −→ M −→ 0 gives

0−→HomA(M, M) x−→HomA(M, M)−→HomA(M, M)−→Ext1
A(M, M) .

As HomA(M, M) ∼= M(n), the cokernel of the map on HomA(M, M) de-
fined by multiplication by x is M

(n)
. This gives an exact sequence

0−→ M
(n) −→HomA(M, M)−→Ext1

A(M, M) .

The middle term is isomorphic to HomA(M, M), and the rightmost
term has finite length as M is locally free. Apply the i = 0 version
of Lemma B.20 to the A-homomorphism M

(n) −→ HomA(M, M) to find
that

HomA(M, M)∗ ∼=
(
M

∗)(rankA M)
,

whence

HomA(M, M)∗∗ ∼=
(
M

∗∗)(rankA M)
.

Since A is regular and x ∉ m2
A, A is regular as well. In particular,

A is a normal domain, so HomA(M, M)∗∗ = HomA(M
∗∗

, M
∗∗

). Thus
(A, M

∗∗
) ∈C . �

B.24. REMARK. As Auslander observes, one can use the same strat-
egy to prove that if A is a regular local ring and M is a reflexive A-
module such that HomA(M, M) is a free A-module, then M is free. This
is proved by other methods in [AG60], and has been extended to reflex-
ive modules of finite projective dimension over arbitrary local rings by
Braun [Bra04].
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§3. Galois extensions

Let us now investigate ramification in Galois ring extensions. We
will see that ramification in codimension one is attributable to the ex-
istence of pseudo-reflections in the Galois group, and prove the cel-
ebrated Chevalley-Shephard-Todd Theorem that finite groups gener-
ated by pseudo-reflections have polynomial rings of invariants. We
also prove a result due to Prill, which roughly says that for the pur-
poses of this book we may ignore the existence of pseudo-reflections.

B.25. DEFINITION. Let G be a group and V a finite-dimensional
faithful representation of G over a field k. Say that σ ∈G is a pseudo-
reflection if σ has finite order and the fixed subspace

Vσ = {v ∈V |σv = v}

has codimension one in V . This subspace is called the reflecting hyper-
plane of σ.

A reflection is a pseudo-reflection of order 2.

If the V -action of σ ∈G is diagonalizable, then to say σ is a pseudo-
reflection is the same as saying σ ∼ diag(1, . . . ,1,λ) where λ 6= 1 is a
root of unity. In any case, the characteristic polynomial of a pseudo-
reflection has 1 as a root of multiplicity at least dimV −1, hence splits
into a product of linear factors (t−1)n−1(t−λ) with λ a root of unity. In
fact, one can show (Exercise 5.38) that a pseudo-reflection with order
prime to char(k) is necessarily diagonalizable.

B.26. NOTATION. Here is the notation we will use for the rest of
the Appendix. In contrast to Chapter 5, where we consider the power
series case, we will work in the graded polynomial situation, since it
clarifies some of the arguments. We leave the translation between the
two to the reader. Let k be a field and V an n-dimensional faithful k-
representation of a finite group G, so that we may assume G ⊆GL(V )∼=
GL(n,k). Set S = k[V ] ∼= k[x1, . . . , xn], viewed as the ring of polynomial
functions on V . Then G acts on S by the rule (σ f )(v)= f (σ−1v), and we
set R = SG , the subring of polynomials fixed by this action. Then R −→
S is a module-finite integral extension of Noetherian normal domains.
Let K and L be the quotient fields of R and S, respectively; then L/K is
a Galois extension with Galois group G, and S is the integral closure of
R in L. Finally, let m and n denote the obvious homogeneous maximal
ideals of R and S.

B.27. THEOREM (Chevalley-Shephard-Todd). Consider the follow-
ing conditions.

(i) R = SG is a polynomial ring.
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(ii) S is free as an R-module.
(iii) TorR

1 (S,k)= 0.
(iv) G is generated by pseudo-reflections.

We have (i) ⇐⇒ (ii) ⇐⇒ (iii) =⇒ (iv), and all four conditions are
equivalent if |G| is invertible in k.

PROOF. (i) =⇒ (ii): Note that S is always a MCM R-module, so if
R is a polynomial ring then S is R-free by the Auslander-Buchsbaum
formula.

(ii) =⇒ (i): If S is free over R, then in particular it is flat. For any
finitely generated R-module, then, we have

TorR
i (M,k)⊗R S =TorS

i (S⊗R M,S/mS) .

Since S is regular of dimension n and S/mS has finite length, the latter
Tor vanishes for i > n, whence the former does as well. It follows that
R is regular, hence a polynomial ring.

(ii) ⇐⇒ (iii): This is standard.
(i) =⇒ (iv): Let H ⊆ G be the subgroup of G generated by the

pseudo-reflections. Then H is automatically normal. Localize the
problem, setting A = Rm, a regular local ring by hypothesis, and B =(
k[V ]H)

k[V ]H∩n. Then A −→ B is a module-finite extension of local nor-
mal domains, and A = BG/H .

Consider as in Chapter 5 the skew group ring B#(G/H). There
is, as in that chapter, a natural ring homomorphism δ : B#(G/H) −→
HomA(B,B), which considers an element bσ ∈ B#(G/H) as the A-linear
endomorphism b′ 7→ bσ(b′) of B. We claim that δ is an isomorphism.
Since source and target are reflexive over B, it suffices to check in
codimension one. Let q and p = A ∩ q be height-one primes of B and
A respectively; then Bq is a finitely generated free Ap-module and so
δq : Bq#(G/H)−→HomAp(Bq,Bq) is an isomorphism. This shows that δ
is an isomorphism, and in particular HomA(B,B) is isomorphic as an
A-module to a direct sum of copies of B. By Proposition B.23, B is free
over A.

Since B is A-free, we have HA(B) =DA(B) by Theorem B.14. But
DA(B) = B since no non-identity element of G/H fixes a codimension-
one subspace of V , i.e. a height-one prime of B. This implies HA(B)= B
so that the branch locus is empty. However, if G/H is non-trivial then
A −→ B is ramified at the maximal ideal of B. Thus G/H = 1.

Finally, we prove (iv) =⇒ (iii) under the assumption that |G| is
invertible in k. For an arbitrary finitely generated R-module M, set
T(M) = TorR

1 (M,k). We wish to show T(S) = 0. Note that G acts natu-
rally on T(S), which is a finitely generated graded S-module.
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Let σ ∈G be a pseudo-reflection and set W =Vσ, a linear subspace
of codimension one. Let f ∈ S be a linear form vanishing on W . Then
( f ) is a prime ideal of S of height one, and σ acts trivially on the quo-
tient S/( f )∼= k[W]. For each g ∈ S, then, there exists a unique element
h(g) ∈ S such that σ(g)− g = h(g) f . The function g 7→ h(g) is an R-
linear endomorphism of S of degree −1, with σ−1S = hf as functions
on S. Applying the functor T(−) gives T(σ)−1T(S) = T(h) fT(S) as func-
tions on T(S). It follows that σ(s) ≡ xmodnT(S) for every x ∈ T(S).
Since G is generated by pseudo-reflections, we conclude that σ(x) ≡
xmodnT(S) for every σ ∈G and every x ∈ T(S).

Next we claim that T(S)G = 0. Define Q : S −→ S by

Q( f )= 1
|G|

∑
σ∈G

σ( f ) ,

so that in particular Q(S) = R. Factor Q as Q = iQ′ : S −→ R −→ S, so
that T(Q)= T(i)T(Q′). Since T(R)= 0, T(i) is the zero map, so T(Q)= 0
as well. Hence

0= T(Q)= 1
|G|

∑
σ∈G

T(σ) ,

as R-linear maps T(S) −→ T(S). But that R-linear map fixes the G-
invariant elements of T(S), so that T(S)G = 0.

Finally, suppose T(S) 6= 0. Then there exists a homogeneous ele-
ment x ∈ T(S) of minimal positive degree. Since σ(x)≡ xmodnT(S) for
every σ ∈ G, x is an invariant of T(S). But then x = 0 as T(S)G = 0.
This completes the proof. �

It is implicit in the proof of Theorem B.27 that pseudo-reflections
are responsible for ramification. Let us now bring that out into the
open. Briefly, the situation is this: let W be a codimension-one sub-
space of V , and f ∈ S a linear form vanishing on W . Then ( f ) is a
height-one prime of S, and ( f ) is ramified over R if and only if W is the
reflecting hyperplane of a pseudo-reflection.

Keep the notation established so far, so that R = k[V ]G ⊆ S = k[V ]
is a module-finite extension of normal domains inducing a Galois ex-
tension of quotient fields K −→ L. Since R −→ S is integral, it follows
from “going up” and “going down” that a prime ideal q of S has height
equal to the height of R ∩q. Furthermore, for a fixed p ∈ SpecR, the
primes q lying over p are all conjugate under the action of G. (If q and
q′ lying over p are not conjugate, then by “lying over” no conjugate of
q contains q′. Use prime avoidance to find an element s ∈ q′ so that s
avoids all conjugates of q. Then

∏
σ∈Gσ(s) is fixed by G, so in R∩q= p,

but not in q′.)
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Assume now that p is a fixed prime of R of height one, and let
q⊆ S lie over p. Then Rp −→ Sq is an extension of DVRs, so pSq = qeSq

for some integer e = e(p), the ramification index of q over p, which
is independent of q by the previous paragraph. Let f = f (p,q) be
the inertial degree of q over p, i.e. the degree of the field extension
Rp/pRp −→ Sq/qSq. Then Sq/pSq is a free Rp/pRp-module of rank e f ,
so Sq is a free Rp-module of rank e f .

Let q1, . . . ,qr be the distinct primes of S lying over p, and set q= q1.
Let D(q) be the decomposition group of q over p,

D(q)= {σ ∈G |σ(q)= q } .

By the orbit-stabilizer theorem, D(q) has index r in G. Furthermore,
Sq is an extension of Rp of rank equal to D(q), which implies |D(q)| =
e f .

Notice that an element of D(q) induces an automorphism of S/q.
We let T(q), the inertia group of q over p, be the subgroup inducing the
identity on S/q:

T(q)= {σ ∈G |σ( f )− f ∈ q for all f ∈ S } .

Then the quotient D(q)/T(q) acts as Galois automorphisms of Sq/qSq

fixing Rp/pRp. It follows that |D(q)/T(q)| divides the degree f of this
field extension. Combining this with |D(q)| = e f , we see that e divides
|T(q)|. In fact e = |T(q)| as long as |G| is invertible in k:

B.28. PROPOSITION. Let q be a height one prime of S, set p= R∩q,
and suppose that T(q) 6= 1. Then q = ( f ) for some linear form f ∈ S. If
W ⊆ V is the hyperplane on which f vanishes, then T(q) is the point-
wise stabilizer of W , so every non-identity element of T(q) is a pseudo-
reflection. Furthermore if |G| is invertible in k then e(p)= |T(q)|.

PROOF. Since q is a prime of height one in the UFD S, q = ( f ) for
some homogeneous element f ∈ S. If f has degree 2 or more, then
every linear form of S survives in Sq/qSq, so is acted upon trivially by
T(q). Since T(q) is non-trivial, we must have deg f = 1, so f is linear.
The zero-set of f , W =SpecS/q, is the subspace fixed pointwise by T(q).

For any σ ∈ T(q), σ( f ) vanishes on W , so σ( f )= aσ f for some scalar
aσ ∈ k. Define a linear character χ : T(q) −→ k× by χ(σ) = aσ. The
image of χ is finite, so is cyclic of order prime to the characteristic of k.
The kernel of χ consists of the non-diagonalizable pseudo-reflections
in T(q) (see the discussion following Definition B.25). Since |G| is not
divisible by p, the kernel of χ is trivial by Exercise 5.38, so that T(q) is
cyclic.
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Let σ ∈ T(q) be a generator, and let λ be the unique eigenvalue of σ
different from 1. Then λ is an sth root of unity for some s > 1. We can
find a basis v1, . . . ,vn for V such that v1, . . . ,vn−1 span W , so are fixed
by σ, and σvn =λvn. It follows that k[V ]T(q) ∼= k[x1, . . . , xn−1, xs

n], and so
p= (xs

n) and e(p)= s = |T(q)|. �

Recall that we say the group G is small if it contains no pseudo-
reflections.

B.29. THEOREM. Let G ⊆ GL(V ) be a finite group of linear auto-
morphisms of a finite-dimensional vector space V over a field k. Set
S = k[V ] and R = SG . Assume that |G| is invertible in k. Then a prime
ideal q of height one in S is ramified over R if and only if T(q) = 1. In
particular, R −→ S is unramified in codimension one if and only if G is
small.

PROOF. Let e = e(p) be the ramification index of p = R ∩ q, and
f = f (p,q) the degree of the field extension Rp/pRp −→ Sq/qSq. By the
discussion before the Proposition, e f = |D(q)|, where D(q) is the de-
composition group of q over p. Since the order of G is prime to the
characteristic, we see that f is as well, so the field extension is sepa-
rable. Therefore q is ramified over R if and only if e > 1, which occurs
if and only if T(q) 6= 1. �

To close the Appendix, we record a result due to Prill [Pri67].

B.30. PROPOSITION. Let G be a finite subgroup of GL(V ), where
V is an n-dimensional vector space over a field k. Set S = k[V ] and
R = SG . Then there is an n-dimensional vector space V ′ and a small
finite subgroup G′ ⊆GL(V ′) such that R ∼= k[V ′]G

′
.

PROOF. Let H be the normal subgroup of G generated by pseudo-
reflections. By the Chevalley-Shephard-Todd Theorem B.27, SH ∼=
k[ f1, . . . , fn] is a polynomial ring on algebraically independent elements
f1, . . . , fn. The quotient G/H acts naturally on SH , with (SH)G/H = SG ,
so it suffices to show that G/H acts on V ′ = span( f1, . . . , fn) without
pseudo-reflections. Fix σ ∈G \ H and let τ ∈ H. Since στ ∉ H, the sub-
space Vστ fixed by στ has codimension at least two. The fixed locus of
the action of the coset σH on V ′ is then the intersection of Vστ as τ
runs over H, so also has codimension at least two. Therefore σH is not
a pseudo-reflection. �

In fact the small subgroup G′ of the Proposition is unique up to
conjugacy in GL(n,k). We do not prove this; see [Pri67] for a proof in
the complex-analytic situation, and [DR69] for a proof in an algebraic
context.
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analytic branch, 19, 144–147
analytic local ring, 237
analytically

normal, 23, 24
ramified, 52, 264, 276

351
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unramified, 19, 41, 45, 46, 48, 49,
53–57, 168, 264, 279, 312

Ann, 238
anti-diagonal block matrix, 156, 230
antichain, 27, 47
apparently split, 107
approximation, 207, 208, 211
Approximation Theorem, 182
AR, see Auslander-Reiten
Arnol′d, Vladimir I., 256
Artin, Michael, 97, 100, 104, 117, 158
Artin-Rees Lemma, 8
Artinian localization, 17
Artinian pair, 21, 27, 29, 32, 32–39,

42–49, 242, 244, 248, 252, 279
Artinian ring, 5–6, 27, 29, 30, 32, 38,

119, 162, 169, 196, 234, 263, 277,
290

ascent
of bounded CM type, 275, 294
of excellence, 163
of finite CM type, 48, 131, 136, 160,

161, 164, 165, 167
associated graded ring, 141, 158, 196
associativity formula, 311
asymmetry, 56, 220
atom, 13, 22
Auslander transpose Tr, 200,

199–219, 234, 235, 277
Auslander, Maurice, 43, 66, 67, 73,

107, 112, 114–116, 118, 171, 180,
182, 185, 195, 204, 230, 237, 263,
272, 287, 289, 322, 324, 326, 328,
330

Auslander-Buchsbaum formula, 121,
122, 280, 306, 330, 332

Auslander-Reiten quiver, 213, 221,
219–235, 265, 272–279, 286, 289,
294

Auslander-Reiten sequence, 112, 158,
213, 213–228, 230, 234, 235, 263,
274, 277, 283–289, 291

existence, 214
uniqueness, 214

Auslander-Reiten translate τ, 218,
218–228, 231–233, 277, 285, 288,
291

Azumaya, Gorô, 1, 3, 5

Baeth, Nicholas, 56
Bass numbers, 178, 196
Bass’ Conjecture, 172
Bass, Hyman, 48, 54, 172
BD, see Burban-Drozd
Betti numbers, 149, 180, 276, 294
biduality, 201, 260
binary polyhedral group, 84, 86,

86–90, 92–97, 149, 259
biproduct, 1, 2, 9, 10, 32
blowup, 102
bounded CM type, 30, 148, 159, 264,

264, 272, 275, 276, 293–303
bounded free resolution, 124
bounded representation type, 30, 263
Bourbaki, 23, 84, 166
Bourbaki sequence, 23, 24
branch locus, 322, 332
branch of a curve, 19, 144–147
Brauer, Richard, 263
Brauer-Thrall Conjectures, 263–276,

281
I, 264, 272–283
II, 49, 264, 276–281

Braun, Amiram, 330
Bravais, Auguste, 84
Bruns, Winfried, 280
Bruns-Herzog, 306
Buchsbaum, David, 66, 322, 324
Buchweitz, Ragnar-Olaf, 139, 143,

171, 180, 182, 185, 199, 204, 237,
241, 248, 280

Burban, Igor, 237, 240, 241, 244, 259
Burban-Drozd triples BD, 244,

240–255, 260, 261

C , 86
c, 42
cancellative semigroup, 14
canonical module ω, 114, 172,

171–180, 183–185, 188–197, 213,
214, 217–220, 223, 229, 230, 239,
259, 260, 277, 283, 284, 288, 309

canonical rank ω-rank, 185, 188, 190,
197

Cartan invariants, 263
Cartan, Henri, 62
case analysis, dreary, 33
Cauchy sequence, 6, 240
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Cauchy’s Theorem, 86
Caviglia, Giulio, 118
Cayley-Hamilton Theorem, 314
character, 73, 92–97, 151
character table, 94–96
characteristic

bad, 64, 139, 157–158
five, 157
good, 50, 51, 83, 89–91, 131, 139,

142, 143, 149, 159, 168, 230
three, 38, 49, 50, 58, 157
two, 36, 37, 41, 50, 126, 130–132,

135–137, 139, 143, 157, 158, 168,
249, 252, 255, 264, 276, 281, 284,
287, 293, 294

zero, 50, 98, 99, 107, 115–118, 149,
188, 289

characteristic polynomial, 30, 314,
331

Chern class c1, 104, 105
Chevalley-Shephard-Todd Theorem,

69, 331, 335
Chinese Remainder Theorem, 314
Christensen, Lars Winther, 199, 206
Çimen, Nuri, 41, 45, 48–50
Cl(R), 23
closed under AR sequences, 283–289
closed under extensions, 207, 208,

210, 211
clutter, 27, 47
codepth, 172, 174, 179, 181, 183–185,

189, 191, 204
coefficient field, 295
Cohen’s Structure Theorems, 173,

271
Cohen-Macaulay type, 114, 189
coherent sheaf, 98, 104, 106
cohomology, 64, 98, 105
complete intersection, 114, 115
complete local ring

is Henselian, 6
satisfies Krull-Remak-Schmidt, 7

complete resolution, 203–205
complex numbers C, 24, 81, 83–87,

89, 90, 92–97, 106, 118, 149–156,
237, 280

conductor c, 42, 47, 48, 58, 59,
241–248, 250–252, 260, 279

conductor square, 20, 42, 47, 48, 51,
53, 57, 58, 241, 279

conormal module I/I2, 114–115
constant rank, 19, 22, 23, 43–45,

49–51, 57, 180, 183–185, 264,
280, 295–302, 312, 313

of a module over an Artinian pair,
32

countable CM type, 130, 139,
237–262, 264, 280, 298

countable prime avoidance, 237–239
countably simple singularity, 139,

140–142, 241, 249, 255, 256, 293
covariants, 72, 150
cover, 207, 208

D, 86
DA(B), 324
Dade’s construction, 21, 27, 37
Dade, Everett C., 37
de la Peña, José Antonio, 265, 266
decomposition group, 334–335
Dedekind different, 324–326, 332
Dedekind domain, 2, 10, 14
defects of an exact sequence, 235
deformation theory, 158
Del Pezzo-Bertini Theorem, 291
delta-invariant, 188
δ-invariant, 171, 185, 185–196
depth, 305, 305–306
Depth Lemma, 65, 67, 162, 173, 184,

242, 246, 306, 308, 325
derivation, 319
derivative, 20, 58

partial, 89, 188, 271
descent

from the completion, 17
of bounded CM type, 293, 294, 300,

302, 303
of direct summands, 9
of finite CM type, 48, 131, 136, 159,

167, 275, 276
of finite representation type, 38
of isomorphism, 9

desingularization graph, 81, 97, 101,
101–104

determinant, 74
diagonal map, 57, 66–68, 150, 161,

270, 318, 319–325
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diagonalizable, 69, 79, 331, 334
diagonalization, 4, 261
Dickson’s Lemma, 15, 16, 27, 47
Dieterich, Ernst, 264, 272, 276, 280,

281, 294
Dieudonné, Jean, 31
Ding, Songqing, 43, 188, 191, 194,

195
Diophantine monoid, see Krull

monoid
direct image, 98
direct limit, 160, 161, 163, 164
direct-sum cancellation, 3, 27
direct-sum decomposition, 1, 7, 9,

13–15, 19, 27, 73, 75, 105, 160,
176, 177, 185, 220, 226, 227, 259,
274, 294, 302

discrete valuation ring, DVR, 24, 46,
48, 56, 58, 124, 140, 141, 144,
245–247, 250, 252, 268, 299, 323,
326, 334

divisor, 100, 104
divisor class group Cl(R), 14, 23–26,

99, 285, 303
divisor homomorphism, 14, 14–16,

26, 27
divisorial ideal, 23–25, 303
double branched cover, 126, 126–140,

143, 144, 157, 158, 230, 241, 293,
295

double sharp 5, 136, 136–137
Drozd, Yuriy, 32, 37, 49, 50, 237, 240,

241, 244, 259
Drozd-Roı̆ter conditions, 29, 32–39,

41–44, 48–51, 54, 56, 58, 59, 166,
168, 170, 279, 296

necessity of, 42–45
sufficiency of, 45–50, 52

Du Val singularity, see Kleinian
singularity

Du Val, Patrick, 87, 97, 100
dual, 219, 230
duality, canonical, 173, 218, 246, 257,

277

e(R),e(M),e(I, M), 309
EGA, 306
eigenvalue, 335

Eisenbud, David, 118, 124, 265, 266,
283, 289, 291

Elkik, Renée, 165
embedding dimension, 100
End, 199
endomorphism ring, 1–3, 5, 10, 32,

44, 48, 55, 58, 59, 61, 65, 67–70,
72, 83, 109, 173, 177, 192, 193,
199, 203, 221, 233, 235, 256, 258,
260, 298–300

nc-local, 1, 3–6, 10, 132, 199, 214,
219, 221, 222, 234, 269

enveloping algebra, 319
equivalence of matrix factorizations,

123, 124, 130, 132
Esnault, Hélène, 115, 116
essentially of finite type, 22, 66, 114,

115, 160, 169, 172, 315, 317–322
étale covering, 116
étale fundamental group πet

1 (X ),
115–117

étale homomorphism, 116, 160, 160,
163, 164, 169, 317–324

Euclid, 84
Euclidean diagram, see extended

ADE Coxeter-Dynkin diagram
Euler characteristic, 98
evaluation homomorphism, 193
Evans, E. Graham, 3, 7, 307
excellent ring, 98, 116, 159, 163, 163,

165, 167–169, 238, 264, 272, 275,
276, 300

exceptional fiber, 99–105
expanded subsemigroup, 14, 16, 22,

23
Ext-minimal FID hull, 179
Ext-minimal MCM approximation,

178, 179, 186, 187
extended ADE Coxeter-Dynkin

diagram, 91–97, 228, 231–233,
see also ADE Coxeter-Dynkin
diagram

extended module, 17, 18, 23, 24, 26,
43, 160, 165, 301–303

extension of modules, 107–109, 113,
118, 125, 175, 183, 219, 286, 287

exterior power
∧p, 65, 74, 226, 227,

288
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faithful flatness, 17, 18, 26, 27, 159,
310

faithful ideal, 52, 55, 56, 279
faithful module, 302
faithful system of parameters, 267,

267–276, 281
faithfully flat descent, 15, 24, 25, 211
Ferrand, Daniel, 174
fiber product, 319
FID hull, see hull of finite injective

dimension
field

algebraically closed, 50, 51, 73, 90,
91, 98, 101, 116, 126, 131, 132,
135, 136, 139, 140, 142–145, 149,
157–159, 168, 188, 221, 230, 249,
255, 258, 264, 272, 273, 275–279,
281, 283, 284, 289, 295, 317, 319

characteristic p, see characteristic
characteristic zero, 107, 115
coefficient, 295
finite, 37
imperfect, 271
infinite, 32–34, 38, 43, 44, 49–51,

140–142, 166, 191, 197, 263, 264,
277, 281, 287, 293, 297, 298, 300,
310

perfect, 52, 139, 263, 264, 271, 272,
275

uncountable, 140, 141, 237, 238,
280, 281

field extension
algebraic, 163, 170
Galois, 63, 116, 117, 326, 331, 333
inseparable, 36, 49, 159, 168
non-Galois, 38
separable, 36, 38, 49–51, 66, 116,

159, 160, 166–168, 317, 320–326,
335

finite birational extension, 42, 43, 44,
49, 51, 52, 168, 233, 290,
296–299, 303, 312

finite CM type, 29, 41, 45, 46, 48–54,
56, 57, 75, 81–83, 91, 114–118,
130, 131, 139, 143, 147–149,
157–162, 164–168, 170, 195, 199,
206, 233, 239, 241, 264, 272, 275,
281, 283–292, 296, 300, 303

=⇒ isolated singularity, 107, 112,
114, 161, 165, 195, 272

ascent of, 53, 54
finite field, 37
finite injective dimension, 171, 172,

174, 189, 197, 217
finite length module, 10, 17, 18, 24,

45, 49, 55, 59, 99, 106, 108,
110–113, 119, 171, 179, 180, 202,
217, 218, 242, 243, 260, 263–266,
272, 274, 275, 292, 306, 309, 312,
328, 330, 332

finite representation type, 29, 30, 32,
37, 38, 47, 49, 114, 208, 263

of Artinian pairs, 29, 32, 46
TR modules, 205

finite TR type, 205, 206
finite-dimensional algebra, 33, 263,

264, 313, 314
Fitting’s Lemma, 10, 265
Five Lemma, 257
flatness, 160, 317
flatting, 126, 128, 131, 135, 230, 233
Flenner, Hubert, 98, 115, 116
formally equidimensional, 166
Foxby, Hans-Bjørn, 173
fractional ideal, 10, 23, 288, 291, 324
fractional linear transformations, 85
free monoid, 13, 15
free rank f-rank, 185, 187, 190, 191,

195
free resolution, 202–204

bounded, 124, 149
periodic, 124

free semigroup, 22
full subsemigroup, 14, 16, 25, 26
fundamental divisor Z f , 100–104
fundamental group π1, 115–116
fundamental sequence, 229, 230

Gabriel quiver, 61, 73, 74, see also
McKay-Gabriel quiver

Galois field extension, 63, 116, 117,
326, 331, 333

Galois ring extension, 331–335
γ-invariant, 185, 185, 188–190
general linear group GL(n,k), 61, 62,

71, 79, 115, 331
generating invariants, 87–90, 150
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generically Gorenstein, 173, 174, 180,
184, 185

genus, 24, 98
geometric McKay correspondence,

97–105
geometrically regular, 163
global dimension, 64, 79
gluing construction, 180, 189
gluing map, 244, 250, 252
going down, 17, 164, 322, 333
going up, 322, 333
golden ratio, 89, 96
Goldie dimension, 59
gonflement, 44, 166, 167–170, 277,

302, 310, 311
Gonzalez-Sprinberg, Gerardo, 97
Gorenstein

generically, 173, 174, 180, 184, 185
in codimension one, 82, 148, 216,

257, 259, 260, 308
on the punctured spectrum, 82,

114, 162, 191, 194, 195, 202, 216,
257, 259, 260, 308, 309

Gorenstein dimension, 205
Gorenstein locus, 194
Gorenstein module, 174, 309
great gross 1728, 89
Green, Edward, 37, 41, 45, 48, 50
Greuel, Gert-Martin, 42, 50–52, 139,

143, 157, 158, 237, 241, 248, 280
Griffith, Phillip A., 307
group

binary polyhedral, 86–90, 92–97,
149, 259

étale fundamental, 115–117
fundamental, 115, 116
Galois, 63, 117, 331
general linear, 61, 62, 71, 79, 115,

331
special linear, 81, 83, 86, 92, 149,

225
group algebra kG, 71, 264
Gulliksen, Tor, 149
Guralnick, Robert, 7, 195, 267

HT (R), 269
Harada-Sai Lemma, 264, 266, 271,

273, 274, 278

Harada-Sai sequence, 265, 265, 266,
272

Hashimoto, Mitsuyasu, 176, 178
Heitmann’s amazing theorem, 25,

303
Heitmann, Raymond C., 25
Heller, Alex, 31
Hensel’s Lemma, 6, 143, 144, 146
Henselian local ring, 6, 6, 7, 10, 48,

112, 116, 161, 177, 185, 206, 208,
213, 219–221, 223, 245, 268, 269,
276, 313, 314

classical definition, 6, 143, 145, 313
complete local ring is, 6
Krull-Remak-Schmidt holds for, 6

Henselization, 159, 160, 161, 164, 165
Herzog, Jürgen, 81, 82, 90, 107, 115,

118, 139, 148, 180, 185, 189, 191,
196, 257, 283, 289, 291, 294, 295

Hessel, Johann F. C., 84
Hessian, 89
higher direct image, 98
Higman, Donald G., 31, 268
Hilbert function, 101, 158, 309
Hilbert polynomial, 309
Hilbert-Burch Theorem, 284
Hom-tensor adjointness, 93, 217, 327
homogeneous coordinate ring, 24
homogeneous ring, 191, 283, 289,

290, 291
homological different, 270, 270, 281,

322–326, 332
homomorphism of matrix

factorizations, 122, 125, 132
hosohedron, 84
hull of finite injective dimension, 171,

175, 175–190
Ext-minimal, 179
left minimal, 179
minimal, 179, 182, 185

Huneke, Craig, 107, 112
hypersurface singularity, 50, 51, 83,

89, 90, 98, 101, 106, 118,
121–139, 159, 188, 199, 212, 237,
240, 241, 248–256, 276, 280, 281,
293–295, 297–299, 311

I , 86
icosahedron, 84, 89
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ideal
divisorial, 23–25
faithful, 52, 55, 56, 279
fractional, 10, 23, 288, 291, 324
of pure height one, 173, 174, 184,

322, 323, 325, 326
reflexive, 324
stable, 44, 55

idempotent, 1–3, 9, 32, 70, 161, 177,
250, 269, 297, 314, 320

lifting, 5, 6, 72, 313, 314
split, 1, 2, 4, 9, 32

imperfect field, 168, 271
index, 190, 194, 195, 197
inertia group, 334
inertial degree, 334
infinite CM type, 19, 43, 51, 53, 165,

166, 168, 249, 256, 263, 264, 276,
281, 287, 291, 297–300, 302

infinite field, 32–34, 38, 43, 44,
49–51, 140–142, 166, 191, 197,
263, 264, 277, 281, 287, 293, 297,
298, 300, 310

infinite syzygy, 205
injective hull of the residue field, 171,

217
inner product, 84, 85
inseparable field extension, 36, 49,

159, 168
integral closure, 41, 42, 45–58, 116,

117, 241, 244, 252, 297, 312, 331
integral extension, 52, 63, 98, 319,

322, 324
integrally closed, see normal
intersection matrix, 100, 101
intersection multiplicity, 99
Intersection Theorem, 172
intersection theory, 99
intumescence, 166
invariant ring, 81, 82, 86, 97, 107,

115, 117, 229, 258, 259, 287, 289
invariant theory, 61
inverse determinant representation,

74
Irr(M, N) and irr(M, N), 221
irreducible homomorphism, 220,

220–225, 231, 272–274, 277–279,
283, 284

irreducible representation, 71–73, 77,
83, 91, 94, 97, 104, 149, 288

Ischebeck, Friedrich, 172
Isogawa, Satoru, 183
isolated singularity, 42, 53, 98, 101,

107, 112–115, 119, 188, 195, 215,
219–221, 223, 226, 239, 244, 264,
271–281, 283, 284, 286, 287, 291,
294, 300

J (−), 3
Jacobian

criterion, 271, 284
determinant, 89
ideal, 188, 270, 271, 281
matrix, 270

Jacobinski, Heinz, 50, 51
Jacobson radical J (−), 3, 221, 313,

314
Jans, James P., 263
Jordan block, 28–31, 34, 37
Jordan, Camille, 84

Kähler differentials Ω, 114, 115, 319
Kaplansky, Irving, 196
Karoubian, see idempotent, split
Karr, Ryan, 50
Kato, Kiriko, 183, 185
Kattchee, Karl, 23
Kawasaki, Takesi, 294, 295
Kiyek, Karl-Heinz, 157, 158
Klein, Felix, 81, 87, 89
Kleinian singularity, 81, 83, 90,

83–97, 99, 102, 104, 131, 139,
149–156, 225–228

Knörrer’s periodicity, 131, 249
Knörrer, Horst, 42, 50–52, 131, 136,

137, 139, 143, 248, 293
Koszul complex, 65, 74, 224, 226, 288,

292
Koszul relations, 285
Kronecker, Leopold, 31
Kröning, Heike, 157, 158
KRS, see Krull-Remak-Schmidt

Theorem
Krull Intersection Theorem, 78, 114,

215
Krull monoid, 14, 15, 16, 21–23
Krull, Wolfgang, 1
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Krull-Remak-Schmidt Theorem, 1–7,
10, 19, 27, 47, 112, 129, 135, 206,
208, 294

failure of, 3, 13, 19, 22
for Artinian pairs, 58
for skew group rings, 70, 72
in an additive category, 4
over Artinian pairs, 32
over Artinian rings, 5, 27
over complete local rings, 7, 9, 13,

15, 82, 83
over Henselian local rings, 6

`R(M), 309
left minimal FID hull, 179
Lemme d’Acyclicité, 202, 211
length sequence, 265, 266
Leray spectral sequence, 98
Leuschke, Graham J., 107, 112
Levin, Gerson, 196
Levy, Lawrence S., 17
lifting

Drozd-Roı̆ter conditions, 43
factorizations, 313
field extensions, 166, 167
homomorphisms, 7, 8
idempotents, 5, 6, 72, 313, 314
modules from Artinian pairs, 43
simple roots, 143, 314, 315

lifting number, 7, 7–9
lifting property, 206, 207–211,

213–215, 219, 222–224, 234
of FID hulls, 175, 176
of MCM approximations, 175, 176

Lipman, Joseph, 118
`̀ R(M), 191
local cohomology, 98, 106, 179, 197
local duality, 197
local fundamental group, 115
local-global theorem, 57, 66
locally finite, AR quiver is, 224, 275,

278
locally free

in codimension one, 260
on the punctured spectrum, 112,

114, 119, 165, 215, 216, 218, 219,
327, 329, 330

locally free sheaf, 104–106
Loewy length, 191

Luckas, Melissa, 56
lying over, 322, 333

Maclaurin series, 132
mapping cone, 125
Maranda’s Theorem, 268
Maranda, Jean-Marie, 268
Martsinkovsky, Alex, 180, 185, 188,

189
Maschke’s Theorem, 79
Matlis duality, 219
matrix decompositions, 37, 38, 48–50,

168
matrix factorization, 121, 121–139,

149–156, 230–233, 241, 249, 251,
252, 254–256

maximally generated, 311
McKay correspondence, 71–77, 81,

91–97, 225–229
geometric, 97–105

McKay quiver, 61, 73, 73–75, see also
McKay-Gabriel quiver

McKay, John, 81, 91, 104
McKay-Gabriel quiver, 71, 75, 76, 77,

81, 91–97, 104, 225, 226
MCM approximation, 171, 175,

175–197, 204, 239
Ext-minimal, 178, 179, 186, 187
minimal, 176, 176–180, 182–185,

187, 188, 191, 195, 196, 227, 230,
274, 278

right minimal, 176, 176–179
MCM module, 29

over the skew group ring, 133
mess, 34, 36
minimal FID hull, 182, 185

uniqueness, 179
minimal MCM approximation, 176,

176, 177, 179, 180, 182–185, 187,
188, 191, 195, 196, 224, 227, 230,
274, 278

uniqueness, 178
minimal multiplicity, 100, 106, 118,

149, 197, 290, 291
minimal polynomial, 30, 38
minimal prime ideal, 13, 17, 19, 20,

38, 45, 56, 57, 59, 125, 166, 173,
174, 301, 302, 306, 308, 311, 313
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minimal reduction, 44, 101, 166, 297,
310

minimal resolution of singularities,
98–101, 104

Miyata’s Theorem, 107, 110, 111, 113,
193

Miyata, Takehiko, 107
modified Burban-Drozd triples BD′,

see Burban-Drozd triples BD
module

canonical, 114, 171, 176–180,
183–185, 188–197, 213, 214,
217–220, 223, 229, 230, 239, 259,
260, 277, 283, 284, 288, 309

conormal I/I2, 114–115
extended, 17, 18, 23, 24, 26, 43,

160, 165, 301–303
faithful, 302
Gorenstein, 174, 309
maximal Cohen-Macaulay, 29
MCM, 29
n-torsionless, 201, 202
of covariants, 72, 150
of finite length, 10, 17, 18, 24, 45,

49, 55, 59, 99, 106, 108, 110–113,
119, 171, 179, 180, 202, 217, 218,
242, 243, 260, 263–266, 272, 274,
275, 292, 306, 309, 312, 328, 330,
332

projective, 20, 32, 43, 44, 46, 47, 55,
61, 64, 65, 70–73, 79, 83, 173,
225, 234, 245, 246, 302, 307, 319,
321, 324–326

reflexive, 14, 23, 25, 67, 81, 82, 82,
83, 104, 105, 117, 148, 201, 202,
216, 217, 242, 246, 248, 260, 307,
308, 323, 325–330, 332

simple, 73, 266
stable, 124, 127, 129, 130, 134, 135,

148, 185–187, 190, 191, 280
torsion, 174, 184, 246, 248, 325
torsion-free, 14, 20, 21, 23, 24, 41,

42, 52, 55–57, 66, 69, 162, 174,
202, 243, 246, 247, 260, 303, 305,
323, 326, 327

torsionless, 201, 202
totally reflexive, 205, 205–211
trivial, 65, 74

Ulrich, 311
weakly extended, 43, 47, 58,

161–163, 167
weakly liftable, 43

monoid, see semigroup
µR(M), 311
multiplicity, 41, 44, 54–56, 100, 101,

106, 114, 115, 158, 264, 272,
276–279, 290, 293, 295, 297, 298,
303, 309, 310–312

multiplicity two, 42, 54, 57, 59, 101,
106, 140, 141, 143, 144, 264, 290,
294, 295, 299, 300

Mumford, David, 100, 115–118

n-torsionless module, 201, 202
Nagata, Masayoshi, 271
NAK, see Nakayama’s Lemma
Nakayama’s Lemma, 6, 9, 20, 31, 44,

47, 72, 177, 211, 268, 269, 275,
278, 314, 317, 329

Nazarova, Liudmila A., 263
nc-local, 3, 5, 10

endomorphism ring, 1, 3–6, 10, 132,
199, 214, 219, 221, 222, 234, 269

negative definite matrix, 100, 101,
115

nilpotent Jordan block, 29
nilpotent Jordan block, 28, 30, 31, 34,

37
nilradical, 53, 297, 298, 302
nodal cubic curve, 46, 57, 145
Noether, Emmy, 78, 324
non-constant ranks, 57
non-derogatory matrix, 30
non-free locus, 280
non-normal locus, 242
non-singular ring, 114
norm, 78
normal bundle, 100, 101
normal domain, 23–25, 63, 66, 67, 81,

82, 98, 100, 101, 104, 106, 116,
117, 225, 226, 229, 230, 241, 242,
284, 287, 291, 303, 307, 308,
321–327, 330, 332

normal forms, 89, 90, 144, 156–158
normal scheme, 116
number of generators, 293
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O , 86
octahedron, 84
Odenthal, Charles, 17
ωR , 172
one-one correspondence, 61, 70–73,

83, 97, 104
orbit-stabilizer theorem, 334
orthonormal basis, 85
overring, 295

perfect field, 52, 139, 168, 263, 264,
271, 272, 275

periodic free resolution, 124
Peskine, Christian, 172
Picard group Pic, 24, 104, 105
Piepmeyer, Greg, 199, 206
pitchfork construction, 180, 204
Platonic solids, 84, 86
point at infinity, 85
pointed étale neighborhood, 160, 161,

315
Popescu, Dorin, 276
poset, 27
positive characteristic, 90, 99, 117,

118, 144, 172
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